A global study of 2D dissipative diffeomorphisms with a Poincaré homoclinic figure-eight.

DS100P 2012, Gijón,

September 3–7, 2012

A. Vieiro

(Univ. Barcelona)

Joint work with S. Gonchenko (Univ. Nizhny Nóvgorod) and C. Simó (Univ. Barcelona)

Introduction

We consider a family $T_{\mu,\epsilon}$, $\mu \in \mathbb{R}^2$, $\epsilon \in \mathbb{R}$, of 2D analytic diffeomorphisms.

 $T_{\mu,\epsilon}$ can be seen as the **Poincaré map** of a **non-autonomous** (2π -periodic in time) $\mathcal{O}(\epsilon)$ -perturbation of an **autonomous** family of vector fields f_{μ} .

- The non-autonomous perturbation is assumed to be fixed and sufficiently small (equivalently, ϵ is a small given value).
- The family of autonomous systems f_{μ} is a 2-parameter unfolding of the system f_0 , which we assume to posses a **homoclinic figure-eight** to a **dissipative** saddle point.

Let $\Gamma^+ = W^{u+} = W^{s+}$ and $\Gamma^- = W^{u-} = W^{s-}$ be the homoclinic loops of the flow f_0 . Then $\Gamma_0 = \Gamma^+ \cup \Gamma^-$ is the (unperturbed) homoclinic figure-eight of the saddle O.

 $T_{\mu,\epsilon}$ are pendulum-like systems under forcing and dissipation.

- Forcing \Rightarrow elliptic point becomes a repellor.
- **Dissipation** \Rightarrow the dynamics is towards the separatrix.

The cylinder-sphere-stereo projection identifies with a dissipative figure-eight.

Device? pendulum + dissipation proportional to velocity (assymetric if different bulk left/right shapes) + magnetic field kicks at the minimum to make the fixed points unstable.

We want to study the **parameter space** of $T_{\mu,\epsilon}$ for ϵ small fixed. Concretely, we consider:

- 1. A **qualitative** approach to the full bifurcation diagram.
 - \rightarrow Different dynamics and regions.
 - \rightarrow Homoclinic dynamics. Lobe dynamics.
 - \rightarrow MS & SA boundaries.
- 2. A **quantitative** approach to the full bifurcation diagram.

We use a separatrix map model.

- \rightarrow Size of the main regions having different dynamics.
- → Scaling properties of the bifurcation diagram.
- \rightarrow Stability regions related to cubic tangencies.

This talk is based on (some of) the results that can be found in

Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight.

S.V. Gonchenko , C. Simó and AV, submitted to Nonlinearity.

The flow (autonomous) case

Bifurcations of limit cycles from a homoclinic loop to a saddle:

- Let $\lambda > 0$ and $-\gamma < 0$ the characteristic roots of the saddle.
- If $\sigma = \lambda \gamma \neq 0$ exactly one limit cycle is born (Andronov-Leontovich).

Left: unfolding a dissipative loop. Right: figure-eight before unfolding.

The flow case: bifurcation diagram

D. Turaev. On a case of bifurcation of a contour composed by two homoclinic curves of a saddle. Methods of the qualitative theory of differential equations, Ed. Gorki, 1984, 162–175.

The diffeomorphism case: bifurcation diagram

We consider the effect of the non-autonomous perturbation and we look at the Poincaré map.

Properties of the bifurcation diagram of $T_{\mu,\epsilon}$

- 1. There appear **35 regions** with different dynamics!
- 2. These regions are separated by first/last tangency curves

$$L_1^+$$
, L_2^+ , L_1^- , L_2^- , L_1^\pm , L_2^\pm , L_1^\mp , L_2^\mp ,

and/or by "curves" that indicate transitions from "simple" dynamics to strange attractor (e.g. folding of an invariant curve can cause collision between tangent/normal bundles and create a SA)

 $BD^+, BD^-, BD^{+-}.$

- 3. Only the $L_{1,2}^{+,-}$ are smooth. The curves $L_{1,2}^{\pm,\mp}$ have a complicated structure (later) with infinitely many intervals of smoothness.
- 4. Multiple attractors can coexist.

A quantitative model: dissipative separatrix map

→ FD = two annuli: the index j equals 1 if s = 1 and j = 2 if s = -1. → $\psi = \lambda/\gamma$ accounts for the dissipation in the passage near the saddle. → Returning time = constant ω_j +"flying" time $A \log(y)$ near the saddle. → $y = a_j + \eta + b_j \sin(2\pi z)$, and for both η (distance w.r.t. W^u) and y

(distance w.r.t. W^s) the positive orientation points towards the saddle.

- → If $a_j = b_j = 0$ both branches $W^{u/s}$ coincide. For $b_j = 0$ it mimics the vector field provided $|a_j| < (\psi - 1)/\psi^{\psi/(\psi - 1)}$. Then b_j play the role of ϵ (they undulate the inv. manifolds).
- → In the simulations: $\omega_j = 0$, A = 2, $\psi = 1.6$, $b_1 = 0.003$, $b_2 = 0.0015$. Then a_1, a_2 are taken as leading parameters ranging in [-0.15, 0.15].

A preliminary numerical exploration of the model

In the (a_1, a_2) -parameter space we compute first/last primary homoclinic quadratic tangency curves between $W^{u\pm} = \{\eta = 0, s = \pm 1\}$ and $W^{s\pm} = \{y = 0, s = \pm 1\}$. The curves $L_{1,2}^{\pm}$ and $L_{1,2}^{\mp}$ are the envelope of different bifurcating curves (related to different primary quadratic tangencies) that bound a "diagonal" strip with "stair-type" structure. Essentially 8 curves.

Bifurcating curves within HZ^{\pm}

Homoclinic tangencies – phase space

a) $\mu \in L_2^-$, $\mu_1 < 0$; b) $\mu \in L_1^-$, $\mu_1 < 0$; c) $\mu \in L_1^+$, $\mu_2 < 0$; d) $\mu \in L_2^+$, $\mu_2 < 0$; e) $\mu \in L_{2}^{\mp}$; f) $\mu \in L_1^{\mp}$; g) $\mu \in L_1^-$, $\mu_1 > 0$; h) $\mu \in L_{2}^{-}$, $\mu_{1} > 0$; i) $\mu \in L_2^+$, $\mu_2 > 0$; j) $\mu \in L_1^+, \mu_2 > 0;$ k) $\mu \in L_1^{\pm};$ I) $\mu \in L_{2}^{\pm}$.

Comments on the attractors

- 1. Only the regions I,II,...,VI are related to non-chaotic dynamics (like the flow). The global attractors are invariant curves C^+ , C^- and/or C^* .
- 2. In the chaotic regions, the closure of the invariant manifolds can contain a quasi-attractor: a nontrivial attracting invariant set which contains stable p.o. (sinks) and/or SA (maybe made by several pieces). Arbitrarily small perturbations of the parameters when a SA is found can give rise to sinks.
- 3. There appear strange attractors of different nature:
 - → A^+ , A^- and A^* are born under the break-down of the closed invariant curves C^+ , C^- and C^* : Due to the folding of the curve it becomes tangent to stable foliation of the saddle fixed point.
 - → The global attractors AT^+ , AT^- and GA are "homoclinic attractors" related to the intersection of (some or all) the invariant manifolds.
 - → SA can also appear at the end of a period doubling cascade of sinks.
 These attractors have local character.

Tail attractors

Homoclinic intersections:

- (a) "Tail" strange attractor AT^+ ($\mu \in \mathbf{26}$)
- (b) Global strange attractor GA ($\mu \in \mathbf{19}$)

Double homoclinic tangencies

The boundaries of HZ^{+,-, \pm,\mp} intersect at \rightarrow double primary tangencies b, d, e, f, g, h

 \rightarrow double non-primary tangencies a, c.

The stepness of $HZ^{\pm,\mp}$

cubic tangencies!

Cubic single-round homoclinic tangencies

Outer map:

y-

$$\bar{x} - x^+ = ax + b(y - y^-),$$

 $\bar{y} = cx + d(y - y^-)^3$

Single round k-p.o, k large, **limit** return map:

$$\begin{array}{rcl} X & = & Y, \\ \bar{Y} & = & M_1 + M_2 Y + \operatorname{sign}(d) Y^3. \end{array}$$

In our system, $c_1, ..., c_4$ cubic tangencies inside HZ^{\pm} and HZ^{\mp} .

Lemma. All the cubic tangencies $c_1, ..., c_4$ are of spring-area type (d < 0).

Accumulation of links inside HZ^{\pm}

Lemma.

- 1. The primary cubic tangencies c_1 can exist only if $W^{u+} \cap W^{s+} = \emptyset$ and $W^{u-} \cap$ $W^{s-} = \emptyset$ (i.e. in the regions **3** and **10** of the bif. diagram).
- 2. The primary cubic tangencies c_2 can exist if $W^{s+} \cap W^{u+} = \emptyset$ (i.e. in the regions 3, 10 and 18).
- 3. The primary cubic tangencies c_3 can exist if $W^{s-} \cap W^{u-} = \emptyset$ (i.e. in the regions 3, 10 and 15).
- 4. In the region **19** of the bif. diagram only primary cubic tangencies c_4 can exist.

Corollary. The cusp points c_1, c_2, c_3 and c_4 accumulate to the points a , d , b and c resp.

Further analysis of the model: MLE

For each (a_1, a_2) -parameters we take $z_0 = 0.5$, $\eta_0 = 0$ and $s_0 = 1$ (left) or $s_0 = 1$ (right) as i.c. (i.e. on W^u) and compute the Max. Lyap. exp. Λ .

Red points correspond to $\Lambda > 0$ (chaotic attractor), green points to $\Lambda = 0$ (invariant curve) and white points to $\Lambda < 0$ (periodic sink).

Stability regions ($\Lambda < 0$) related to periodic sinks

Stability region: magnification

Red: parameters for which there is a **2-periodic sink** as attractor.

The cross-road scenario

If k is not large enough (depending on the parameters) other configurations might appear (non-local effects and role of high order terms in the return map). One of this, which is commonly observed in numerical explorations and related to the spring-area configuration, is the cross-road scenario.

H. Broer, C. Simó and J.C. Tatjer. *Towards global models near homoclinic tangencies of dissipative diffeomorphisms.* Nonlinearity, 1998, 11, 667–770.

J.P. Carcassès, C. Mira, M. Bosch, C. Simó and J.C. Tatjer. "Crossroad area-spring area" transition

(I)-(II). Parameter plane representation. Int. J. Bifur. and Chaos, 1991, 1.

Transition to spring-area: larger (return) periods

Lyapunov exponents

A sample of attractors I ($a_2 = 0$)

1st row: invariant curve ($a_1 = -0.145$), SA of type A^* with a global nature ($a_1 = -0.129$), detail of the fold in the previous SA ($a_1 = -0.129$) and a SA of type A^* with a local periodic nature ($a_1 = -0.073$). **2nd row:** Detail of the Hénon-like structure of the previous SA ($a_1 = -0.073$), SA of type A^* with a local nature ($a_1 = -0.034$), globalization of the previous SA ($a_1 = -0.033$) and a SA of type A^- ($a_1 = 0.006$).

A sample of attractors II ($a_2 = -0.001$)

Left: Tail attractor of type AT^- ($a_1 = -0.0095$). Center: Magnification of the previous figure. Right: Global SA of type GA ($a_1 = 0$).

We can identify the points e and g of the bif. diagram. The white domains contained in these colored regions correspond to sinks.

26/29

The period of the sinks

Lemma. If a s-n appears for a critical value $a_1 = a_{1,c}$, then the period of nearby sinks behaves as $\operatorname{ctant} \times |a_1 - a_{1,c}|^{-1/2}$.

 $a_2 = 0$. We plot Per vs. a_1 (left) and $\log(Per)$ vs $\log(a_1 - a_{1,c})$ (right). $a_{1,c} \approx -0.143170413565918$ is the value for the first appearance of period 2 orbits with $a_1 > -0.15$. All periods (under M) from 24 to 11026 have been detected!

Open problems and extensions

Several questions remain open, like

- The creation/destruction of SA by folding of IC. In particular the boundary marked as BD in the bifurcation diagram.
- The abundance of sinks, taking into account the existence of cross-road and spring areas.
- Links with s-n boundaries connecting different cross-road and spring areas.
- Relative size of the basins of attraction when there is multiplicity of attractors.

... and possible **extensions** to **3D and higher dimension** diffeomorphisms. E.g.: Shilnikov-like, Hopf-Shilnikov-like maps, etc.

Thanks for your attention!!