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Introduction

We consider a family Tµ,ǫ, µ ∈ R
2, ǫ ∈ R, of 2D analytic diffeomorphisms.

Tµ,ǫ can be seen as the Poincar é map of a non-autonomous (2π-periodic in

time) O(ǫ)-perturbation of an autonomous family of vector fields fµ.

• The non-autonomous perturbation is assumed to be fixed and sufficiently

small (equivalently, ǫ is a small given value).

• The family of autonomous systems fµ is a 2-parameter unfolding of the

system f0, which we assume to posses a homoclinic figure-eight to a

dissipative saddle point.

Let Γ+ = W u+ = W s+ and Γ− = W u− =

W s− be the homoclinic loops of the flow f0.

Then Γ0 = Γ+ ∪ Γ− is the (unperturbed)

homoclinic figure-eight of the saddle O.

Figure 1:
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Motivation

Tµ,ǫ are pendulum-like systems under forcing and dissipation .

• Forcing ⇒ elliptic point becomes a repellor.

• Dissipation ⇒ the dynamics is towards the separatrix.

The cylinder-sphere-stereo projection identifies with a dissipative

figure-eight .
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Device? pendulum + dissipation proportional to velocity (assymetric if different
bulk left/right shapes) + magnetic field kicks at the minimum to make the fixed
points unstable.
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Idea of this talk

We want to study the parameter space of Tµ,ǫ for ǫ small fixed. Concretely,

we consider:

1. A qualitative approach to the full bifurcation diagram.

→ Different dynamics and regions.

→ Homoclinic dynamics. Lobe dynamics.

→ MS & SA boundaries.

2. A quantitative approach to the full bifurcation diagram.

We use a separatrix map model.

→ Size of the main regions having different dynamics.

→ Scaling properties of the bifurcation diagram.

→ Stability regions related to cubic tangencies.

This talk is based on (some of) the results that can be found in

Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight.

S.V. Gonchenko , C. Simó and AV, submitted to Nonlinearity.
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The flow (autonomous) case

Bifurcations of limit cycles from a homoclinic loop to a saddle:

• Let λ > 0 and −γ < 0 the characteristic roots of the saddle.

• If σ = λ− γ 6= 0 exactly one limit cycle is born (Andronov-Leontovich).

Left: unfolding a dissipative loop. Right: figure-eight before unfolding.
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The flow case: bifurcation diagram

I

VI µ1

µ2

II

III

IVV
−

Β+ −

Β+ −

Β

Β+

• Six regions.

• Boundaries:

W u+ = W s+ (I→II);

W u− = W s+ (II→III);

W u− = W s− (III→IV);

W u+ = W s+ (IV→V);

W u+ = W s− (V→VI);

W u− = W s− (VI→I);

D. Turaev. On a case of bifurcation of a contour composed by two homoclinic curves of a saddle.

Methods of the qualitative theory of differential equations, Ed. Gorki, 1984, 162–175.
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The diffeomorphism case: bifurcation diagram

We consider the effect of the non-autonomous perturbation and we look at the Poincaré map.
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Properties of the bifurcation diagram of Tµ,ǫ

1. There appear 35 regions with different dynamics!

2. These regions are separated by first/last tangency curves

L+1 , L+2 , L−1 , L−2 ,L±1 , L±2 , L∓1 , L∓2 ,

and/or by “curves” that indicate transitions from “simple” dynamics to

strange attractor (e.g. folding of an invariant curve can cause collision

between tangent/normal bundles and create a SA)

BD+,BD−,BD+−.

3. Only the L
+,−
1,2 are smooth. The curves L

±,∓
1,2 have a complicated structure

(later) with infinitely many intervals of smoothness.

4. Multiple attractors can coexist.

→ For a detailed analysis we introduce the following return map model...
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A quantitative model: dissipative separatrix map

Ma,b,ψ,A,ω :
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z + ωj + A log(|y|)

sign(y)|y|ψ

sign(y)s









→ FD = two annuli : the index j equals 1 if s = 1 and j = 2 if s = −1.

→ ψ = λ/γ accounts for the dissipation in the passage near the saddle.

→ Returning time = constant ωj +“flying” time A log(y) near the saddle.

→ y = aj + η + bj sin(2πz), and for both η (distance w.r.t. W u) and y

(distance w.r.t. W s) the positive orientation points towards the saddle.

→ If aj = bj = 0 both branches W u/s coincide.

For bj = 0 it mimics the vector field provided |aj| < (ψ − 1)/ψψ/(ψ−1).

Then bj play the role of ǫ (they undulate the inv. manifolds).

→ In the simulations : ωj = 0, A = 2, ψ = 1.6, b1 = 0.003, b2 = 0.0015.

Then a1, a2 are taken as leading parameters ranging in [−0.15, 0.15].
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A preliminary numerical exploration of the model

In the (a1, a2)-parameter space we compute first/last primary homoclinic

quadratic tangency curves between W u± = {η = 0, s = ±1} and

W s± = {y = 0, s = ±1}. The curves L±
1,2 and L∓

1,2 are the envelope of

different bifurcating curves (related to different primary quadratic tangencies)

that bound a “diagonal” strip with “stair-type” structure. Essentially 8 curves .
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Bifurcating curves within HZ±
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Homoclinic tangencies – phase space

e) f)

g) h) i)

j) k) l)

b)a)

d)

c)

a) µ ∈ L−
2 , µ1 < 0;

b) µ ∈ L−
1 , µ1 < 0;

c) µ ∈ L+
1 , µ2 < 0;

d) µ ∈ L+
2 , µ2 < 0;

e) µ ∈ L∓
2 ;

f) µ ∈ L∓
1 ;

g) µ ∈ L−
1 , µ1 > 0;

h) µ ∈ L−
2 , µ1 > 0;

i) µ ∈ L+
2 , µ2 > 0;

j) µ ∈ L+
1 , µ2 > 0;

k) µ ∈ L±
1 ;

l) µ ∈ L±
2 .
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Comments on the attractors

1. Only the regions I,II,...,VI are related to non-chaotic dynamics (like the

flow). The global attractors are invariant curves C+, C− and/or C∗.

2. In the chaotic regions, the closure of the invariant manifolds can contain a

quasi-attractor : a nontrivial attracting invariant set which contains stable

p.o. (sinks) and/or SA (maybe made by several pieces). Arbitrarily small

perturbations of the parameters when a SA is found can give rise to sinks.

3. There appear strange attractors of different nature:

→ A+, A− and A∗ are born under the break-down of the closed invariant

curves C+, C− and C∗: Due to the folding of the curve it becomes

tangent to stable foliation of the saddle fixed point.

→ The global attractors AT+, AT− and GA are “homoclinic attractors”

related to the intersection of (some or all) the invariant manifolds.

→ SA can also appear at the end of a period doubling cascade of sinks.

These attractors have local character. 13/29



Tail attractors

Homoclinic intersections:

(a) “Tail” strange attractor AT+ (µ ∈ 26)

(b) Global strange attractor GA (µ ∈ 19)
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Double homoclinic tangencies

d b

e f

h g

a c

The boundaries of HZ+,−,±,∓ intersect at

→ double primary tangencies b, d, e, f, g, h
→ double non-primary tangencies a, c.
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The stepness of HZ±,∓

W u+
W s−

Tangency "a"

Tangency "b"

 Point S

+−
L1

Tangency "b"

+−HZ

S

Tangency "a"

cubic tangencies! 16/29



Cubic single-round homoclinic tangencies

y−

x+

Outer map:

x̄− x+ = ax+ b(y − y−),

ȳ = cx+ d(y − y−)3.

Single round k-p.o, k large,
limit return map:

X̄ = Y,

Ȳ = M1 +M2Y + sign(d)Y 3.

In our system, c1, ..., c4 cubic tangencies inside HZ± and HZ∓.

c1
Q1

Q2
c2

c3

c4

Lemma. All the cubic tangencies c1, ..., c4 are of spring-area type (d < 0).
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Accumulation of links inside HZ±

Lemma.

1. The primary cubic tangencies c1 can exist

only if Wu+ ∩ W s+ = ∅ and Wu− ∩

W s− = ∅ (i.e. in the regions 3 and 10 of

the bif. diagram).

2. The primary cubic tangencies c2 can exist if

W s+ ∩Wu+ = ∅ (i.e. in the regions 3, 10

and 18).

3. The primary cubic tangencies c3 can exist if

W s− ∩Wu− = ∅ (i.e. in the regions 3, 10

and 15).

4. In the region 19 of the bif. diagram only pri-

mary cubic tangencies c4 can exist.

Corollary. The cusp points c1, c2, c3 and c4 accumulate to the points a,d,b
and c resp.
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Further analysis of the model: MLE

For each (a1, a2)-parameters we take z0 = 0.5, η0 = 0 and s0 = 1 (left) or

s0 = 1 (right) as i.c. (i.e. on W u) and compute the Max. Lyap. exp. Λ.
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Stability regions (Λ < 0) related to periodic sinks

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

20/29



Stability region: magnification

-0.0025

-0.0015

-0.0005

 0.0005

 0.0015

-0.005 -0.003 -0.001  0.001  0.003

Blue : set of (a1, a2)-parameters with Λ < 0 for the i.c. (0.5, 0, 1). The attractor is a periodic sink .

Red: parameters for which there is a 2-periodic sink as attractor.
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The cross-road scenario

If k is not large enough (depending

on the parameters) other configurations

might appear (non-local effects and role

of high order terms in the return map).

One of this, which is commonly ob-

served in numerical explorations and

related to the spring-area configuration,

is the cross-road scenario.
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H. Broer, C. Simó and J.C. Tatjer. Towards global models near homoclinic tangencies of dissipative

diffeomorphisms. Nonlinearity, 1998, 11, 667–770.

J.P. Carcassès, C. Mira, M. Bosch, C. Simó and J.C. Tatjer. “Crossroad area-spring area” transition

(I)-(II). Parameter plane representation. Int. J. Bifur. and Chaos, 1991, 1.
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Transition to spring-area: larger (return) periods
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Lyapunov exponents
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A sample of attractors I (a2 = 0)
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1st row: invariant curve (a1 = −0.145), SA of type A∗ with a global nature (a1 = −0.129), detail of
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A sample of attractors II (a2 = −0.001)
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The period of the sinks

Lemma. If a s-n appears for a critical value a1 = a1,c, then the period of

nearby sinks behaves as ctant×|a1 − a1,c|
−1/2.
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a2 = 0. We plot Per vs. a1 (left) and log(Per) vs log(a1 − a1,c) (right).

a1,c ≈ −0.143170413565918 is the value for the first appearance of period

2 orbits with a1 > −0.15.

All periods (under M ) from 24 to 11026 have been detected!
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Open problems and extensions

Several questions remain open , like

• The creation/destruction of SA by folding of IC. In particular the

boundary marked as BD in the bifurcation diagram.

• The abundance of sinks, taking into account the existence of cross-road

and spring areas.

• Links with s-n boundaries connecting different cross-road and spring

areas.

• Relative size of the basins of attraction when there is multiplicity of

attractors .

... and possible extensions to 3D and higher dimension diffeomorphisms.

E.g.: Shilnikov-like, Hopf-Shilnikov-like maps, etc.
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Thanks for your attention!!
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