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Introduction

We consider a family 7, , 1t € R?, € € R, of 2D analytic diffeomorphisms.

T#,6 can be seen as the Poincar € map of a non-autonomous (2m-periodic in

time) O (€)-perturbation of an autonomous  family of vector fields f,,.
e The non-autonomous perturbation is assumed to be fixed and sufficiently

small (equivalently, € is a small given value).

e The family of autonomous systems fu IS a 2-parameter unfolding of the
system f,, which we assume to posses a homoclinic figure-eight to a

dissipative saddle point.

LetI'm = W4 = Wt and '™ = WY =
W3~ be the homoclinic loops of the flow f.
Then 'y = I'" U I'" is the (unperturbed)
homoclinic figure-eight of the saddle O.
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Motivation

TM,6 are pendulum-like systems under forcing and dissipation

e Forcing = elliptic point becomes a repellor.

e Dissipation = the dynamics is towards the separatrix.

The cylinder-sphere-stereo projection  identifies with a dissipative

figure-eight .

Device? pendulum + dissipation proportional to velocity (assymetric if different
bulk left/right shapes) + magnetic field kicks at the minimum to make the fixed
points unstable.
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|dea of this talk

We want to study the parameter space of 7, u,e for € small fixed. Concretely,
we consider:

1. A qualitative approach to the full bifurcation diagram.
— Different dynamics and regions.
— Homoclinic dynamics. Lobe dynamics.
- MS & SA boundaries.

2. A quantitative approach to the full bifurcation diagram.
We use a separatrix map model.
— Size of the main regions having different dynamics.
— Scaling properties of the bifurcation diagram.

— Stability regions related to cubic tangencies.

This talk is based on (some of) the results that can be found in

Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight.

S.V. Gonchenko , C. Sim6 and AV, submitted to Nonlinearity.
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The flow (autonomous) case

Bifurcations of limit cycles from a homoclinic loop to a saddle:

e Let A > 0 and —~ < 0 the characteristic roots of the saddle.

e If 0 = A — v # 0 exactly one limit cycle is born (Andronov-Leontovich).

B=0 B>0 B<0 9
@) o O O
(b) . . @ o

Left: unfolding a dissipative loop. Right: figure-eight before unfolding.
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The flow case: bifurcation diagram

® SiX regions.

e Boundaries:
WUt = WSt (1I—1);
WY = WSt (lI—1l);
We = = W5 (llI=1V);
WUt = WSt (IV—=V);
WUt = WS (V—=VI);
We= = W3~ (VI=l);

D. Turaev. On a case of bifurcation of a contour composed by two homoclinic curves of a saddle.

Methods of the qualitative theory of differential equations, Ed. Gorki, 1984, 162-175.
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The diffeomorphism case: bifurcation diagram

We consider the effect of the non-autonomous perturbation and we look at the Poincaré map.

+
NG u
: PR . BD*
+ MS MS Hz+ A:Cf :
yac \HA 7)) s
\‘ 3 _ :
V) BD |5 7
C*A a3
o\ vsvie N 11
S A B
A* A . A" A
Lz ‘ 3 iR
LOM * 5 I\‘Hi\ 3 A*‘
- | %% A A2 G4
1 BRK ANz
Tl
MS S 26\
23 B D+— ~~~ " [ hill A+
R A oo
I: C* is global attractor @ :3:: A* A*
II: C*and C" are attractors \ﬁ:.
III: C"is global attractor - = AR L‘T
IV: C and C MS a5 2
. C . ttract
an are attractors C'A
V: C is global attractor A*,C* :T\.\
VI: C*and C are attractors E: @ 35°3
L + L + '

1 2 7129



Properties of the bifurcation diagram of 1,

1. There appear 35 regions with different dynamics!
2. These regions are separated by first/last tangency curves
+ 4+ = = £
L, Ly, Ly, Ly LT, L5, LY, LT,
and/or by “curves” that indicate transitions from “simple” dynamics to

strange attractor (e.g. folding of an invariant curve can cause collision
between tangent/normal bundles and create a SA)

BD™ BD . BD' .

3. Only the LI’Q_ are smooth. The curves Lf’f have a complicated structure

(later) with infinitely many intervals of smoothness.

4. Multiple attractors can coexist.

— For a detailed analysis we introduce the following return map model...
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A guantitative model: dissipative separatrix map

[ 2\ [ 24w+ Alog(ly))

Mapypaw: | n | = sign(y)|y|"
\ s / \ sign(y)s )
—~ FD = two annuli : theindex j equals l if s = land j = 2ifs = —1.

) = )\/'y accounts for the dissipation in the passage near the saddle.

-~ Returning time = constant w; +“flying” time A log(y) near the saddle.

-y =a; + 1+ b;sin(27z), and for both 1 (distance w.rt. W*) and y
(distance w.r.t. W' ®) the positive orientation points towards the saddle.

- If a; = b; = 0 both branches WU/ coincide.
For b; = 0 it mimics the vector field provided |a;| < (¢ — 1) /y¥/ =Y,
Then bj play the role of € (they undulate the inv. manifolds).

~ In the simulations : w; = 0, A = 2,1 = 1.6, by = 0.003, by = 0.0015.

Then a1, as are taken as leading parameters ranging in [—0.15,0.15].
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A preliminary numerical exploration of the model

In the (al, CL2> -parameter space we compute first/last primary homoclinic
quadratic tangency curves between W4+ = {n=0,s =41} and
Ws*t = {y =0,s = +1}. The curves L} 1o and L, are the envelope of
different bifurcating curves (related to different primary quadratic tangencies)

that bound a “diagonal” strip with “stair-type” structure. Essentially 8 curves .
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Bifurcating curves within H Z-
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Homoclinic tangencies — phase space

a)u € Ly, pn <O0;
b) € Ly, p1q <0;
c) € LT, pg < 0;
d)pp € Ly, pio < 0;

e)u € LJ;
fue LT;

9) i € Ly, >0
hywe Ly, pr > 0;

) p € Ly, o > 0;
)pe Ly, pe >0
K)o € L7
)p € L.
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Comments on the attractors

1. Only the regions L,11,...,VI are related to non-chaotic dynamics (like the

flow). The global attractors are invariant curves C'*, C~ and/or C"*.

2. In the chaotic regions, the closure of the invariant manifolds can contain a
guasi-attractor : a nontrivial attracting invariant set which contains stable
p.0. (sinks) and/or SA (maybe made by several pieces). Arbitrarily small

perturbations of the parameters when a SA is found can give rise to sinks.

3. There appear strange attractors of different nature:
~ AT, A~ and A* are born under the break-down of the closed invariant
curves CT, C~ and C*: Due to the folding of the curve it becomes
tangent to stable foliation of the saddle fixed point.
~ The global attractors AT+, AT~ and G A are “homoclinic attractors”
related to the intersection of (some or all) the invariant manifolds.
— SA can also appear at the end of a period doubling cascade of sinks.

These attractors have local character. 13120



Tall attractors

Homoclinic intersections:
(a) “Tail” strange attractor AT" (1 € 26)
(b) Global strange attractor GA (1 € 19)
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Double homoclinic tangencies

The boundaries of HZ™ — T intersect at
~ double primary tangencies b, d, e, f, g, h

— double non-primary tangencies a, c.
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The stepness of H Z =

wY* wS™
+

Tangency "a"

Point S

7

Tangency "b"

(a)
cubic tangencies! 16/29



Cubic single-round homoclinic tangencies

Outer map:

T—at = artbly—y ),
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In our system, ¢y, ..., ¢4 cubic tangencies inside HZ* and HZ 7.

i il )

Lemma. All the cubic tangencies cq, ..., ¢4 are of spring-area type (d < 0).
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Accumulation of links inside H Z -

c, + Lemma.

1. The primary cubic tangencies c¢; can exist
only if W*T N W3t = ) and W*™ N
W?*~ = () (i.e. in the regions 3 and 10 of
the bif. diagram).

N+

2. The primary cubic tangencies c2 can exist if
W3t N W*T = () (i.e. in the regions 3, 10
and 18).

3. The primary cubic tangencies c3 can exist if
W= NW*"™ = 0 (i.e. in the regions 3, 10
and 15).

4. In the region 19 of the bif. diagram only pri-

mary cubic tangencies ¢4 can exist.

Corollary. The cusp points ¢, ¢s, c3 and ¢4 accumulate to the points @, d, b
and C resp.

18/29



Further analysis of the model: MLE

For each (a1, as)-parameters we take 2o = 0.5, g = 0 and so = 1 (left) or
so = 1 (right) as i.c. (i.e. on /%) and compute the Max. Lyap. exp. A.
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Red points correspond to A > 0 (chaotic attractor ), green pointsto A = 0
(invariant curve ) and white points to A < 0 (periodic sink ). Lo



Stability regions (/A < 0) related to periodic sinks

0 0.05 0.1 0.15
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Stabllity region: magnification
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Blue: set of (a1, az)-parameters with A < O for the i.c. (0.5, 0, 1). The attractor is a periodic sink .
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The cross-road scenario

If k is not large enough (depending
on the parameters) other configurations

might appear (non-local effects and role

of high order terms in the return map).
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related to the spring-area configuration,

IS the cross-road scenario. 2

H. Broer, C. Sim6 and J.C. Tatjer. Towards global models near homoclinic tangencies of dissipative
diffeomorphisms. Nonlinearity, 1998, 11, 667-770.
J.P. Carcasses, C. Mira, M. Bosch, C. Sim6 and J.C. Tatjer. “Crossroad area-spring area” transition

(D-(I). Parameter plane representation. Int. J. Bifur. and Chaos, 1991, 1.
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Transition to spring-area: larger (return) periods
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Lyapunov exponents
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A sample of attractors | (ay = 0)
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1st row: invariant curve (a1 = —0.145), SA of type A™ with a global nature (a1 = —0.129), detail of
the fold in the previous SA (a1 = —0.129) and a SA of type A™ with a local periodic nature
(a1 = —0.073). 2ndrow: Detail of the Hénon-like structure of the previous SA (a1 = —0.073), SA
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SA of type A~ (a1 = 0.006). 25/29



A sample of attractors Il (ao = —0.001)
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Left: Tail attractor of type AT~ (a1 = —

Global SA of type GA (a1 = 0).

We can identify the points € and g of
the bif. diagram. The white domains
contained in these colored regions cor-

respond to sinks.
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The period of the sinks

Lemma. If a s-n appears for a critical value a; = a; ., then the period of

nearby sinks behaves as ctant X ]al — al,c]_l/?
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as = 0. We plot Per vs. a; (left) and log(Per) vs log(a; — ay ) (right).
a1 ~ —0.143170413565918 is the value for the first appearance of period
2 orbits with a; > —0.15.

All periods (under M) from 24 to 11026 have been detected!
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Open problems and extensions

Several guestions remain open, like

e The creation/destruction of SA by folding of IC. In particular the

boundary marked as BD in the bifurcation diagram.

e The abundance of sinks, taking into account the existence of cross-road

and spring areas.

e Links with s-n boundaries connecting different cross-road and spring

areas.

e Relative size of the basins of attraction when there is multiplicity of

attractors .

... and possible extensions to 3D and higher dimension diffeomorphisms.

E.g.: Shilnikov-like, Hopf-Shilnikov-like maps, etc.
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Thanks for your attention!!
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