Geometry of double resonances of 4D symplectic maps and diffusive properties.

Dynamical Systems Workshop

Warwick, 6-8 June, 2016.

Arturo Vieiro Join work with V.Gelfreich and C.Simó.

vieiro@maia.ub.es

Universitat de Barcelona Departament de Matemàtiques i Informàtica In this presentation we consider the 4D Froeschlé-like symplectic family of maps:

$$T_{\delta}: \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ J_{1} \\ J_{2} \end{pmatrix} \rightarrow \begin{pmatrix} \bar{\psi}_{1} \\ \bar{\psi}_{2} \\ \bar{J}_{1} \\ \bar{J}_{2} \end{pmatrix} = \begin{pmatrix} \psi_{1} + \delta(\bar{J}_{1} + a_{2}\bar{J}_{2}) \\ \psi_{2} + \delta(a_{2}\bar{J}_{1} + a_{3}\bar{J}_{2}) \\ J_{1} - \delta\sin(\psi_{1}) \\ J_{2} - \delta\epsilon\sin(\psi_{2}) \end{pmatrix}$$

where $a_2, a_3, \epsilon, \delta$ are real parameters.

Note that it is related to the time- δ map of the 2-dof Hamiltonian $H(\psi_1, \psi_2, J_1, J_2) = \frac{J_1^2}{2} + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} - \cos(\psi_1) - \epsilon \cos(\psi_2)$

Contents

- 1. Why this map T_{δ} ? Some comments on the derivation.
- 2. Some geometrical aspects of the Hamiltonian H: normally hyperbolic invariant cylinders (NHICs), transversality of the invariant manifolds of the NHIC.
- 3. Some geometrical aspects of the map T_{δ} : splitting of the separatrices of the hyperbolic-hyperbolic (HH) fixed point.
- 4. Diffusion in phase space: some numerical simulations for T_{δ} .

Why this map T_{δ} ? Some comments on the derivation

Action space: double resonances

Diffusion along phase space takes place basically along single resonances but multiple resonances play a key role in an explanation of the Arnold diffusion (e.g. Nekhoroshev theory – upper bounds on the rate of diffusion).

 $\delta = 0.5, \epsilon = 0.5, a_2 = 0.5$ and $a_3 = 1.25$. Lyap. exp. (megno): **black** \rightarrow chaotic, green \rightarrow weakly chaotic, white \rightarrow regular. Red: Iterates of the point (0, 0, 4.5, -5.25) in a slice of width 5×10^{-3} around $\psi_1 = \psi_2 = 0$ (left plot) and $\psi_1 = \psi_2 = \pi$ (right plot). Total number of iterates= 10^{12} .

Our goal is to study the role of double resonances in the (Arnold) diffusion. The 4D symplectic map is derived as a model for the dynamics at a double resonance unfolding from a totally elliptic fixed point.

Let F_{δ} be a 2-parameter family of analytic symplectic 4D maps, $\delta = (\delta_1, \delta_2) \in \mathbb{R}^2$ small enough (unfolding) parameter. such that: $F_{\delta}(\mathbf{0}) = \mathbf{0}$ totally elliptic fixed point (for all δ), $\operatorname{Spec}(DF_{\delta})(\mathbf{0}) = \{\lambda_1, \overline{\lambda}_1, \lambda_2, \overline{\lambda}_2\}, \lambda_k = \exp(2\pi i \alpha_k), \alpha_k \in (0, 1/2),$

k = 1, 2. Assume also that the eigenvalues are simple, i.e., $\alpha_1 \neq \alpha_2$.

Concretely, we shall consider

$$\alpha_j = p_j/q_j + \delta_j, \qquad p_1, p_2, q_1, q_2 \in \mathbb{N}$$

meaning that we unfold a doubly resonant fixed point.

Birkhoff NF and the set of resonances

The local dynamics of F_{δ} around $\mathbf{0} \in \mathbb{R}^4$ can be described by adding the effect of the unfolding to the Birkhoff NF of $F_{\mathbf{0}}$.

The Birkhoff NF structure is determined by the set of resonances

$$\Gamma = \{ (k_1, k_2) : k_1 \alpha_1 + k_2 \alpha_2 = 0 \pmod{1} \} \subset \mathbb{Z}^2$$

→ (0,0) trivial (or unavoidable) resonance. → $\mathbf{r} = (k_1, k_2) \in \Gamma$ is a resonance of order $|\mathbf{r}| = |k_1| + |k_2|$.

The fixed point is doubly resonant if $\delta_1 = \delta_2 = 0$. Then Γ is a two-dimensional lattice.

Frequency space: Resonant lines with $r \leq 12$

Takens NF

 F_{δ} symplectic 4D maps ($\omega = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$), $\delta \in \mathbb{R}^2$ small enough, $F_{\delta}(\mathbf{0}) = \mathbf{0}$, Spec={ $\lambda_1, \lambda_2, \overline{\lambda}_1, \overline{\lambda}_2$ }, $\lambda_k = \exp(2\pi i \alpha_k)$, k = 1, 2.

$$\alpha_1 \neq \alpha_2 \Longrightarrow DF_{\mathbf{0}}(0) \sim \Lambda_0 = \begin{pmatrix} R_{2\pi\alpha_1} & 0 \\ 0 & R_{2\pi\alpha_2} \end{pmatrix}$$

A canonical change of variables reduces F_{δ} to BNF N_{δ} :

$$N_{\boldsymbol{\delta}} \circ \Lambda_{\mathbf{0}} = \Lambda_{\mathbf{0}} N_{\boldsymbol{\delta}}.$$

Since $DN_0(\mathbf{0}) = \Lambda_0$ the map $\Lambda_0^{-1}N_\delta$ is tangent to the identity \implies it can be formally interpolated (in a compact domain around $\mathbf{0}$) by a (Hamiltonian) vector field:

$$N_{oldsymbol{\delta}} = \Lambda_{oldsymbol{0}} \Phi^1_{H_{oldsymbol{\delta}}} + \,\, ext{exp. small error}$$

Interpolating Hamiltonian

Moreover H_{δ} is Λ_0 -invariant $(H_{\delta} = H_{\delta} \circ \Lambda_0) \Longrightarrow N^j_{\delta} = \Lambda^j_0 \Phi^j_{H_{\delta}}$ for all $j \in \mathbb{N}$ \implies study the flow of H_{δ} instead of iterations of N_{δ} .

To obtain H_{δ} :

 $\rightarrow \text{Complex vbles } (z_k = x_k + iy_k, \ \bar{z}_k = x_k - iy_k), \ \Lambda_{\mathbf{0}} = \text{diag}(\lambda_1, \lambda_2, \overline{\lambda}_1, \overline{\lambda}_2).$ $\rightarrow z_1^j \bar{z}_1^k z_2^l \bar{z}_2^m \text{ resonant } \Longleftrightarrow \Lambda_{\mathbf{0}} \text{-invariant } \Longleftrightarrow (j - k, l - m) \in \Gamma.$

Then H_{δ} is a sum of res. monomials: $H_{\delta} = \sum_{\substack{(j-k,l-m)\in\Gamma\\j,k,l,m\geq 0}} h_{jklm}(\delta) z_1^j \bar{z}_1^k z_2^l \bar{z}_2^m$

In Poincaré vbles ($I_j = \frac{|z_j|^2}{2}, \varphi_j = \arg z_j$):

$$H_{\boldsymbol{\delta}} = \sum_{\substack{(k_1,k_2)\in\Gamma\\p,q\geq 0}} a_{k_1k_2pq}(\boldsymbol{\delta}) I_1^{p+k_1/2} I_2^{q+|k_2|/2} \cos(k_1\varphi_1 + k_2\varphi_2 + b_{k_1k_2pq})$$

Q: Dominant terms of H_{δ} ? Arithmetic properties of Γ depending on (α_1, α_2) .

Recall that Γ is a 2-dimensional lattice.

Consider $\mathbf{r}_0 \in \Gamma$ a smallest non-trivial element, and $\mathbf{r}_1 \in \Gamma$ any of the smallest elements independent from \mathbf{r}_0 $\implies \mathbf{r}_0$ and \mathbf{r}_1 generate Γ (provided $\alpha_1 \neq \alpha_2$).

If $|\mathbf{r}_0| \geq 5$ the fixed point is called weakly resonant and otherwise it is strongly resonant.

We consider the **double weakly resonant case** $5 \le |\mathbf{r}_0| < |\mathbf{r}_1|$. Up to order $|\mathbf{r}_0| - 1$ the interp. Hamiltonian of BNF looks like the one of a non-resonant point. Moreover, up to order $|\mathbf{r}_1| - 1$ is also integrable.

Weak double resonances: a truncated model

Recall:
$$F_{\delta}$$
, $\lambda_k = \exp(2\pi i \alpha_k)$, $\alpha_k = p_k/q_k + \delta_k$ for $k = 1, 2, \delta = \|\delta\|$ small.

Takens NF:
$$H_{\delta} = \sum_{(k_1,k_2)\in\Gamma} a_{k_1k_2pq}(\delta) I_1^{p+k_1/2} I_2^{q+|k_2|/2} \cos(k_1\varphi_1 + k_2\varphi_2 + b_{k_1k_2pq})$$

Let $\mathbf{r_0} = (k_1, k_2)$ and $\mathbf{r_1} = (m_1, m_2)$ be minimal generators of Γ .

Adapting variables
$$\psi_1 = k_1 \varphi_1 + k_2 \varphi_2$$
, $\psi_2 = m_1 \varphi_1 + m_2 \varphi_2$,
 $I_1 = k_1 J_1 + m_1 J_2$, $I_2 = k_2 J_1 + m_2 J_2$

to the double resonance (this is a symplectic change) one gets

$$H_{\boldsymbol{\delta}} = H_0(\boldsymbol{J}, \boldsymbol{\delta}) + H_1(\boldsymbol{J}, \psi_1, \boldsymbol{\delta}) + H_2(J_1, J_2, \psi_1, \psi_2, \boldsymbol{\delta}) + \mathcal{O}_{|\mathbf{r}_1|+1}(\boldsymbol{z})$$

$$H_{0} = A_{00}(J_{1}, J_{2}, \boldsymbol{\delta}),$$

$$H_{1} = \sum_{l_{1}=1}^{[|\mathbf{r}_{1}|/|\mathbf{r}_{0}|]} I_{1}^{l_{1}|k_{1}|/2} I_{2}^{l_{1}|k_{2}|/2} A_{l_{1}0}(J_{1}, J_{2}, \boldsymbol{\delta}) \cos(l_{1}\psi_{1} + B_{l_{1}0}(J_{1}, J_{2}, \boldsymbol{\delta})),$$

$$H_{2} = I_{1}^{|m_{1}|/2} I_{2}^{|m_{2}|/2} A_{01}(0, 0, \boldsymbol{\delta}) \cos(\psi_{2} + B_{01}(0, 0, \boldsymbol{\delta})).$$

Localizing around the double resonance

In a neighbourhood of the origin

$$H_0 = c_1 \delta J_1 + c_2 \delta J_2 + a_1 J_1^2 + a_2 J_1 J_2 + a_3 J_2^2 + \mathcal{O}(\delta^5)$$

 \rightarrow inv. \mathbb{T}^2 at $J_1 = \delta r_1$, $J_2 = \delta r_2 \Rightarrow$ inv. \mathbb{T}^2 for the NF system if $I_1, I_2 > 0$.

Then $J_k = \delta r_k + \delta^{|\mathbf{r}_0|/4} \tilde{J}_k$ and $H = \delta^{|\mathbf{r}_0|/2} \tilde{H}$ gives

$$\begin{aligned} H_0(J_1, J_2, \boldsymbol{\delta}) &= a_1 J_1^2 + a_2 J_1 J_2 + a_3 J_2^2 + \mathcal{O}(\delta^{|\mathbf{r}_0|/4}), \\ H_1(J_1, J_2, \psi_1, \boldsymbol{\delta}) &= \sum_{l_1=1}^{[|\mathbf{r}_1|/|\mathbf{r}_0|]} \delta^{(l_1-1)|\mathbf{r}_0|/2} \tilde{A}_{l_10}(J_1, J_2, \boldsymbol{\delta}) \cos(l_1 \psi_1 + \tilde{B}_{l_10}(J_1, J_2, \boldsymbol{\delta})), \\ H_2(J_1, J_2, \psi_1, \psi_2, \boldsymbol{\delta}) &= \delta^{(|\mathbf{r}_1| - |\mathbf{r}_0|)/2} a_{01} \cos(\psi_2 + b_{01}). \end{aligned}$$

Furthermore, if $|\mathbf{r}_1| < 2|\mathbf{r}_0|$ (different but similar order resonances) then

$$H_1(J_1, J_2, \psi_1, \boldsymbol{\delta}) = (a_{10} + \delta^{|\mathbf{r}_0|/4 - 1} \hat{A}_{10}(J_1, J_2, \boldsymbol{\delta})) \cos \psi_1$$

 \rightarrow No other harmonics in H_1 appear!

Some geometrical aspects of the Hamiltonian H : normally hyperbolic invariant cylinders, transversality of the invariant manifolds of the NHIC.

Analysis of the truncated Hamiltonian model

$$H(\psi_1, \psi_2, J_1, J_2) = \frac{J_1^2}{2} + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} - \cos(\psi_1) - \epsilon \cos(\psi_2)$$

 \rightarrow For the moment $\epsilon \sim \delta^{(|\mathbf{r}_1| - |\mathbf{r}_0|)/2}$ will be considered as a small parameter.

→ 4 fixed points: Let $d = a_3 - a_2^2$. If $\nu = \epsilon d > 0$ and $|\epsilon|$ small enough $p_1 = (0, 0, 0, 0) - \text{EE}, \quad p_2 = (0, \pi, 0, 0) - \text{EH}$ $p_3 = (\pi, 0, 0, 0) - \text{HE}, \quad p_4 = (\pi, \pi, 0, 0) - \text{HH}$

 $\ \ \rightarrow$ For $0<|\epsilon|<<1$ the system has two normally hyperbolic cylinders.

For $\epsilon = 0$:

- The cylinder $\Pi_1 = \{\psi_1 = \pi \pmod{2\pi}, J_1 + a_2 J_2 = 0\}$ is a 2D NHIM.
- It is foliated by periodic orbits $C_h = \Pi_1 \cap \{H = h\}$.
- $W^{u/s}(\Pi_1)$ are 3D and $W^u(\Pi_1) = W^s(\Pi_1)$.

By Fenichel's theory (normal hyperbolicity) it persists for $0 < \epsilon << 1$.

- There exists $\Pi_{1,\epsilon} \mathcal{O}(\epsilon)$ -close to Π_1 .
- $\exists W^{u/s}(\Pi_{1,\epsilon}) \mathcal{O}(\epsilon)$ -close to $W^{u/s}(\Pi_1)$.
- For a_2, a_3 fixed, it can be proved that:
 - 1. $W^u(\Pi_{1,\epsilon})$ intersects $W^s(\Pi_{1,\epsilon})$ along two lines of homoclinic points.
 - 2. The intersection is transversal (except for some discrete values of J_2).

^a V.Gelfreich, C.Simó and AV, *Dynamics of 4D symplectic maps near a double resonance*, Physica D 243(1), 2013.

Transversality inside the level of energy

Inside the level of energy $\{H = h\}$ the invariant manifolds of the periodic orbit $\Pi_{1,\epsilon} \cap \{H = h\}$ intersect transversally $\Leftrightarrow h \neq 1 \pm \epsilon \cos \pi a_2 + \mathcal{O}(\epsilon^2)$. The angle is $\mathcal{O}(\sqrt{\epsilon})$.

Remark: The cylinder $\Pi_{1,\epsilon}$ is not analytic. One expects $\Pi_{1,\epsilon} \in C^r$, being $r = \tilde{\lambda}_1/\tilde{\lambda}_2$ the quotient of the normal and tangent maximal Lyapunov exponents. In this case, they are determined by the unstable eigenvalues of the HH fixed point, and $r = O(1/\sqrt{\epsilon})$.

The 2nd NHIC Π_2

Another NHIC Π_2 exists for $0 < \epsilon << 1$: if $\psi_2 = a_2 J_1 + a_3 J_2 \approx 0$ then ψ_2 becomes a slow variable. If $\dot{\psi_1} = J_1 + a_2 J_2$ is large enough, then one can apply an averaging step to remove the dependence on ψ_1 . For a fixed J_1 value, the averaged Hamiltonian has a saddle (and ψ_1 is cyclic).

Left: Intersection of Π_2 with $\psi_1 = \psi_2 = \pi$. Green line: $J_1 + a_2 J_2 = 0$. Right: 3D representation of the periodic orbits of Π_2 . Parameters: $\epsilon = 0.05$, $a_2 = 0.5$, $a_3 = 1.25$

^aV. Kaloshin and K. Zhang, Arnold diffusion for smooth convex systems of two and a half degrees of freedom, Nonlinearity 28, 2015.

Some geometrical aspects of the map T_{δ} : splitting of the separatrices of the hyperbolic-hyperbolic (HH) fixed point.

A discrete model for double resonances

Truncated NF:
$$H(\psi_1, \psi_2, J_1, J_2) = \frac{J_1^2}{2} + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} - \cos(\psi_1) - \epsilon \cos(\psi_2)$$

 $T_{\delta}: \begin{pmatrix} \psi_1 \\ \psi_2 \\ J_1 \\ J_2 \end{pmatrix} \rightarrow \begin{pmatrix} \bar{\psi}_1 \\ \bar{\psi}_2 \\ \bar{J}_1 \\ \bar{J}_2 \end{pmatrix} = \begin{pmatrix} \psi_1 + \delta(\bar{J}_1 + a_2 \bar{J}_2) \\ \psi_2 + \delta(a_2 \bar{J}_1 + a_3 \bar{J}_2) \\ J_1 - \delta \sin(\psi_1) \\ J_2 - \delta \epsilon \sin(\psi_2) \end{pmatrix}$

Phase space structure similar to H (but the homoclinic trajectories split!):

- 4 fixed points: HH, HE, EH, EE.
- NHICs $\Pi_{1,2}$ for H, that depend on ϵ , persist for $|\delta| \ll 1$.

(but the discrete dynamics inside the NHICs resembles the Chirikov standard map dynamics).

• Reversible: $R_1 = (-\psi_1, 2\pi - \psi_2, J_1, J_2)$, $R_2 = (2\pi - \psi_1, 2\pi - \psi_2, \overline{J_1}, \overline{J_2})$ and $R_3 = (2\pi - \psi_1, -\psi_2, \overline{J_1}, \overline{J_2})$.

Trajectories homoclinic to the HH fixed point

Splitting of 2D invariant manifolds of the HH f.p.

Let p_h be the homoclinic point on Σ_{R_k} , k = 1, 2, 3. We compute the volume of a 4D parallelotope defined by two pairs of vectors tangent to W^u and W^s : $G(s_1, s_2)$ - the (local) parameterisation.

1. Consider the vectors (tangent to W^u):

$$\tilde{v}_1 = (\partial G/\partial s_1)(s_1^h, s_2^h), \quad \tilde{v}_2 = (\partial G/\partial s_2)(s_1^h, s_2^h).$$

2. Transport these vectors under T to p_h and consider, by the reversibility,

$$\tilde{v}_3 = R_k(\tilde{v}_1^{p_h}), \quad \tilde{v}_4 = R_k(\tilde{v}_2^{p_h}).$$

3. Finally, normalize them $v_j = \tilde{v}_j^{p_h} / \|\tilde{v}_j^{p_h}\|, j = 1, \dots, 4$ and define

$$V = \det(v_1, v_2, v_3, v_4)$$

For a fixed ϵ , a_2 and a_3 parameters we study the behaviour as $\delta \to 0$. At p_h in $\Sigma_{R_1} = \text{Fix}(R_1)$ (homoclinic trajectory on Π_1 , which depends on δ):

 $V \sim A \mu_2^B \mathrm{e}^{-2\pi \operatorname{Im} \hat{\tau}_2/\mu_2},$

where $\mu_2 = \log \tilde{\lambda}_2$, $A, B \in \mathbb{R}$ and $\hat{\tau}_2 = i\pi/2 + \mathcal{O}(\sqrt{\epsilon})$.

 $\epsilon = 0.1, a_2 = 0.25, a_3 = 0.5625$. Left: $\log V$ vs. δ . Right: $\mathrm{Im} \, \hat{\tau}_2$ vs. ϵ .

ightarrow Similar for p_h in $\Sigma_{R_k}={\sf Fix}(R_k)$, $k\!=\!2,3$ (with $\hat{ au}_k$ from the corresp. limit vector field).

Diffusion in phase space: some numerical simulations for T_{δ} .

Problem:

To measure the (Arnold) diffusion we need to separate the slowest variable, i.e. the one which evolves in the largest time-scale that it is expected to be exponentially large in δ , from the other faster variables and <u>measure its variation</u>.

An option could be to transform (in different points of the phase space!) the system to a NF up to a suitable order to obtain an approximating interpolating Hamiltonian. \leftarrow **Too expensive!**

We construct a suitable observable E(x), an "energy" of $x \in \mathbb{R}^4$, as follows.

Consider $x_B \in \mathbb{R}^4$ fixed and $\gamma(s) = x_B + sv$, $v = x - x_B$, $s \in [0, 1]$, then define

$$E(x) = \int_0^1 \nabla E(\gamma(s)) v \, ds$$

To evaluate $\nabla E(x_0)$:

- 1. Fix N and consider $(k\delta, T^k_{\delta}(x_0))$, $-N \leq k \leq N$.
- 2. Construct the interpolating polynomial $p_N(t)$ of degree 2N.
- 3. Then $X_N : x_0 \mapsto p'_N(0)$ defines a vector field.
- 4. Since T_{δ} is symplectic we require X_N to be Hamiltonian with energy E. Then $q' = \partial E / \partial p$, $p' = -\partial E / \partial q$ implies $\nabla E = (-p', q')$, where $x = (q, p) = (\psi_1, \psi_2, J_1, J_2)$.

E(x) remains almost constant for large enough number of iterates of F_{δ} It varies roughly $\mathcal{O}(10^{-6})$ in $10^5/10^6$ iterates for the parameters used in simulations.

Transition between two resonances

Why iterates turn to the right? Do they reach the HH fixed point?

Bottom left plot: The NHICs Π_1 and Π_2 for T_{δ} $\delta = 0.5, \epsilon = 0.5, a_2 = 0.5$ and $a_3 = 1.25$.

A suitable "2D Poincaré map"

Consider the 3D hyperplane $\Sigma = \{\psi_1 = \psi_2\}$. At least $m \approx 10^5$ iterates of T_{δ} stay (aprox.) on $\{E = h\}$. Then $\Sigma_T = \Sigma \cap \{E = h\}$ defines a "Poincaré section" for T_{δ} (< m iterates). Iterates will jump the section! \Rightarrow Use the vector field X_N to project on Σ_T .

We represent 500 iterates of the map $P_T : \Sigma_T \to \Sigma_T$ for 400 different initial points in $\Sigma \cap \{E = h\}$, with h = 5 ($x_B = HH$). $\Gamma = \arg(J_1 + iJ_2)$.

Different "energy levels": "last ric"

h = 0.2 (top left), h = 3 (top right) and h = 5.7 (bottom left and right (magnification)).

- 1. Last plots explain why the iterates shown (of an initial point in a neighbourhood of Π_1) "turn to the right part" of the NHIC Π_2 : the smaller the angle between the two resonance the higher the "energy" h_c to have destruction of the invariant tori between the NHIC.
- 2. The iterates of an initial point move along a single resonance until they reach an "energy" $h < h_c$ where they can travel from Π_1 to Π_2 (and viceversa) "inside $\{E = h\}$ " in a relatively small number of iterates. These two motions represent completely different time-scales.
- 3. Finally, we note that $h_c \searrow 0$ as $\epsilon \searrow 0$. That is, for resonances of large different order the iterates should travel following Π_1 until they are close enough to HH to be able to cross to Π_2 . Recall that the parameter ϵ destroys integrability of the Hamiltonian flow obtained when $\delta \searrow 0$.

A final experiment: probability of passage

For $h = 4(10^{-2})6$ we consider 500 random initial points with $-10^{-2} \leq \psi, \Gamma \leq 10^{-2} \subset \Sigma \cap \{E = h\}$ (close to Π_1 in the chaotic zone). For each point we perform a maximum number of 10^5 iterates of T_{δ} . If they reach a distance d < 0.5 from the point $\Pi_2 \cap \Sigma \cap \{E = h\}$ (the results are similar for d < 0.25) we say that a passage from Π_1 to Π_2 takes place.

Ratio of points arriving at a distance d from $\Pi_2 \cap \Sigma$.

We have seen in the "Poincaré sections" that for $h \approx 5.6$ there is the last "r.i.c".

Future directions

 Analyse the diffusion properties (obtain quantitative data from massive numerical simulations, and relate it with the geometry at the simple/double resonances). Also compute the local Diffusion coefficients accurately and how they change for different values of h.

It is important to perform simulations with smaller values of δ to better separate time-scales and be able to explain phenomena related to Arnold diffusion properly.

- Clarify the situations where a different truncated model is obtained, and study the strong doubly resonant cases. Consider |\epsilon| in a non-perturbative regime (e.g. two resonances of equal order).
- Study the *non-definite case*: In particular, for $|\epsilon|$ large the EE fixed point can suffer a Hamiltonian-Hopf bifurcation (complex instability). Determine the role of the invariant manifolds of the complex-saddle point. ^a

^aWork in progress in collaboration with E.Fontich.

A final plot

Thanks for your attention!!