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Motivation

The velocity vector field of a fluid defines a 3D flow. Unsteady fluid flows in

which the conditions (the velocity, the pressure and the cross-section) change

over time, lead to time dependent perturbations of the vector fields.1

In this work we consider a periodic forcing of a one-parameter family of 3D

vector fields given by the 2-jet of the NF of the volume-preserving elliptic

Hopf-zero bifurcation. In particular, we study the consequences of the forcing

on the splitting of the 2D separatrices of saddle-foci equilibria and in the

dynamics of the chaotic zones.

1P.Holmes. Some remarks on chaotic particle paths in time-periodic, three-dimensional swirling flows. Fluids and

plasmas: geometry and dynamics (Boulder, Colo., 1983,

M.Feingold, L.P. Kadanoff and O.Piro. Passive scalars, three-dimensional volume-preserving maps, and chaos. J.

Statist. Phys. 50, 1998.

I. Mezic. On the geometrical and statistical properties of dynamical systems: Theory and applications Ph.D.

Thesis, California Institute of Technology, 1994.
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The unperturbed system

We consider the integrable family of 3D autonomous flows

X0 :=


ẋ = y − xz ,

ẏ = −x − yz ,

ż = −ε2 + z2 + 1
2
(x2 + y 2).
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X0 is the 2nd order trucation of the NF at the Hopf-zero bifurcation scenario.

It has 2 saddle-foci equilibria p± = (0, 0,±ε) with egenvalues (∓ε + i ,∓ε − i ,±2ε).

The 2D invariant manifolds of p± form a 2D invariant sphere foliated by spiralling

heteroclinic orbits.

In cylindrical coordinates: θ̇ = −1, ṙ = −rz, ż = −ε2 + z2 + r2

2
.

The (z, r)-subsystem is Hamiltonian with H(z, r) = r2(−ε2 + z2 + r2

4
).

Note that the angle variable θ rotates with a frequency 1 while the real part of the

eigenvalues at p± is O(ε).
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The periodic forcing

We consider the family of 3D analytic vector field on R3 × S1,

X (x , y , z , t) = X0(x , y , z) + δX1(x , y , z , t),

where X1 =
(

0, 0, y(x2+y2)
2(c−y)

g(ψ)
)T

, ψ = ωt + ψ0 and ψ0 ∈ [0, 2π) is an initial

phase. We shall consider δ fixed and study the behavior as ε→ 0.

As usual the forcing causes an splitting of the invariant manifolds:
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Poincaré section {y = 0} for

ε = 0.03125 and δ = 0.01. We display

the (x , z)-coordinates of the iterates.
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Magnification of the left plot: the

propagation of a rotational curve on a

local fundamental domain of W u(p−)

is shown (in green) close to p+.
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Autonomous perturbations

Autonomous perturbations (e.g. g(ψ) ≡ ctant) breaking the symmetry of the

Hopf zero NF have been studied. They lead to exponentially small splitting of

separatrices. The splitting function2,3 measured in a suitable Poincaré section

Σ is

S(φ, ε) = ru(φ, ε)− r s(φ, ε) = F (φ, log ε) ε−3 exp
(
− π

2ε

)
,

where F (φ, log ε) = C∗1 cos(φ− L0 log ε) + C∗2 sin(φ− L0 log ε) + O(| log ε|−1),

with C∗1 ,C
∗
2 and L0 real constants.

2Dumortier F., Ibáñez S., Kokubu H. and Simó C. About the unfolding of a Hopf-zero singularity, Discrete Contin

Dyn Syst 33: 4435-4471, 2013.
3Baldomá I., Ibáñez S. and Seara T.M. Hopf-Zero singularities truly unfold chaos, Commun Nonlinear Sci Numer

Simulat 84, 2020.
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Non-autonomous forcing

When a non-autonomous forcing is considered the two frequencies 1 and ω can

interact. The Fourier expansion of the perturbation in the (θ, ψ) angles

restricted along the heteroclinic orbits of the unperturbed system can give

terms with all possible frequency combinations (small divisors). This makes the

description of the asymtotic behavior of the splitting much involved. For

illustrations we shall consider

g(ψ) =
1

d − cos(ψ)
, ψ = ωt + ψ0,

which is a 2π
ω

-periodic (in t) forcing.

As usual2 the arithmetic properties of ω play a role in the splitting behavior.

For concreteness we consider ω =
√

2 below.

2E. Fontich, C. Simó, and A. Vieiro. Splitting of the separatrices after a Hamiltonian–Hopf bifurcation under

periodic forcing. Nonlinearity, 32(4):1440–1493, 2019.

5



The Melnikov function

Given δ > 0, the intersection of W u,s(p±) with {z = 0} can be parameterized
by pu,s(δ) = pu,s(θ0, ψ0, ε, δ). The distance

d(pu(δ), ps(δ)) = H(pu(δ))− H(ps(δ)) = δM(θ0, ψ0, ε) + O(δ2),

is given by

M(θ0, ψ0, ε) =
∑
m1≥0

∑
m2∈Z

Cm1,m2 f (θ0, ψ0),

where f (θ0, ψ0) =

{
cos(m1θ0 + m2ψ0), m1 odd,

sin(m1θ0 + m2ψ0), m1 even,
and

|Cm1,m2 | =
26πρm2

d√
d2 − 1cm1

exp
(−sπ

2ε

)∑
i≥0

(m1 + 2i)! Πm1+2i+4(s)

c2i (m1 + i)!(m1 + 2i + 4)!i !
,

where s = |m2ω −m1|, ρd = (d +
√
d2 − 1)−1 and

Πm(s) = (s2 + ε2(m − 2)2)Πm−2(s), Π1 = s, Π0 = 1.
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1st order in δ splitting function = Melnikov function?

The validity of the Melnikov approximation is (a priori) not justified in this

setting. Note also that the 2nd and higher order terms in δ of the expansion of

the Melnikov function are also exponentially small in ε.

However:

For δ fixed and small and ε↘ 0, we can directly compute the invariant

manifolds and provide evidence that the Melnikov function gives a good

approximation of the splitting function.
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Detecting heteroclinic orbits

The points (θ0, ψ0) for which the Melnikov function vanishes correspond to

heteroclinic orbits of the perturbed system. For ε = 0.1, δ = 0.01:
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Heteroclinic orbit for

(ψ0, θ0) = (4.47, 3.52).

H. E. Lomeĺı and R. Raḿırez-Ros. Separatrix Splitting in 3D Volume-Preserving Maps. Siam J. Applied

Dynamical Systems,7: 1527–1557,2008.
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The continuum of heteroclinic orbits

Splitting function w.r.t. (θ0, ψ0) for a fixed δ = 0.01 and ω =
√

2.
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Changes in the dominant harmonic

Amplitude of the Fourier modes of M(θ0, ψ0, ε),

|Cm1,m2 | ∼
ρm2
d

cm1 (m1 + 4)!
Πm1+4(s) exp

(−sπ
2ε

)
,

where s = |m2ω−m1| and Πm(s) = (s2 + ε2(m− 2)2)Πm−2(s), Π1 = s, Π0 = 1.

For constant type ω the maximum value of |Cm1,m2 | is achieved for

s(ε) ≈
√

2
kπ

√
ε| ln ε|1/2 + O(

√
ε), and then

|Cm1,m2 | ∼ exp

(
−
√
π| ln ε|1/2

√
ε

)
.
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√
ε ln |Cm1,m2 | (left) and

√
ε| ln ε|−1/2 ln |Cm1,m2 | (right) for some best

approximants m1/m2 of ω =
√

2 as a function log2(ε).
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Changes in the topology of the nodal lines (δ = 0.01)

When ε varies, there are changes in the topology of the nodal lines of the

Melnikov function.
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We display the nodal lines of the Melnikov function for ε < ε∗, for

ε = 0.03253 ≈: ε∗ and ε > ε∗ (from left to right). On z = 0 (the “equator”),

we display (x , y)-projection of the invariant manifolds for ψ0 = π (the relative

distance is magnified by a suitable factor).
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Saddle-type tangencies between the manifolds

Each change of the topology of the nodal lines corresponds to a change of the

dominant harmonic of the Melnikov function and to a quadratic tangency

between the 2D invariant manifolds (locally a hyperbolic paraboloid, that is at

ε = ε∗ one has a saddle critical point).
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Remarks

The example provided is of the lowest possible dimension (1 action, 2 angles)

to exhibit the phenomena of interaction of two frequencies.

The same phenomena of splitting of separatrices is observed for discrete 3D

volume-preserving maps (for example, take a Poincaré section of the system

considered). Together with M.Gonchenko and J.C.Tatjer we aim to investigate

dynamics near tangencies (of both types) of two dimensional manifolds in 3D

volume-preserving maps.

The splitting of separatrices creates regions with chaotic dynamics. Such

chaotic dynamics can be studied by using a separatrix return map to a domain

(of width the order of the splitting) around the invariant manifolds.

As far as we are aware there are no systematic studies of the consequences of

the interaction of frequencies in the asymptotic behavior of the splitting of

separatrices in the chaotic region.  Separatrix map 3D
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A separatrix map model: preliminary ideas (in progress)

We are working on the derivation of a formal separatrix map to study the effect

of the described splitting of separatrices in the dynamics within chaotic zones.

Our results show that, for some ranges of the parameter ε, two harmonics

(corresponding to consecutive best approximants of ω) need to be considered

to provide the dominant terms of the splitting function.

We express the return map in variables (h, θ, ψ), where h stands for the value

of the 2D Hamiltonian of the unperturbed system. Under some assumptions

and a rescaling of h, a suitable return map model to illustrate the transition

(m1,m2)→ (n1, n2) of dominant harmonics is

h̄ = h + cos(m1θ̄ + m2ψ̄) + sp1 cos(n1θ̄ + n2ψ̄),

θ̄ = θ + ωtv (h) + a, (mod 2π)

ψ̄ = z + tv (h) + a, (mod 2π)

where
tv (h) = − log(|h|)/(2ε) s1 = |m1 −m2ω|, s2 = |n1 − n2ω|,

p = p(s1, s2, ε) = (s2 − s1)(ε− 1)π/(2ε), a constant
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SM model plots ω =
√
2, m1 = 3, m2 = 2, n1 = 7, n2 = 5
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Chaotic zone is O(exp(−c/
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ε)) (the variable h is scaled accordingly).
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Final comments

Many other things can be obtained from the previous results on splitting and

the separatrix map, for example...

... a traditional 3D KAM cake with resonances and a cover of 2D invariant tori!

Happy birthday Sergey!!

Thank you for you attention!
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