Resonant chaotic zones: dynamical consequences of the difference between the inner/outer splittings of separatrices

Equadiff 2011

Loughborough, 1 August, 2011

C. Simó, A. Vieiro

Introduction: general framework

Let F_{ν} be a one-parameter family of APMs $F_{\nu}(E_0) = E_0$ elliptic fixed point, $\operatorname{Spec}(DF_{\nu})(E_0) = \{\lambda, \lambda^{-1}\}, \lambda = \exp(2\pi i \alpha).$

 \rightarrow Assume that we are interested in the dynamics close to the (q:m)-resonance for $q, m \in \mathbb{N}$, with $1 \leq q < m$, gcd(q, m) = 1. Then, one can write $\alpha = q/m + \delta$ with $\delta \in \mathbb{R}$ (generically $\alpha'(\nu) \neq 0$) and we denote the family as F_{δ} (for arbitrary q and m).

 $o F_\delta:\mathcal{U} o \mathbb{R}^2$, $\mathcal{U}\subset \mathbb{R}^2$ domain, is such that

1. F_{δ} real analytic in the (x, y)-coordinates of \mathcal{U} ,

2. det $DF_{\delta}(x,y) = 1$, for all $(x,y) \in \mathbb{R}^2$ and for all $\delta \in \mathbb{R}$, (APMs)

3. F_{δ} has a fixed point E_0 that will be assumed to be at the origin $\forall \delta \in \mathbb{R}$, 4. spec $DF(E_0) = \{\mu, \overline{\mu}\}, \mu = \exp(2\pi i \alpha), \alpha = q/m + \delta, q, m \in \mathbb{Z}.$

Hénon map

As an example consider the Hénon map

$$H_{\alpha}(x,y) = R_{2\pi\alpha}(x,y-x^2), \quad \alpha \in (0,1/2)$$

• It has two fixed points:

the origin is an elliptic fixed point E_0 ,

the point $P_h = (2 \tan(\pi \alpha), 2 \tan^2(\pi \alpha))$ is a hyperbolic fixed point.

• Reversible with respect to $y = x^2/2$ and $y = \tan(\pi \alpha)x$.

I. The inner/outer splitting of separatrices for a resonant island

- We want to describe the dynamics in the **resonant chains** emanating from (but **relatively far** from) the elliptic fixed point E_0 .
- Special interest in quantitative information concerning the splitting of separatrices and the chaotic zone.

Planning:

 $BNF \rightarrow Interp.$ Hamiltonian $\rightarrow Simplified Model \rightarrow Splitting of separatrices$

BNF

 F_{δ} one-parameter δ -family of APMs with $F(E_0) = E_0$ elliptic fixed point. Spec $DF(E_0) = \{\mu, \overline{\mu}\}, \mu = e^{2\pi i \alpha}, \alpha = q/m + \delta, \delta$ small enough. (x, y)-Cartesian coord., (z, \overline{z}) -complex coord. $(z = x + iy, \overline{z} = x - iy)$. The Birkhoff NF to order m around E_0 can be expressed as

$$\mathsf{BNF}_m(F)(z) = R_{2\pi\frac{q}{m}} \left(\underbrace{e^{2\pi i \gamma(r)} z}_{\text{unavoidable res.}} + \underbrace{i \overline{z}^{m-1}}_{m\text{-order res.}} \right) + R_{m+1}(z, \overline{z}),$$

where

$$\gamma(r) = \delta + b_1 r^2 + b_2 r^4 + \dots + b_s r^{2s}, \quad r = |z|,$$

being

$$\begin{split} s &= [(m-1)/2], \\ b_i \in \mathbb{R} \text{ are the so-called Birkhoff coefficients,} \\ R_{m+1}(z,\bar{z}) \text{ denotes the remainder which is of } \mathcal{O}(m+1). \end{split}$$

Interpolating flow of the BNF

 (I, φ) -Poincaré variables ($z = \sqrt{2I} \exp(i\varphi)$).

$$\mathcal{H}_{nr}(I) = \pi \sum_{n=0}^{s} \frac{b_n}{n+1} (2I)^{n+1}$$
 and $\mathcal{H}_r(I,\varphi) = \frac{1}{m} (2I)^{\frac{m}{2}} \cos(m\varphi).$

Let r_* such that $\gamma(r_*) = 0$, that is $r_* \approx (-b_0/b_1)^{1/2}$, $b_0 = \delta$.

 \rightarrow The flow ϕ generated by the Hamiltonian

$$\mathcal{H}(I,\varphi) = \mathcal{H}_{nr}(I) + \mathcal{H}_r(I,\varphi)$$

interpolates K with an error of order m+1 with respect to the (z, \bar{z}) -coordinates, that is,

$$K(I,\varphi) = \phi_{t=1}(I,\varphi) + \mathcal{O}\left(I^{\frac{m+1}{2}}\right).$$

If we assume $b_1 \neq 0$ this approximation holds in an annulus centred in the resonance radius r_* of width $r_*^{1+\nu}$, for $\nu > 0$.

Description of resonances

Generic case: $\alpha = q/m + \delta$, m > 5, δ sufficiently small, $b_1 \neq 0$.

- If $b_1 \delta < 0$ then F has a resonant island of order m.
- The resonant zone is determined by **two periodic orbits** of period *m* located near two concentric circumferences (in the BNF variables). The closest orbit to the external circumference is elliptic while the one located close to the inner circumference is hyperbolic.

• The width of the resonant island is $\mathcal{O}(I_*^{m/4})$, $I_* = -\delta/2b_1$.

"Outer splitting \leftrightarrow p" "Inner splitting \leftrightarrow q"

A model around a generic resonance

For a generic APM such that $\delta < 0, b_1 > 0, b_2 \neq 0$, the dynamics around an island of the *m*-resonance strip $(m \ge 5)$ can be modelled, after suitable scaling $(J \sim \delta^{-m/4}(I - I_*))$, by the time- $\log(\lambda)$ map of the flow generated by

$$\mathcal{H}(J,\psi) = \frac{1}{2}J^2 + \frac{c}{3}J^3 - (1+dJ)\cos(\psi),$$

where $c = O(\delta^{\frac{m}{4}}), d = O(\delta^{\frac{m}{4}-1})$. Bounding the errors, it is shown that it gives a "good" enough approximation of the dynamics in an annulus containing the *m*-islands.

 \rightarrow Then, we have the following... ^a

^a The details of the proof (singularities, suitable Hamiltonian,...) can be found in:

Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps. Nonlinearity 22, 5:1191–1245, 2009.

Main result: the hypothesis

- A1. $b_1(\delta)$ is non-zero for $\delta = 0$.
- A2. F maybe meromorphic but the possible singularities remain at a finite distance as $|\delta| \searrow 0$.
- A3. P_h^r hyperbolic *m*-periodic point on a resonant zone close to E_0 , $\gamma(t)$ – separatrix of the interp. Hamiltonian flow φ_t , Assume that the closest singularities of $\gamma(t)$ to \mathbb{R} have $|Im(t)| = \tau$. Represent $W^u_{P^r_h}$ and $W^s_{P^r_h}$ as functions of t, close to $\gamma(t)$. $\mathcal{E}(t)$ – distance $W_{P_{t}^{r}}^{u}(t) - W_{P_{t}^{r}}^{s}(t)$ (periodic in t). G(t) – restriction of $\mathcal{E}(t)$ to $t + i(\tau - \mathcal{O}(\delta^q)), t \in \mathbb{R}, q > 0.$ We require that there exist constants $k_1, k_2 > 0$ and $j_2 \leq j_1$ such that for all δ , $0 < \delta < \delta_0$, one has $k_1 \delta^{j_1} < |G| < k_2 \delta^{j_2}$ and that the first harmonic c_1 of the Fourier expansion of G(t) verifies $|c_1| > \alpha |G|$, with $\alpha > 0$ a constant independent of δ .

Theorem. Let F be an APM. Assume that it has an m-order resonance strip, m > 4, located at an average distance $I = I_* = \mathcal{O}(\delta)$ from the elliptic fixed point and δ is sufficiently small. Under the assumptions A1, A2 and A3,

- a) The outer splitting σ_+ is larger than the inner one σ_- . The difference between the position of the corresp. nearest singularities is $\mathcal{O}(\delta^{m/4-1})$.
- b) Neither the inner nor the outer splittings oscillate.
- It should be adapted to strong resonances (e.g. 1:4 res. of Hénon map).
- It does not apply if too far from the origin (e.g. the 2:11 res. of Hénon map).
- $\mathcal{H}(J,\psi)$ plays the role of a "limit" Hamiltonian in Fontich-Simó thm. on exp. small upper bounds of the splitting \rightarrow singularities $\tau_{\pm} = \frac{\pi}{2} \pm d + \dots$

•
$$\sigma_{\pm} = \exp\left(-\frac{2\pi \operatorname{Im} \tau_{\pm} - \eta_{\pm}}{\log(\lambda(\epsilon))}\right) \left(\cos\left(\frac{2\pi \operatorname{Re} \tau_{\pm}}{\log(\lambda(\epsilon))} - \phi_{\pm}\right) + o(1)\right).$$

II. A heuristic justification of why upper bounds are expected to be generic

The theorem states that, under assumptions A1, A2 and A3, $\sigma_+ > \sigma_-$. Note that:

- A1 is a generic assumption.
- Concerning A2, a suitable scaling to study the resonance zone moves the possible singularities of F to a distance $\mathcal{O}(\delta^{-m/4})$.
- A3 guarantees that the splitting of separatrices behaves exponentially small w.r.t. δ (as Fontich-Simó upper bound).

 \rightarrow Question: How to proceed to check assumption A3?

Numerical check of A3

For a fixed δ :

- 1. Compute the parametrisation g_u of $W^u(P_h)$ (resp. g_s for $W^s(P_h)$): $F(x(s), y(s)) = (x(\lambda s), y(\lambda s)), s \in \mathbb{C}.$
- 2. Introduce $t = \log(s)$, then $g_u(t+h) = g_u(t)$, $h = \log(\lambda)$.
- 3. Using BNF around P_h define an energy E(x, y) and transport it along the manifolds.
- 4. Measure the difference between $W^u(P_h)$ and $W^s(P_h)$ in a fundamental domain. This gives a periodic function $\mathcal{E}(t)$.
- 5. Restrict $\mathcal{E}(t)$ to a suitable line $t_r + i\sigma$, with a suitable $\sigma < \tau$. This gives a periodic function G(t).
- 6. Carry out the Fourier analysis to check A3.

Repeat the process for different δ values ($0 < \delta < \delta_0$). Ok but Expensive!!.

To check A3 directly is difficult (for a general map).

However, if F is given by a closed-form expression, we can check directly the exponentially small behaviour w.r.t. δ in a simple way.

Remark. Any finite order jet of F is useful to analyse beyond-all-orders phenomena: the ignored terms become relevant close to a singularity.

 \rightarrow We show how to proceed in a concrete example which also "justifies" why we expect that the behaviour of the inner/outer splittings of a resonant island is (generically!) given by the exponentially small upper bound.

Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones. Physica D, 240(8), 2011.

^a Some of the details can be found in the appendix of

An improved model around a resonant island

m-resonance

$$\begin{split} \mathcal{H}(q,p) &= p^2/2 - (1+dp)\cos(q), \, d = \mathcal{O}(\delta^{m/4-1}).\\ \varphi^{\mathcal{H}}_{t=\gamma}, \, \gamma &\approx \log(\lambda) = \mathcal{O}(\delta^{m/4}), \, \text{approx. the dynamics around the } m\text{-res.}\\ \text{An approximation of } \varphi^{\mathcal{H}}_{t=\gamma} \text{ is given by} \end{split}$$

$$\mathsf{MSTM:} \left(\begin{array}{c} q \\ p \end{array} \right) \longmapsto \left(\begin{array}{c} \bar{q} \\ \bar{p} \end{array} \right) = \left(\begin{array}{c} q + \gamma(\bar{p} - d\cos(q)) \\ (p - \gamma\sin(q))/(1 + \gamma d\sin(q)) \end{array} \right)$$

 $\delta=0.65, m=8, d=\delta^{m/4-1}, \gamma=\delta^{m/4}.$

The limit (inner or semi) map

Singularities: $i\pi/2 \pm d + O(d^2)$. Introducing q = i (A + u), p = B v, with $A = \log(-2i/\gamma d)$ and $B = i/\gamma$ we get the limit map (for $\gamma \to 0$):

$$\begin{pmatrix} u \\ v \end{pmatrix} \longmapsto \begin{pmatrix} \bar{u} \\ \bar{v} \end{pmatrix} = \begin{pmatrix} u + \bar{v} + e^u \\ v/(1 + e^u) \end{pmatrix} \text{ indep. of parameters}$$

Fixed points: v = 0, $\operatorname{Re} u = -\infty$ (Imu arbitrary). Introduce $w = e^u$, then

$$\left(\begin{array}{c} w\\ v\end{array}\right)\longmapsto \left(\begin{array}{c} \bar{w}\\ \bar{v}\end{array}\right) = \left(\begin{array}{c} w\exp(w+\bar{v})\\ v/(1+w)\end{array}\right)$$

Fixed points: w = 0. The f.p. (0, 0) is parabolic with inv. manifolds v = g(w) with slopes 0, -2 (in \mathbb{C}^2).

 \longrightarrow It is enough to show that the inv. manifolds of the limit map do not coincide.

We look for the distance between the inv. manifolds in the complex domain \mathbb{C}^2 .

 \longrightarrow The inv. manifold with slope 0 corresponds to v = 0: On it $w \mapsto we^w$ and (locally!) w = 0 is foliated by homoclinic invariant curves.

 \longrightarrow For the inv. manifold $v = -2w + \dots$ the W^u/W^s branches *do not coincide*.

We use a graph repr. v = g(w) of W^u/W^s around w = 0 (locally) and we compute the distance between W^u and W^s on Re(w) = 0.

Right: Considering a fundamental domain we observe that there are not homoclinic points (for $0 \leq {\rm Im}(w) \leq 0.16$).

Some remarks, work in progress...

- By continuity the MSTM map has an exponentially small splitting.
- There is a strong numerical evidence supporting the following facts:
 - 1. The inv. manifold $v = g(w) = \sum_k a_k w^k$ has a Gevrey-1 character.
 - 2. The radius of convergence of the (scaled) Borel transform

$$A(\xi) := \sum_{k \ge 1} A_k \xi^k, \quad A_k = \frac{a_k}{k!} (2\pi)^k,$$

is $\pm i$. It has an essential singularity: $A(i - \xi) \sim \xi^{\pi i} / \xi$ for $|\xi| << 1$.

3. The coefficients A_k behave as

red, green, blue, magenta

$$\label{eq:k} \begin{array}{c} \updownarrow \\ k \equiv 0, 1, 2, 3 (\mathrm{mod}\ 4) \end{array}$$

III. Dynamical consequences of the difference between the inner/outer splittings

- The splitting of separatrices creates a chaotic zone (CZ).
- In a resonant island both inner/outer splittings play a role.
- \rightarrow Question: Can we estimate the size of the CZ?

Planning:

- 1. Size of CZ if only one splitting plays a role (open case)?
- 2. How to take into account the effect of both splittings (figure eight case)?

Main tool: return maps (SM + aprox. by STM)

$$SM: \left(\begin{array}{c} x\\ y \end{array}\right) \longmapsto \left(\begin{array}{c} x'\\ y' \end{array}\right) = \left(\begin{array}{c} x+a+b\log|y'|\\ y+\sin(2\pi x) \end{array}\right)$$

where $b = 1/\log(\lambda)$, λ the dominant eigenvalue of DF(h) and a is a "shift".

The *y*-vble. is scaled by the amplitude of the splitting.

We deal with an **a priori stable** case: $\log(\lambda) = \mathcal{O}(\epsilon)$ and $a = \mathcal{O}(1/\epsilon) \Rightarrow A = \mathcal{O}(\exp(-ctant/\epsilon^r))$. Here ϵ is a "distance-to-integrable" parameter.

Open case: results

- Distance to invariant curves from the separatrix: $d_c \sim |b|/k^*$ (SM is approximated by STM, $k^* \approx 0.97/(2\pi)$ Greene value).
 - ▶ When coming back to the original variables: $D_c \sim \sigma \ell / (2\pi k^* \log(\lambda))$,
 - ► If measured from the hyperbolic point, assuming the map close to the time- ϵ flow of $H(x, y) = y^2/2 \alpha x^3 \beta x^2$, one has: $D_c^h \approx (3LD_c/2)^{1/2}$, where L is the distance between the hyperbolic and the elliptic point inside the "fish". This result can be improved using higher order interpolating Hamiltonians.
- Distance to islands from the separatrix: $d_i \sim |b|/ ilde{k}$, $ilde{k}=2/\pi$.
- Expected number of "central" islands before the r.i.c. $\#\{islands\} \approx 1.415 \times b.$

Hénon map
$$H_{\alpha}(x,y) = R_{2\pi\alpha}(x,y-x^2)$$

 $\alpha = 0.1$

Experimental values: $(D_c^H)_e \approx 2.94 \times 10^{-3}, (D_i^H)_e \approx 2.08 \times 10^{-3}$ "Fish" interpolating Hamiltonian: $D_c^H \approx 2.47 \times 10^{-3}, D_i^H \approx 1.85 \times 10^{-3}$ 5-order interp. Hamiltonian: $D_c^H \approx 2.731 \times 10^{-3}, D_i^H \approx 2.050 \times 10^{-3}$

Figure eight case

where ν is such that $\nu_1 = 1$ and $\nu_{-1} = A_{-1}/A_1$, being A_1 and A_{-1} the amplitudes of the outer/inner splittings resp. of the resonant island.

- It is defined on a domain $\mathcal{W} = \mathcal{U} \cup \mathcal{D}$ (upper/lower domains around the outer/inner separatrices of the resonance).
- y > 0 means we are outside the stable manifold (either in \mathcal{U} or \mathcal{D}).

Theorem. ^a Consider a generic resonance ($m \ge 5$) rel. close to the origin (δ rel. small). Assume $b_1 \delta < 0$ and that the hypothesis **A1**, **A2** and **A3** of the theorem concerning the difference of the inner/outer splittings hold. Then,

- The width of the outer chaotic zone is larger than the width of the inner chaotic one if, and only if, sign $b_1 \cdot \text{sign } b_2 < 0$.
- Both amplitudes of the stochastic layer are of the order of magnitude of the outer splitting (the largest one).

^aDetails and also examples of non-generic situations (strong resonances), can be found in: *Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones.* Physica D, 240(8), 2011.

Pendulum-like islands: comments

The idea is to construct an interpolating Hamiltonian of the map (in a domain containing the resonance) and to use preservation of energy to see how the distance to the rotational invariant curves changes when measuring from the upper \mathcal{U} and the lower \mathcal{D} domains. This can be done computing the ratio

 $f = \nabla \mathcal{H}(J_M) / \nabla \mathcal{H}(J_m)$

where J_M and J_m are the maximum (minimum) of the outer (inner) separatrix of the Hamiltonian. For close to the origin resonances $f = 1 + O(\delta^{m/4})$.

$$\alpha = 0.21,$$

 $\sigma_{-} = \mathcal{O}(10^{-12}),$
 $\sigma_{+} = \mathcal{O}(10^{-3}).$

The 1:4 resonance of the Hénon map

- The same idea applies to resonances far from the origin as well as for strong resonances.
- An adapted interpolating Hamiltonian must be considered in each case.
- The "inner/outer amplitudes" of CZ can be of different order of magnitude.

c = 1.015, $\sigma_{+} = \mathcal{O}(10^{-54}), \sigma_{-} = \mathcal{O}(10^{-1}).$ Experimentally, $f \approx -5$. Using interp. Ham. up to order $\delta \approx c - 1$ we obtain $f \approx -5.64$. But $\delta = 0.015$ is too large. For δ small we obtain better results (even we can predict # tiny islands).

Thanks for your attention!!