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W. Rudin (80), Inner function Conjecture : There are no Inner
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J. Bourgain (85) : There exists a uniformly bounded orthonormal
basis in . '

Py =span{ZwV7 :j=0,..., N},
and therefore in H2(B,) (closure of A(B,) in L2(S3)). The
construction uses Rudin-Shapiro polynomials.

This was an explicit example of RW-sequence (Ryll-Wojtaszczyk).

The existence of a RW-sequence (85) implies the existence of a
uniformly bounded ON basis in H?(B,,).

With RW-sequences one can show that inner functions do exist
(Aleksandrov’s second proof, the first is from 81).

It is not known if there exists a uniformly bounded orthonormal basis
of holomorphic polynomials in S?™~1 ¢ C™ for m > 3.
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Shiffman’s result (14)

Shiffman constructs a uniformly bounded orthonormal system of
sections of powers LN of a positive holomorphic line bundle over a
compact Kahler manifold M (i.e. a uniformly bounded orthonormal
system of elements of HO(M, LN)).

The number of sections in the orthonormal system is at least

Bdim HO(M, LN),  for some 0< g3 < 1.

These orthonormal sections are built by using linear combinations of
reproducing kernels peaking at points situated in a lattice-like
structure on M.

He raises the question whether using kernels peaking at Fekete points
one may increase the size of the uniformly bounded orthonormal
system of sections.



For M = CP™ ! and L the hyperplane section bundle O(1) with the
Fubini-Study metric one can identify

space of homogeneous holomorphic

0 m—1 N =
H>(CP™ =, L) = polynomials of degree N on C™

HO(CPL, L) = Py.

The LP norm of a section is the corresponding norm of the polynomial
over the sphere S~ c C™.



Theorem

Let L be a Hermitian holomorphic line bundle over a compact Kahler
manifold M with positive curvature. Then for any £ > 0, there is a
constant C. > 0 such that for any N € ZT, we can find orthonormal
holomorphic sections:

st sp e HOML LYY, oy > (1—¢)dimHO(M, L),

such that [|sV[|.o < C. for 1 <j < ny and for all N € Z7.
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Let (M, g) be a compact two-point homogeneous Riemannian
manifold of dimension m > 2. The (discrete) spectrum of the
Laplace-Beltrami operator is a sequence of eigenvalues

0< M <A< — o0,

and we consider the corresponding orthonormal basis of eigenvectors
¢i (so we have Ag; = —\;¢;).

Consider the following subspaces of L2(M):

EL = spany <, {¢i}.

We denote dim E; = k;. The reproducing kernels of E; are given by
ky L
Bi(z,w) =) ¢i(2)pi(w).
i=1

Observe that || By (-, W)HfQ(M) = By (w, w). Hérmander (68) proved
that k; ~ BL(W, W) ~ L™,

We denote by b;(z, w) the normalized reproducing kernels.



The main example is the sphere M = S, where the ¢; are spherical
harmonics and the spaces E; are the restriction to the sphere of the
space of polynomials in R™+1.

Our result is the following:

Theorem

Given ¢ > 0 and L € Z7 there exist C. > 0 and a set {sf,..., st} of

<920,

orthonormal functions in E; with ng > (1 — &) dim E; such that
Isflloe(my < G, forall Le Zt and 1 <j < ny.



Interpolation and Riesz sequences

For degree L we take n; points in M
Z)={z;eM:1<j<n}, L>0,

and assume that n; — oo as L — oco. This yields a triangular array of
points Z = {Z(L)};>0 in M.

Definition

Z is interpolating if and only if the normalized reproducing kernel of
E; at the points Z(L) form a Riesz sequence i.e.

2

np np
c1 2 < / b do(z) < C
;Mﬂ < ) ;ag 1(z,215)| do(z Z’aL_] :

for any {a;;}, j with C > 0 independent of L. Observe n; < k;.
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Z is interpolating if and only if the Gramian matrix

G = (Gy)ij = ((bL(» 21,1), bL(, zL)))ig = (L™ by (2w, 214))iy

gives a bounded operator in 2 which is bounded below (uniformly in
L).

The idea is to take G~1/2 = (G.._l/2

i )i and

Z G,'J'_l/2bL(azL,j) €k
J

fori=1,...,n; are orthonormal.
If one has “good estimates” for the kernel one can see that for
= 1, ey N

1 : _
L __ il 1/2 .
Sg = \/HZJ:C ; GU bL(sz,j) € EL

where ¢ = e2™/" is bounded and ON.
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basis of reproducing kernels in the space of sections of HO(M, LN).
Thus this approach cannot provide uniformly bounded orthonormal
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For the sphere S™ :

Theorem (Bannai, Damerell 79)

There is no array Z such that {K,(-,z)/||KL(-, 2)[|}zez(1) is an
orthonormal basis for the space of spherical harmonics of degree at
most L, m > 2 and L > 3.

Open problem

It is not known if there are Riesz basis of reproducing kernels in the
spaces of spherical harmonics.
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The next result provides us with Riesz sequences of reproducing
kernels with cardinality almost optimal.



Theorem (M., Ortega-Cerda, Pridhnani, Lev)




Theorem (M., Ortega-Cerda, Pridhnani, Lev)

For compact complex manifolds one can use directly these kernels to
continue with the construction of flat sections. In the real setting the
off-diagonal decay of the reproducing kernels is not fast enough. So
we need to introduce better kernels.



Changing the kernel




Changing the kernel

When & = 0 we “recover” the reproducing kernel for E;. Observe that
B (-, w)||3 ~ L™ for any w € M.
These kernels have better pointwise estimates (Filbir-Mhaskar (10))

Lm

B S iy

z,weM

where one can take any N > m.



One can replace the reproducing kernels by the Bochner-Riesz type
and still get a Riesz sequence:




Jaffard (90)

Let (X, d) be a metric space such that for all € > 0 there exists C,
such that

sup Z exp(—ed(s, t)) < C..

seX tex
Suppose that
1
sup _— < 0,
seX tex |1 + d(57 t)|N

and for a > N the matrix A = (A(s, t))s tex is such that

C

A, )| < ————.
A= g e

Then, if A is invertible as an operator in £ the matrix A1 (and also
A~1/2) satisfies the same kind of bound and therefore it is bounded in
£P for 1 < p < oo by Schur's Lemma.



We define the n; . x n; . Gramian matrix
A = (Aj)ij=1,..n,., where Aj = (bi(:,z),bi(-z)),

where the points z; for j = 1,...,n; . are given by the previous
Lemma.

This matrix defines a bounded operator in £2 which is also bounded
below (uniformly in L).

Because of the structure of the regularized kernel we have the
following estimate for the entries of the Gramian:

1
~ (1+ Ld(z, Z.I))N

831 = | [ Btz )BT zIav(e)| <



Then as

Proposition

For {z;} C M uniformly separated

1
< 1.
s‘?pjz. (1+ Ld(z, z))" ~

One can apply Jaffard’s result getting the estimates

_ 1/2
|AY2|| ooy goe < mf‘xsz/ | < 1.
J
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L jiyyL
s: = v
IRV

where ¢ = e2™i/nLe



Denote A~1/2 = (B;;) and define the orthonormal set of functions

from E;
F= Bibi(- 7).
J

And then the polynomials

S

an—:

where ¢ = e2™/M.c. They are orthonormal because

nee

ZCJ ) =Gy, 1<ik<np..
=1

1
(st sk) =

nge
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To verify that the s,-L are indeed uniformly bounded. Define the linear
maps
FL:Cte — El, v=(vj))— Z vibi (-, zj).

By the previous Proposition

su&2|b,_ z,zj)| S LT m/2 supZ|BL z,7))| S Lm/?.
ze

So, finally we get

1 _
Isflloo(my < ——=IIFilleoe oo (my | A2 [lemo e S 1,

\VLe

forall Le Zt and 1 <i<n_.
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