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Some previous results

W. Rudin (80), Inner function Conjecture : There are no Inner
functions in Bm ∈ Cm for m > 1.

J. Bourgain (85) : There exists a uniformly bounded orthonormal
basis in

PN = span{z jwN−j : j = 0, . . . ,N},

and therefore in H2(B2) (closure of A(B2) in L2(S3)). The
construction uses Rudin-Shapiro polynomials.

This was an explicit example of RW-sequence (Ryll-Wojtaszczyk).

The existence of a RW-sequence (85) implies the existence of a
uniformly bounded ON basis in H2(Bm).

With RW-sequences one can show that inner functions do exist
(Aleksandrov’s second proof, the first is from 81).

It is not known if there exists a uniformly bounded orthonormal basis
of holomorphic polynomials in S2m−1 ⊂ Cm for m ≥ 3.
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Shiffman’s result (14)

Shiffman constructs a uniformly bounded orthonormal system of
sections of powers LN of a positive holomorphic line bundle over a
compact Kähler manifold M (i.e. a uniformly bounded orthonormal
system of elements of H0(M, LN)).

The number of sections in the orthonormal system is at least

β dimH0(M, LN), for some 0 < β < 1.

These orthonormal sections are built by using linear combinations of
reproducing kernels peaking at points situated in a lattice-like
structure on M.

He raises the question whether using kernels peaking at Fekete points
one may increase the size of the uniformly bounded orthonormal
system of sections.
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For M = CPm−1 and L the hyperplane section bundle O(1) with the
Fubini-Study metric one can identify

H0(CPm−1, LN) ≡ space of homogeneous holomorphic
polynomials of degree N on Cm

i.e.
H0(CP1, LN) ≡ PN .

The Lp norm of a section is the corresponding norm of the polynomial
over the sphere S2m−1 ⊂ Cm.



Theorem

Let L be a Hermitian holomorphic line bundle over a compact Kähler
manifold M with positive curvature. Then for any ε > 0, there is a
constant Cε > 0 such that for any N ∈ Z+, we can find orthonormal
holomorphic sections:

sN1 , . . . , s
N
nN
∈ H0(M, LN), nN ≥ (1− ε) dimH0(M, LN),

such that ‖sNj ‖∞ ≤ Cε for 1 ≤ j ≤ nN and for all N ∈ Z+.



Let (M, g) be a compact two-point homogeneous Riemannian
manifold of dimension m ≥ 2. The (discrete) spectrum of the
Laplace-Beltrami operator is a sequence of eigenvalues

0 ≤ λ1 ≤ λ2 ≤ · · · → ∞,

and we consider the corresponding orthonormal basis of eigenvectors
φi (so we have ∆φi = −λiφi ).

Consider the following subspaces of L2(M):

EL = spanλi≤L {φi} .

We denote dimEL = kL. The reproducing kernels of EL are given by

BL(z ,w) =

kL∑
i=1

φi (z)φi (w).

Observe that ‖BL(·,w)‖2
L2(M) = BL(w ,w). Hörmander (68) proved

that kL ∼ BL(w ,w) ∼ Lm.

We denote by bL(z ,w) the normalized reproducing kernels.
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The main example is the sphere M = Sm, where the φi are spherical
harmonics and the spaces EL are the restriction to the sphere of the
space of polynomials in Rm+1.
Our result is the following:

Theorem

Given ε > 0 and L ∈ Z+ there exist Cε > 0 and a set {sL1 , . . . , sLnL} of
orthonormal functions in EL with nL ≥ (1− ε) dimEL such that
‖sLj ‖L∞(M) ≤ Cε, for all L ∈ Z+ and 1 ≤ j ≤ nL.



Interpolation and Riesz sequences

For degree L we take nL points in M

Z(L) = {zL,j ∈ M : 1 ≤ j ≤ nL}, L ≥ 0,

and assume that nL →∞ as L→∞. This yields a triangular array of
points Z = {Z(L)}L≥0 in M.

Definition

Z is interpolating if and only if the normalized reproducing kernel of
EL at the points Z(L) form a Riesz sequence i.e.

C−1
nL∑
j=1

|aLj |2 ≤
ˆ
Sd

∣∣∣∣∣∣
nL∑
j=1

aLjbL(z , zL,j)

∣∣∣∣∣∣
2

dσ(z) ≤ C

nL∑
j=1

|aLj |2,

for any {aLj}L,j with C > 0 independent of L. Observe nL ≤ kL.



Z is interpolating if and only if the Gramian matrix

G = (Gij)i ,j = (〈bL(·, zL,i ), bL(·, zL,j)〉)i ,j = (L−m/2bL(zL,i , zL,j))i ,j

gives a bounded operator in `2 which is bounded below (uniformly in
L).

The idea is to take G−1/2 = (G
−1/2
ij )ij and∑

j

G
−1/2
ij bL(, zL,j) ∈ EL

for i = 1, . . . , nL are orthonormal.
If one has “good estimates” for the kernel one can see that for
` = 1, . . . , nL

sL` =
1
√
nL

∑
j

ζ i`
∑
j

G
−1/2
ij bL(, zL,j) ∈ EL

where ζ = e2πi/nL is bounded and ON.
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Problems to extend the results:

It is also known, see (Lev-Ortega-Cerdà (10)) that there are no Riesz
basis of reproducing kernels in the space of sections of H0(M, LN).
Thus this approach cannot provide uniformly bounded orthonormal
basis of sections in H0(M, LN).

For the sphere Sm :

Theorem (Bannai, Damerell 79)

There is no array Z such that {KL(·, z)/‖KL(·, z)‖}z∈Z(L) is an
orthonormal basis for the space of spherical harmonics of degree at
most L, m ≥ 2 and L ≥ 3.

Open problem

It is not known if there are Riesz basis of reproducing kernels in the
spaces of spherical harmonics.
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How to get a “maximal” Riesz sequence

Fekete points (extremal systems)

Let {ψ1, . . . , ψkL} be any basis in EL. A set of points x∗1 , . . . , x
∗
kL
∈ M

such that

| det(ψi (x
∗
j ))i ,j | = max

x1,...,xkL∈M
| det(ψi (xj))i ,j |

is a Fekete array of points of degree L for M.

The next result provides us with Riesz sequences of reproducing
kernels with cardinality almost optimal.



How to get a “maximal” Riesz sequence

Fekete points (extremal systems)

Let {ψ1, . . . , ψkL} be any basis in EL. A set of points x∗1 , . . . , x
∗
kL
∈ M

such that

| det(ψi (x
∗
j ))i ,j | = max

x1,...,xkL∈M
| det(ψi (xj))i ,j |

is a Fekete array of points of degree L for M.

The next result provides us with Riesz sequences of reproducing
kernels with cardinality almost optimal.



Theorem (M., Ortega-Cerdà, Pridhnani, Lev)

Given ε > 0 let Lε = b(1− ε)Lc and

Zε(L) = Z(Lε) = {zLε,1, . . . , zLε,kLε},

where Z(L) is a set of Fekete points of degree L. Then the array
Zε = {Zε(L)}L≥0 is interpolating i.e. {bL(·, z)}z∈Zε(L) form a Riesz
sequence.

For compact complex manifolds one can use directly these kernels to
continue with the construction of flat sections. In the real setting the
off-diagonal decay of the reproducing kernels is not fast enough. So
we need to introduce better kernels.
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Changing the kernel

Given 0 < ε ≤ 1 let βε : [0,+∞) 7→ [0, 1] be a nonincreasing C∞
function such that βε(x) = 1 for x ∈ [0, 1− ε] and βε(x) = 0 if x > 1.
We consider the following Bochner-Riesz type kernels

BεL(z ,w) =

kL∑
k=1

βε

(
λi
L

)
φk(z)φk(w).

When ε = 0 we “recover” the reproducing kernel for EL. Observe that
‖BεL(·,w)‖2

2 ∼ Lm for any w ∈ M.
These kernels have better pointwise estimates (Filbir-Mhaskar (10))

|BεL(z ,w)| . Lm

(1 + Ld(z ,w))N
, z ,w ∈ M

where one can take any N > m.
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One can replace the reproducing kernels by the Bochner-Riesz type
and still get a Riesz sequence:

Lemma

Given ε > 0 there exist a set of nL,ε points {zj}j=1,...,nL,ε with
nL,ε ≥ (1− ε) dimEL such that the normalized Bochner-Riesz type
kernels {bεL(·, zj)}j=1,...,nL,ε form a Riesz sequence (uniformly in L).



Jaffard (90)

Let (X , d) be a metric space such that for all ε > 0 there exists Cε
such that

sup
s∈X

∑
t∈X

exp(−εd(s, t)) ≤ Cε.

Suppose that

sup
s∈X

∑
t∈X

1

|1 + d(s, t)|N
<∞,

and for α > N the matrix A = (A(s, t))s,t∈X is such that

|A(s, t)| ≤ C

|1 + d(s, t)|α
.

Then, if A is invertible as an operator in `2 the matrix A−1 (and also
A−1/2) satisfies the same kind of bound and therefore it is bounded in
`p for 1 ≤ p ≤ ∞ by Schur’s Lemma.



We define the nL,ε × nL,ε Gramian matrix

∆ = (∆ij)i ,j=1,...,nL,ε , where ∆ij = 〈bεL(·, zi ), bεL(·, zj)〉,

where the points zj for j = 1, . . . , nL,ε are given by the previous
Lemma.
This matrix defines a bounded operator in `2 which is also bounded
below (uniformly in L).
Because of the structure of the regularized kernel we have the
following estimate for the entries of the Gramian:

|∆ij | =
1

kL

∣∣∣∣ˆ
M
BεL(z , zi )BεL(z , zj)dV (z)

∣∣∣∣ . 1

(1 + Ld(zi , zj))N
.



Then as

Proposition

For {zj} ⊂ M uniformly separated

sup
i

∑
j

1

(1 + Ld(zi , zj))N
. 1.

One can apply Jaffard’s result getting the estimates

‖∆−1/2‖`∞→`∞ ≤ max
i

∑
j

|∆1/2
ij | . 1.



Denote ∆−1/2 = (Bij) and define the orthonormal set of functions
from EL

ΨL
i =

∑
j

Bijb
ε
L(·, zj).

And then the polynomials

sLi =
1
√
nL,ε

∑
j

ζ jiΨL
j ,

where ζ = e2πi/nL,ε . They are orthonormal because

〈sLi , sLk 〉 =
1

nL,ε

nL,ε∑
j=1

ζ j(i−k) = δik , 1 ≤ i , k ≤ nL,ε.
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To verify that the sLi are indeed uniformly bounded. Define the linear
maps

FL : CnL,ε −→ EL, v = (vi ) 7→
∑
j

vjb
ε
L(·, zj).

By the previous Proposition

sup
z∈M

∑
j

|bεL(z , zj)| . L−m/2 sup
z∈M

∑
j

|BεL(z , zj)| . Lm/2.

So, finally we get

‖sLi ‖L∞(M) ≤
1
√
nL,ε
‖FL‖`∞→L∞(M)‖∆−1/2‖`∞→`∞ . 1,

for all L ∈ Z+ and 1 ≤ i ≤ nL,ε.
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