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What is a Solar Sail 7
e Solar Sails a proposed form of propulsion system that takes advantage of the
Solar radiation pressure to propel a spacecraft.

e The impact of the photons emitted by the Sun on the surface of the sail and
its further reflection produce momentum on it.

e Solar Sails open a wide new range of possible missions that are not accessible
by a traditional spacecraft.
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There have recently been two successful deployments of solar sails in space.

e IKAROS: in June 2010, JAXA managed to deploy the first solar sail in space.

e NanoSail-D2: in January 2011, NASA deployed the first solar sail that would
orbit around the Earth.
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The Dynamical Model

We use the Restricted Three Body Problem (RTBP) taking the Sun and Earth as
primaries and including the solar radiation pressure due to the solar sail.
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The Solar Sail

We consider the solar sail to be flat and perfectly reflecting. Hence, the force due
to the solar radiation pressure is in the normal direction to the surface of the sail.

The force due to the sail is defined by the sail’s orientation and the sail’s lightness
number.

e The sail's orientation is given by the normal vector to the surface of the sail,
. It is parametrised by two angles, o and §.

e The sail’s lightness number is given in terms of the dimensionless parameter
(. It measures the effectiveness of the sail.

Hence, the force is given by:

2 ms ,, Lo
Fsail = ﬁTS<rSa n>2n'
ras
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The Sail Orientation

There are several ways to define the two angles that parametrise the sail
orientation « and 4.

We define:

e o is the angle between the
projection of 7; and 7 on the
ecliptic plane.

e § is the difference between:
a) the angle of the 7; with the
ecliptic plane; and b) the angle of
i with the ecliptic plane.

) ‘\‘ Sun-line

Ecliptic plane

e as the sail cannot point towards
the Sun, we have that (7, d) > 0.
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Equations of Motion

The equations of motion are:

. . X — x+1— 1—p,,
X = 2y+x—(l—,u) 3N—[,L 3 M‘f’ﬁ 2M<rs,n>2nx7
I'ps pe I'ps

. . 1—pu m 1—p,, o
y = —-2x+4+y- Tt 3 |y+B8— (Fs, 1) ny,

s e Is
_— 1—p I 1—p,, o0
z = - 7 + 5 | z+ B—=— (s, i) n,

I'ps I'pe I'ps

where 7i = (ny, n,, n,) is the normal direction to the surface of the sail with,

Nx = COS(¢(X7y) + a) C°5(1/1(X7}’» Z) + 5)7
ny = sin(¢(x,y,z)—l—a)cos(w(x,y,z)—i—(;),
n, = sin(¢(x,y,z)+9),

and s = (x — p, y, z)/rps is the Sun - sail direction.
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Equilibrium Points (1)

e The RTBP has 5 equilibrium points (L;). For small 3, these 5 points are
replaced by 5 continuous families of equilibria, parametrised by « and §.

e For a fixed small value of 3, we have 5 disconnected family of equilibria around
the classical L;.

e For a fixed and larger 3, these families merge into each other. We end up
having two disconnected surfaces, S; and S;,. Where S; is like a sphere and
S, is like a torus around the Sun.

o All these families can be computed numerically by means of a continuation
method.
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Equilibrium Points (Il)

Equilibrium points in the XY plane
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Background

Interesting Missions Applications

Observations of the Sun provide information of the geomagnetic storms, as in the
Geostorm Warning Mission.
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Observations of the Earth’s poles, as in the Polar Observer.
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Periodic Motion Around Equilibria

We must add a constrain on the sail orientation to find bounded motion. One can
see that when o =0 and § € [—7/2,7/2] (i.e. only move the sail vertically w.r.t.
the Sun - sail line):

e There are 5 disconnected families of equilibrium points parametrised by §, we
call them FL; 5 (each one related to one of the Lagrangian points Ly . s).

e Three of these families (FL1’2’3) lie on the Y = 0 plane, and the linear
behaviour around them is of the type saddlexcentrexcentre.

e We consider the sail orientation to be fixed along time.

Sun
L2~ B m ® mw

S2 St1 sL3

(Schematic representation of the equilibrium points on Y = 0)

A. Farrés (IMCCE, UB) Station Keeping for Solar Sails



P-Family of Periodic Orbits

Periodic Orbits for « = 0,0 = 0.

P Famiy —— Hilo ——
002 001
001 0,005
> 0 ~ o N
001 0005
002 001
0015
0995 099 0985 098 0875 097 0965 0995 089 0985 098 0975 087 002 001 o 001 002
x x v

Halol ——
Halo2 ——
Planar

0.01

0.005

-0.005

-0.01

A. Farrés (IMCCE, UB)

14 / 66



P-Family of Periodic Orbits

Periodic Orbits for « = 0,6 = 0.01.

Main family of periodic orbits for § = 0.01
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Background

P-Family of Periodic Orbits

Periodic Orbits for « = 0,6 = 0.01.
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Background

V-Family of Periodic Orbits

Periodic Orbits for « = 0,6 = 0,0.001, 0.005, 0.01.
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Interesting Mission Applications

Observations of the Earth’s poles, as in the Polar Observer.
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Background

AIM of this TALK

We want to design Station Keeping Strategy to maintain the trajectory of a solar
sail close to an unstable equilibrium point.

Instead of using Control Theory Algorithms, we want to use Dynamical System
Tools to find a station keeping algorithm for a Solar Sail.
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AIM of this TALK

We want to design Station Keeping Strategy to maintain the trajectory of a solar
sail close to an unstable equilibrium point.

Instead of using Control Theory Algorithms, we want to use Dynamical System
Tools to find a station keeping algorithm for a Solar Sail.

The main ideas are ...

e To focus on the linear dynamics around an equilibrium point or periodic orbit
and study how this one varies when we change the sail orientation.

e Find changes in the sail orientation (i.e. the phase space) to make the system

act in our favour: keep the trajectory close to a given equilibrium point or
periodic orbit.
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Station Keeping Strategies Around Equilibria
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Station Keeping for a Solar Sail

We focus on the two previous missions, where the equilibrium points are unstable
with two real eigenvalues, A; > 0, A\ < 0, and two pair of complex eigenvalues,
V1,2 :tiwl’z, with ‘V1’2| << ‘)\172|.

e To start we can consider that the dynamics close the equilibrium point is of
the type saddle x centre x centre.

e From now on we describe the trajectory of the sail in three reference planes
defined by each of the eigendirections.

\f \\(-ﬁl.yl)

X

N,
\

(23,93

e For small variations of the sail orientation, the equilibrium point, eigenvalues
and eigendirections have a small variation. We will describe the effects of the
changes on the sail orientation on each of these three reference planes.
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Schematic Idea of the Station Keeping Strategy ()

In the saddle projection of the trajectory:

-
| ﬁ—r

e When we are close to the equilibrium point, pg, the trajectory escapes along
the unstable direction.

e When we change the sail orientation the position of the equilibrium point is
shifted and its eigendirections vary slightly.
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Schematic Idea of the Station Keeping Strategy (1)

In the saddle projection of the trajectory:

e Now the trajectory will escape along the new unstable direction.

e We want to find a new sail orientation («, d) so that the trajectory will come
close to the stable direction of pg.
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Schematic Idea of the Station Keeping Strategy (I1l)

In the centre projection of the trajectory:

SRV s 7
/ T/ N

~

A sequence of changes on the sail orientation implies a sequence of rotations
around different equilibrium points on the centre projection, which can result of an
unbounded growth.
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Schematic Idea of the Station Keeping Strategy (I1l)

In the centre projection of the trajectory:

L, 4
/

A sequence of changes on the sail orientation implies a sequence of rotations
around different equilibrium points on the centre projection, which can result of an
unbounded growth.
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Schematic idea of the Station Keeping Algorithm

We look at the sails trajectory in the reference system {xo; V4, Vo, V3, V4, Vs, Vs }, SO
Z(t) = Xg + ):,'S,'(t)\7,'.

During the station keeping algorithm:

Ps when o = ag,d = dp: if |s1(t)] > Emax = choose new sail
orientation o = a1, 0 = 5.

© when a = a1, = d1: if |s1(¢t)| small = restore the sail
orientation: o = o, d = dp.

©® REPEAT
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1st Idea for finding pew, O new

We will choose a the position of the new equilibrium point (i.e. a new sail
orientation) so that projection of the trajectory on the saddle will come back and
the two centre projections remain bounded ?
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1st Idea for finding cupew, Onew

We will choose a the position of the new equilibrium point (i.e. a new sail
orientation) so that projection of the trajectory on the saddle will come back and
the two centre projections remain bounded ?
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The constants €,in, €max and d will depend on the mission
dynamics around the equilibrium point.
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1st Idea for finding cupew, Onew

e We do not know explicitly the position of the equilibrium points p(«, §). But
we can compute the linear approximation of this function:

p(a, 8) = p(ao, do) + Dp(ag, &) - (o — g, 8 — &) "

e There are some restrictions of the position of the new equilibria when we
change « and 6. We have 2 unknowns and at least 6 conditions that must be
satisfied.

e We will change the sail orientation so that the position of the new fixed point
is as close as possible to the desired new equilibrium point and in the correct

side in the saddle projection.

e To decide the new sail orientation we will assume that the eigenvalues and
eigendirections do not vary when the sail orientation is changed.
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Results for the Geostorm Mission (RTBPS)

XY and XZ and XYZ Projections
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Results for the Geostorm Mission (RTBPS)

Variation of the sail orientation
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2st Idea for finding cupew, Onew

The computation of variational equations (of suitable order) w.r.t. a and ¢ gives
explicit expressions for the effect of different orientations (close to the reference
values @ = g, § = dp) trajectory.

0 0
¢t(x0, 0 + ha, b0 + ha) = Pe(x0, o, d0) + %(Xo7 ag,00) - hy + £(X07 ag, 00) - hd,

With this we can impose conditions on the “future” of the orbit and find
orientations that fulfil them (or show that the condition is unattainable).

o We will define the parameters €25, Dtmin and Dt,,.x that will vary for each
mission application.

e We will find apew, dnew and dt € [Dtmin, Dtmax| so that the trajectory is close
to the fixed point.
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2st Idea for finding cupew, Onew

We proceed as follows:

e We use:

0 0
F(dt, ha, hg) = ¢ae(to, xo0, o, do) + %(tmxo,ao,(so) ~hy + %(to,Xo,ao,5o) - hg,

to find dt, h, and hy so that the trajectory at time ty + dt is close to the
nominal orbit.

e For each dt € [Dtmin, Dtmax] we will find h, and hy such that s; = 0 and
(s5,56) are minimum (i.e. we are close to stable direction and one of the
centre projections is small).

e From all the dt, h, and hy we chose the one such that the other centre
projection (s3,s4) is minimised.

Qpew = Q@ + h:a Onew = 0o + hr]
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Results for the Geostorm Mission (RTBPS)

XY and XZ and XYZ Projections
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Results for the Geostorm Mission (RTBPS)

Variation of the sail orientation
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Results for the Geostorm Mission

We have applied these station keeping strategy to different mission scenarios. We
show the results for the Geostorm Warning Mission.

¥4

ACE
Tl Earth

/ @.
— 2 o

0.02 AU

Sun i R

Sail

Mission Parametres:

e In the RTBPS to have the appropriate fixed point we take: 8 = 0.051689
(a0 ~ 0.3 mm/s?), ap = 0.7897° and &y = 0°.
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Robustness of the Method

Mission Parametres:
e Alg. FP: We have taken ¢ ., = 5- 10 °au (the escape distance),
Emin = 107%AU (minimum distance), d = 2 (estimate position of the new
fixed point in the saddle projection).
e Alg VF: We have taken ,,., = 5- 10 °au (the escape distance), dt,;, = 2
days and dt;ax = 169 days (the minimum and maximum time between
manoeuvres).

Test:
e We have done a Monte Carlo Simulation taking a 1000 random initial
conditions and applied the station keeping strategy for 20 years.

e We have tested the robustness of these strategies against different sources of
errors. We have considered errors on the position and velocity determination,
as well as errors in the sail orientation.

Note All the stmulat/ons have been done using the full set of equations, we only use the
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Results for the Geostorm Mission (RTBPS)

Algorithm Used: Fixed Point Algorithm

EType | % Succ. | At (days) [ Aa (deg) | A6 (deg)

EO 100.0 % | 158.32 - 38.90 | 0.211 - 0.209 | 4.884e-03 - 5.040e-06
Vi 100.0 % | 363.40 - 35.38 | 0.228 - 0.189 | 5.588e-02 - 2.179e-04
V2 79.0 % | 370.85-28.23 | 0.283 - 0.101 | 2.123e-01 - 6.749e-04

EType stands for the kind of errors considered in each simulation: EO = No errors, V1,
V2 = Errors on Position, Velocity and Sail Orientation, where V1 = 0.01°, V2 = 0.05°
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Results for the Geostorm Mission (RTBPS)

Algorithm Used: Variational Equation Algorithm

EType | % Succ. | At (days) | Aa(deg) |  AJ (deg)
EO 100.0 % | 317.88-2.32 | 2.82 - 0.109 0.160 - 0.000
Vi 100.0 % | 361.96 - 2.32 | 4.09 - 0.098 | 0.557 - 2.38e-04
V2 100.0 % | 334.56 - 2.32 | 4.47 - 0.041 | 2.598 - 4.54e-04

EType stands for the kind of errors considered in each simulation: EO = No errors, V1,
V2 = Errors on Position, Velocity and Sail Orientation, where V1 = 0.01°, V2 =0.05°
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Results for the Geostorm Mission (RTBPS)

Variation of the sail orientation
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Results for the Geostorm Mission (RTBPS)

Algorithm Used: Fixed Point Algorithm (simulations with errors).
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Results for the Geostorm Mission (RTBPS)

Algorithm Used: Variational Equations Algorithm (simulations with errors).
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Station Keeping Strategies Around Periodic Orbits

A. Farrés (IMCCE, UB) Station Keeping for Solar Sails 41/ 66



Background SK FixPoint SK POrbit realistic model Conclusions

Linear dynamics around a Periodic Orbit (1)

For the Periodic Orbits that we considered in this study ’Ehe eigenvalues (A1, 6)
of the monodromy matrix satisfy: A1 > 1, Ao < 1, A3 = A4 are complex with
modulus 1 and A\s = A\¢ = 1. They have the following geometrical meaning:

e The first pair (A1, A2) verify A1 - Ao = 1, and are related to the hyperbolic
character of the orbit. The related eigenvectors e;(0) and e,(0) give the most
expanding and contracting directions.

e The second couple (A3, \4) are complex conjugate eigenvalues of modulus 1.
The monodromy matrix, restricted to the plane spanned by the real and
imaginary parts of the eigenvectors associated to A3, \4 is a rotation of angle
I" (the argument of A3).

e The third couple (s, A\g) = (1, 1), is associated to the neutral directions (i.e.
non-unstable modes). One eigendirection is the tangent vector to the orbit
(es(0)). The other eigenvalue is associated to variations of the energy or any
other variable which parametrises the family of periodic orbits.
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Linear dynamics around a Periodic Orbit (1)

In a suitable basis, the monodromy matrix associated to a periodic orbit can be
written in the form,

AL

Ao 0
J— cos[ —sinl
o sin[ cosl
1 ¢
0 0 1
The functions ¢;(7) = D¢, - €/(0), i =1,...,6, give us an idea of the variation of

the phase space properties in a small neighbourhood of the periodic orbit.
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Linear dynamics around a Periodic Orbit (I11)

The linear dynamics around these periodic orbit is a cross product between a
saddle a centre and a neutral direction.

DA
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Linear dynamics around a Periodic Orbit (I11)

The linear dynamics around these periodic orbit is a cross product between a
saddle a centre and a neutral direction.

& gy 1

Appropriate changes on the sail orientation can make the trajectory come close to
the Nominal Orbit.

As before, both the saddle projection and the centre directions must be taken into
account when choosing a new sail orientation.
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The Floquet Modes

Following [1] we define the Floquet modes &(7), i=1,...,6:

a(r) = ea(r)ewp(-FIni),

&(r) = e(nep(-7Ink),

&(1) = cos(—F)e(r) —sin (—F) e(r),
a(r) = sin(—5)es(r) + cos (—F) eu(7),
éS(T) = 65(7'),

&(1) = &(71)+¢(r)es(r).

They &;(7) are periodic functions and can easily be stored using a Fourier Series.
We use the as a reference system around the orbit to track the relative position of
the sail with a the reference orbit and the invariant manifolds.

[1] G. Gémez et al. “Dynamics and Mission Design Near Libration Points - Volume I:
Fundamentals: The Case of Collinear Libration Points”, Volume 2 of World Scientific

Monograph Series in Mathematics, 2001.
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Schematic idea of the Station Keeping Algorithm
We look at the sails trajectory in the reference system

{No(t); &(t), &(t), &s(t), ea(t), &s(t), & (t)}-

Hence, 6
2(t) = No(t*) + ) _ si(t")a(t").

i=1

The station keeping algorithm:

(1] Seta:ao,ézdo.

When [s;(t*)| > £max = choose new sail orientation: a = 1,8 = 4.

® Set o = a1, = 01.
When |s;(t)| small = restore the sail orientation: o = ag,d = do.

® Go Back to 1.
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Finding ctpew, Onew

For each mission we will define the parameters € pax, Dtmin and Dt that can
vary for each mission application, and we will find apey, Opey, and dt
€ [Dtmin, Dtmax] so that the trajectory comes back close to the nominal orbit.

e We use:

0¢
%o +%(to,xo,ao,5o)~hd,
to find dt, h, and hy so that the trajectory at time ty + dt is close to the
nominal orbit.

F(dt, ha, hg) = ¢at(to, X0, 0, d0) + = (to, X0, 0, d0) - ha

e For each dt € [Dtmin, Dtmax] we will find h, and hy such that s; = 0 and
(s5,56) are minimum (i.e. we are close to stable direction and the neutral
direction is small).

e From all the dt, h, and hy we chose the one such that the other centre

projection (s3,54) is minimised.

_ * _ *
Qlpew = Qg + ha, Onew = 00 + hd
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Mission Scenarios

In the RTBPS we consider a Halo orbits AZ = 800.000km. Taking 5 = 0.05
(a0 ~ 0.3 mm/s?), ag = 0° and &y = 0°.

Mission Parameters:

e We have taken &, = 5-107°AU and £,,., = 10 °AuU (the escape distance),
dtmin = 30 days and dt, = 115 days (the minimum and maximum time
between manoeuvres).

e We have done Monte Carlo Simulations for 1000 random initial conditions
applying the station keeping strategy for 20 orbital revolutions.

e We have also tested the robustness of these strategies against different
sources of errors. We have considered errors on the position and velocity
determination, as well as errors in the sail orientation.
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Results for the Monte Carlo Simulation

Table: Statistics for the simulations of the station keeping around a Halo orbit with
AZ = 800.000km. Different magnitudes on the error for the sail orientation are
considered: Err 1 — €4,5 = 0.001°, Err 2 — €45 = 0.01°.

Sim. type | % Succ. | emax (AU) Ao (deg) Ad (deg)

No Err 100 % 107> ] 0.023 - 0.005 | 0.038 - 0.001
No Err 100 % 5-1075 | 0.113 - 0.030 | 0.191 - 0.002
Err 1 100 % 107° | 0.023 - 0.004 | 0.046 - 0.001
Err 1 100 % 5-107% | 0.113 - 0.030 | 0.193 - 0.002
Err 2 18.7 % 107 | 0.092 - 0.001 | 0.164 - 0.001
Err 2f 99.6 % 5-1075 | 0.121 - 0.016 | 0.250 - 0.001
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Results for a 800.000km Halo Orbit
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Figure: Vatiation of the sail orientation for a simulation with no errors (top) and with
errors’ (bottom) for a Halo orbit with AZ = 800.000km.
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Mission Scenarios

In the RTBPS we consider Vertical Lyapunov orbits around SL; with a period of 4
months. Here 3 = 0.04 (ap =~ 0.24 mm/s?), ag = 0° and &y = 0°.

Mission Parameters:

e We have taken £, = 5- 107 %au (the escape distance), dtn, = 20 days and
dtmax = 60 days (the minimum and maximum time between manoeuvres).

e We have applied the station keeping strategy for 10 orbital revolutions.
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Variation of the sail orientation for one simulation.
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Results for a 4 month VLiap. Orbit

Controled Trajectory for the solar sail.
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Towards a More Realistic Model
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Including more realism to the dynamical model

There are several ways to include more realism to the dynamical model. For
example,

e taking a more realistic model for the Solar Sail by including the force
produced by the absorption of the photons, the reflectivity properties of the
sail material, ... .

e taking a more realistic model for the gravitational perturbations by including
the eccentricity in the Earth - Sun system. Or the gravitational attraction of
other bodies, i.e. the Moon, Jupiter, ... .

The result we will show here considered the eccentricity in the Earth - Sun system
and the gravitational attraction of Jupiter. But similar results are obtained when
we include the whole solar system.
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The Dynamical Model

We use a Restricted N-Body Problem taking the Sun, Earth, Jupiter and solar sail,
including the solar radiation pressure due to the solar sail.

The equations of motion are,

n
. X; — Xs Gmg 2 . Xi — Xj
Xs = E Gmj 3 + 6 < > Ny, Xi = E ij 3

P ris 55 — i

= JF
.. Yi— s Gmo ,, .2 v Yi— Y
Vs = E Gmi=——5— 4 f—— (¥, i) ny, Yi E Gm; 3 0

; Fis r05 J#i i

n . zi— z

= Zi — Zs 2 zi = E Gm;
7. = E Gm,-73+5 (rs, n,, - S

: Tis 55 J#i Y

where (xs, ys, zs) and (x;, y;, z;) are the position of the solar sail and the planets
respectively, where i = 0, ..., n stands for the Sun, and the other planets.

A. Farrés (IMCCE, UB) Station Keeping for Solar Sails



3ackground SK FixPoint SK POrbit + realistic model Conclusions

Nominal Orbit

To find a good nominal orbit we have implemented a parallel shooting method to
get a natural trajectory in the Sun - Earth - Jupiter model close to the fixed point
in the RTBP Sun - Earth model.

$(t3,x3)
$(t0,x0) (1329/'
/—Td (2x2) F2.x2)
(t0.x0)

(t0,x0)

e The points x; that belong to the nominal orbit must satisfy:
¢-,—(t,',X,'):X,'+1 for i=0,...,n—1.

e This leads to solving a non-linear equation with 6n equations and 6n + 6
unknowns.

e We have added six more conditions: we fix the initial positions (the first three
components of xg) and the final ones (the first three components of x,).
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Linear Dynamics

If we examine the eigenvalues of the variational flow along the nominal orbit we

have: two real eigenvalues, A\; > 0, A2 < 0, and two pair of complex eigenvalues,
V1,2 :tiwlg, with ‘V1’2| << ‘)\172|.

o A first good approximation for the linear dynamics along the nominal orbit is:
saddle x centre X centre.

(w2,72)

T

x3,Y3

e To describe the trajectory of the sail along the orbit we will use the three
reference planes defined by the corresponding eigenvectors.

A. Farrés (IMCCE, UB)

Station Keeping for Solar Sails



Background SK FixPoint SK POrbit + realistic model Conclusions

Reference Frame

To avoid numerical problems with the computation of the eigenvectors, we split
the nominal orbit into N revolutions (each revolution = 1 year). For each
revolutions we can compute the Floquet modes and use them as a reference frame
along the orbit.

Wt) = e(n)exp(—Zin\),
B(t) = e(r)exp(—FInX),
B(t) = [cos(~T1Z) es(r) —sin (~T1Z) es(r)] exp(— % In Ay),
Vi(t) = [sin(—T17) e3(7) + cos (M1 %) es(7)] exp(—F In Ay),
Us(t) = [cos(~T2%)es(r) —sin (~T23) es(r)] exp(— 7 In A2),
V(t) = [sin(—T27)es(r) +cos (—M27) es(T)] exp(— T In Az),

where ['1 > = arg(As5).



Results for the Geostorm Mission

XY and XZ and XYZ Projections in a rotating reference system
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Variation of the Sail Orientation
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Conclusions & Future Work
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Conclusion:

e We have derived station keeping strategies for a solar sail around an
equilibrium point and periodic orbits.

e We have tested the robustness of these strategies when different sources of
error occur during the simulations (position and velocity determination or
solar sail orientation).

e We have extended these station keeping strategies to deal with a more more
realistic model and applied them to the GeoStorm mission.

e Notice that these strategies do not require previous planning as the decisions
are taken depending on the sails position at each time.

Future Work:

e Extend these ideas when the dynamics around a periodic orbit is Saddle x
Saddle.

e Include a more realistic model for the performance of the sail.

o Compare these strategies with other control theory schemes such as LQR.
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