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Abstract

We present a study of a simplified model of the Restricted Four Body Problem
consisting of Earth, Moon, Sun and a massless particle, as a model of the dynamics
of a spacecraft. The region where we look for the motion is a vicinity of the
triangular libration points of the Restricted Three Body Problem. The model
we discuss here is the so called Bicircular Problem. The main question is the
existence of zones where the motion has good stability properties. The answer is
positive, but the stable motions can not be confined to a small distance of the
ecliptic plane. Both numerical simulations and analytical results are presented.
Some tentative explanations offer a possible way to study many other kinds of
problems. Some applications to space missions are mentioned.

INTRODUCTION

The objective of the work is to understand the kinds of motion which appear on
a vicinity (may be a large vicinity) of the geometrically defined equilateral points of
the Earth-Moon system when the bicircular model is considered. In this Introduction
we summarize the present knowledge, some of the achievements of this work and we
discuss the main difficulties of the problem.

The simplest model for the motion near the triangular libration points is, of course,
the spatial Restricted Three Body Problem (RTBP). With respect to the RTBP the
main perturbations are due to the presence of the Sun as it is shown in Gémez et al.5.
This is the reason to devote our attention to the bicircular problem.
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Definition of the model and equations of motion

The bicircular problem is a simplified version of a restricted four body problem.
The objective is to describe the motion of a massless particle under the gravitational
atraction of Earth, Moon and Sun. In this model we suppose that the Earth and
the Moon are revolving in circular orbits around their centre of mass, B, and the
Earth-Moon barycentre is moving in a circular orbit around the centre of masses of the
Sun-Earth-Moon system. We remark that, with these assumptions, the motion of these
three bodies is not coherent. That is, the assumed motions do not satisfy Newton’s
equations. However the model is extremely useful for some kind of orbits.

Let 4 be the mass of the Moon, 1 — p the mass of the Earth and mgs the mass
of the Sun. Let the distance from the Earth to the Moon be taken as unity. Then
the distance from B to the Sun is as. We use synodic coordinates with respect to
the Earth-Moon system, so that the positions of Earth and Moon are fixed at (x,0,0)
and (p —1,0,0), respectively. The mean angular velocity of the Sun in these synodic
coordinates is denoted by ws.

To keep a Hamiltonian form we use synodic coordinates z, y, z, for the position of
the massless body, but instead of the velocities we use momenta p, py, p., defined by
Pr=2—Y,py =Y+, p. =2

In this way the equations of the bicircular problem are:

T = pztYy,
) = Py —Z,
2 = Pz
: L —p 2 ms
Pe = py— —5—(z—p)— 5—(z-p+1)— 5=(z—z5) —escosb,
TPE TPMm TPs
. 1- 7 ms
Py = Pz ( - +3—>y— ——(y — ys) +escosb,
TPE TPM TPs
. L—p H mgs
pP. = - ( + 3 + 3 )
TPE TPM  TPs
where 3, = (z — p)? +y? + 2% rdy = (z — p+ 1) + 92 + 2% and 15 = (z — 25)* +
(y — ys)? + 2%, with zg = agcosb, ys = —assinf, § = wst + o, and o is some initial
phase of the Sun. For shortness we have used the perturbation parameter of the Sun
Es = %25-

For further use we give here the related Hamiltonian

1 I—p % ms  ms, .
H = ~(p2+p2+p’ e — TPy — —— — —— — — — —(ysinf — z cos f).
(Pt Pyt p) type —apy = = — = T = T (y )
The values of the parameters that we have used for the symbolic and numerical
computations are as follows:

Mass parameter for the Earth-Moon system:

1

82.300587 0.01215058

U

Sun mass (1 unit = Earth4+Moon mass):

~0.29591220828559 x 103
T 0.89970116585573 x 109"

ms
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Mean angular velocity of the Sun in synodic coordinates:

129602770.31
1732564371.15°

Semimajor axis of the Sun (1 unit = Earth-Moon distance):

~ 1+mS 1/3
as = (1 —-ws)2 '

Known results near Lys

wg =

The bicircular problem can be obtained from the circular RTBP by continuation
with respect to the mass of the Sun or by means of some intermediate Hill’s problem
(see Gémez et al.* and references therein).

There are three simple periodic orbits (two of them linearly stable and another one
small and slightly unstable) with period equal to the synodic period of the Sun in the
Earth-Moon system: Ts = 6.79117. The two stable orbits lie relatively far away from
the triangular libration points of the RTBP and, when the full set of perturbations is
included, they become slightly unstable (see Gémez et al.?). One can use a continuation
method to pass from the RTBP to the bicircular model by introducing a parameter ¢
instead of €5 in the equations, and then by increasing it from zero to eg. At the zero
value we can take the Ls point (or, equivalently, the L, one) as initial condition. Of
course, it can be considered as a T's periodic orbit. For small values of ¢ a periodic orbit
is obtained, close to a small loop travelled twice around Ls. By increasing ¢ till e, the
orbit we reach is one of the big periodic orbits mentioned above. The other big orbit is
essentially identical but with a change in the phase. Starting at this orbit and decreasing
now ¢, a turning point is found. When crossing the turning point, the stability of the
periodic orbit along the family changes. From that point on € increases again, and when
it reaches the value eg the small unstable periodic orbit is obtained. The characteristic
curve can be seen as obtained from a pitchfork by symmetry breaking. From now on
we shall consider these small periodic orbits as the substitute of the triangular libration
points in the case of the bicircular model, despite they can not be obtained by direct
continuation (see Figure 1).
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We remark that for other natural 4-body problems in the Solar System, where
the bicircular model can be used as an approximation near some triangular points of
a RTBP, the behaviour can be different. For instance, consider as RTBP the system
Sun-Jupiter-asteroid and take Saturn as fourth body. In a bicircular model one finds
that, under the influence of Saturn, the Ly and Ls points are replaced by small stable
periodic orbits. The same is true if we consider the Ly, Ls points of the Sun-Saturn
system when perturbed by Jupiter.

No fixed points, nor autonomous first integral exist for the bicircular problem. The
existence of a “stable domain” in some extended vicinity of the small periodic orbit is,
up to here, an open question. We will see later on that, according to our numerical
simulations, these stable domains exist. In fact similar domains, with good stability
properties, exist also for the full problem (i.e., when all the solar system is taken into
account) and are close to the ones found for the bicircular model (see Gémez et al.?).

Main difficulties of the problem

We can summarize the difficulties to be found in our problem after the previous
results are known:

1. An external frequency appears together with the (amplitude varying) inner fre-
quencies. These 4 frequencies lead to many resonances.

2. The effect of the Sun is uniformly large in the vicinity of Lys.

3. At the geometrical Ly the frequencies of: the proper short period, the vertical
oscillations and the synodic frequency of the Sun are rather close.

In the circular RTBP we are faced to a three degrees of freedom autonomous
Hamiltonian. In the bicircular case the system is periodic instead of autonomous. Even
in the 3-D autonomous case, to describe to some extent the dynamical behaviour in big
regions of the phase space can be a formidable task.

Starting at some integrable problem and adding a perturbation with increasing
parameter we find, successively:

a) For the integrable problem the phase space is completely foliated by invariant
manifolds, mainly 3-D tori.

b) For small perturbations (or, equivalently, when we look very close to a totally
elliptic equilibrium point) most of the 3-D tori subsist, as assured by the celebrated
KAM theorem (see Arnol’d and Avez'), and very small zones of chaotic motion
appear. They are hardly seen in practice if the perturbation is small because
of the exponentially small character of the splitting of separatrices (see Lazutkin
et al.”, Fontich and Simé?, Simé®. As the 3-D tori do not separate the levels of
energy (which are 5-dimensional), Arnol’d diffusion can appear as a wandering
motion between the tori. This prevents, in general, the existence of true barriers
for the motion of the momenta. However, this motion is, at most, extremely slow,
as assured by the results of Nekhorosev®.

c¢) When the perturbation is increased (or, equivalently, when we look at a relatively
large distance from a totally elliptic equilibrium point), the 3-D tori are destroyed
by some not yet fully understood mechanism. However, cantorian families of
normally hyperbolic tori still subsist. They constitute a kind of skeleton of the
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motion. In some sense, one can consider the motion as a sequence of passages near
lower dimensional tori, where they stay for some time interval before reaching the
vicinity of next tori, following closely a heteroclinic orbit. The observed behaviour
in the Solar System simulations for very long time intervals seems to be of this
type (see Laskar®).

In the present case we have, as an additional difficulty, the fact that the system is
not autonomous but periodic. In principle, we can assume that the system is reduced
to autonomous form by means of time-dependent canonical changes. But this is purely
formal and, furthermore, we can be faced to resonances in this process. If no resonances
appear and we are satisfied with a study for moderate time intervals, we can describe
the motion as the one of the autonomous system obtained after the canonical changes,
which is then shaken by the periodic change of variables.

Contents of the work

In the second Section we describe numerical simulations carried out for the bi-
circular model. We present the results concerning sets of points which subsist, in an
extended neighbourhood of the former triangular equilibrium points, for a long time
span. Furthermore frequency analysis of several orbits have been carried out. The
Section is ended with a discussion of the results. These ones suggest some reasonable
explanations. Just looking at the frequency analysis we can detect the key role played
by the inner frequencies on the system (that is, what can be seen as a generalization of
the vertical, short period and long period modes of the circular RTBP), together with
the solar synodic frequency. A sketch of the geometrical and analytical explanations of
the zone of stable motion is presented.

The third Section describes the reduction of the bicircular model to some Normal
Form. The essential part is to convert the periodically dependent Hamiltonian in an
autonomous one. This is done around the small unstable periodic orbit described
above. Then one obtains a clear explanation for the instability found in the numerical
simulations of that problem for small values of the z amplitude. The source of the
instability is the 1-1 resonance between the short period frequency and the solar one.
An analytical description and some illustrations are given for the 2-D unstable tori
which emerge from the small unstable periodic orbit when the vertical mode is added.

The work is ended with some discussion and conclusions concerning the applica-
bility of the results to space missions.

NUMERICAL SIMULATIONS

Description of the massive simulations

A typical computation, for the determination of the stability zones, starts as fol-
lows. Give values p, a, z. Then select a point z, y, z by ¢ = (1 + p) cos (2ra) + 4,
y = (1 + p)sin (2rc). We shall use o between zero and 1/2. So we are doing the com-
putations near the position of Ls in the RTBP, the case of L, being symmetric. Take
zero initial velocity in synodic coordinates (¢ = y = Z = 0). Perform an integration for
a time span up to some prescribed ¢;. Stop the computation if y < 0 at some value
of t, t < t;. If we reach ¢y the position (p, a, z) is stored as belonging to the “stable
domain” in some weak sense.
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In the bicircular problem the triangular libration points do not longer exist. In its
place there are unstable periodic orbits (see Introduction, Gémez et al.#®). So, locally
near that orbit, the points escape. As the system is not autonomous, we have to take
into account the initial phase of the Sun, 6. This initial phase plays an important role
in the stable domain. The effect is almost the same when the initial phase in increased
by 7. To see the effect for different initial phases of the Sun we refer to Gémez et al.’.
Here, for shortness we consider 0y = 0 in all the simulations.

At this moment some considerations must be done. They apply to the bicircular
problem, but are also valid for the RTBP, both in the circular and the elliptic cases. The
first one concerns the set of initial data. Taking zero initial (synodic) velocity seems
to be a strong restriction. Consider, however, the case of a totally elliptic fixed point
of a Hamiltonian system, and assume that the frequencies are rationally independent.
In a small vicinity of that point the motion takes place mainly on tori. Let ¢; and
p; denote some local coordinates, reducing the quadratic part of the Hamiltonian to
diagonal form. The motion is close to ¢; = A; cos(w;t + @;), p; = —Ajw; sin(w;t + ¢;),
for some frequencies, w;, and phases ¢;. Assume p; are the velocities (otherwise, it is
similar). By the density of the orbits in the tori, there exists some time such that all
the velocities are so close to zero as desired. It is true that, if at some distance of the
fixed point there is a linearly stable periodic orbit, surrounded by some tori, the motion
on them is stable and the velocity on these tori is never zero. Another consideration
is that, if most of the motion takes place on tori (or close to them), taking an initial
generic 3-D set (as it seems to be the set with zero synodic velocity) the flow will span
a 6-D domain.

The second consideration concerns the stability criterion. To choose y < 0 as an
indicator of instability seems reasonable. It has been seen that, as soon as the orbit
enters in that region, a wild behaviour shows up. Either passages near collision with
the Earth or the Moon occur, or the motion is confined for some time near the region
of the other triangular point, with an eventual escape of the vicinity of the Earth-Moon
system. The criterion can be too strict for orbits reaching big values of z (say, larger
than 0.8). May be orbits showing good stability properties (they seem to be in tori
passing close to the Lz point, in the position coordinates) and oscillate up and down,
enter the y < 0 region near the extreme values of z. In any case this seems to affect
only a small fraction of the initial conditions. The next question deals with the value
of t;. Usually points which escape, according to our criterion, go away in a relatively
short time (say, 100 lunar periods). On the other hand, among the points subsisting for
10000 periods the escape takes place at a small rate. See the next subsections for more
qualitative and quantitative information, and for the behaviour of the escaping rate.

The integrations have been carried out using an RKF78 method with automatic
stepsize control and maximum local error equal to 10713,

Results of the simulations

For values of z ranging from 0 to 1 with step 0.05, we have taken values of p,
« in the ranges [-0.250,0.025], [0.100,0.450], respectively, with stepsize 0.001 in both
directions. The final time has been set to t; = 10000 x 27, and all the points subsisting
up to a time at least equal to 100 x 27 have been recorded. The Table 1 presents a
summary of results.

The Figure 2 displays the results for values of z equal to 0.25, 0.35, ..., 0.85 from
top to bottom. The stable region after 10000 lunar synodic revolutions is shown. The
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Table 1. Points which subsist after 10000 revolutions of the Moon for the bicircular
problem. In the first row the value of z is given. From the second to the last row
we display, respectively: Points subsisting for 100, 1000 and 10000 lunar revolutions,
minima and maxima of 1000 x « and 1000 x p for the points which subsist for 10000
revolutions. In all cases we have taken 6y = 0.

.00 .05 10 15 .20 .25 .30 .35 .40
74 69 75 58 80 252 538 1189 2214
15 13 11 8 12 153 397 820 1537
12 10 9 ) 2 139 381 720 1225
333 333 334 334 336 323 312 302 290
339 338 339 340 337 350 358 365 377
-3 -3 -5 -7 12 20 -28 -38  -50
-1 -2 -4 -6 -12 -14 -18 -22  -27
45 .50 .55 .60 .65 .70 75 .80 .85
2371 3214 3158 2630 2258 2099 1548 743 787
1484 1588 2224 1391 824 690 627 163 205
1279 1062 1748 847 366 228 397 69 115
295 283 290 289 313 323 310 331 328
376 371 378 372 366 373 360 346 348
-63 -74 -87 -98 -108 -122 -138 -162 -175
37 45 50  -65  -82  -99 -123 -151 -166

horizontal variable is o and the vertical one is p. For a we have taken a range going
from o = 0.38 (to the left) to & = 0.285 (to the right). The windows for p depend on
2 but all the ranges in p have amplitude equal to 0.04. The lower values of p in the
windows are -0.035, -0.050, -0.070, -0.088, -0.115, -0.150 and -0.190, respectively. The
divisions inside each plot correspond to multiples of 0.025, both in p and a.

The behaviour is quite different from the one found for the circular and elliptic
RTBP (see Gémez et al.%). For z less than 0.25, almost all points disappear after 10000
revolutions. But from z = 0.25 till z = 0.55 the size of the stable region increases, to
decrease again when higher values of z are taken. For some values of fo some points
subsist even for z = 0.95. Averaging over 6y, the number of subsisting points for
z = 0.40,...,0.60 is comparable to the RTBP case (compare Gémez et al.%).

Let us present an explanation for the stable points found till now. At Ls point the
RTBP, considering the Hamiltonian up to second degree, behaves like three harmonic
oscillators. One of them, with frequency equal to 1, corresponds to vertical oscillations.
When the full system is considered, these vertical oscillations give rise to a family of
“vertical” periodic orbits. These orbits, in fact, project on the (z,y) plane close to
an ellipse travelled twice and, on the (z,z) and (y, 2) planes, as figure eight curves.
The initial conditions can be chosen with z = 0. In the bicircular model, Ls has been
replaced by the small periodic orbit. In a similar way, the RTBP “vertical” periodic
orbits are replaced by 2-D tori, unstable for small vertical amplitudes (see next Section).
Tt seems that for larger z these 2-D tori become linearly stable. One can also consider
them as a periodic perturbation of “big” orbits of the vertical family of the RTBP.
Hence, motion near these 2-D stable tori must be, for a set of points of (big) positive
measure on 4-D tori. Some of those points can sit on the 4-D manifold of zero synodical
velocity (now we have 7 dimensions: 6 spatial and the time).
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Figure 2. Representation of the stable region for several values of z. See the text for the

concrete values and windows.
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Some simulations with non zero initial synodic velocity

We can try another kind of simulations. Assume that we take as initial conditions
the ones of the vertical family of periodic orbits of the RTBP, with z = 0 at ¢ = 0
and also with zero initial phase of the Sun. We shall use as label for the orbit the
initial value, 2o, of 2 (this value is close to the maximum z-amplitude of the periodic
orbit). For small z-amplitudes they must behave in an unstable way, but for larger
amplitudes they can be stable, and even in some 4-D torus, typically, because of the
preceding reasoning. We have tested this approach. To simplify the visualization we
have used the “time the synodic period of the Sun”-map, to be denoted by T'ss. This is
a 6-D canonical map and the invariant tori of maximal dimension, if any, must be 3-D.
Even the 2-D projections of these 3-D tori can be difficult to recognize. To make things
simpler one can take “slices” of the 3-D tori. The slices are defined by |z| < 0.01 x 2.
They should be close to 2-D tori, and their 2-D projections can be better identified as
corresponding to 2-D tori.

The Figures 3,4 and 5 present the (z,z) and (z,y) projections of the 3-D tori and
the (z,y) projection of the slice, from top to bottom. The values of Z, are taken equal
to 0.36, 0.56 and 0.76, respectively. They have been chosen to have a representative
sample (and, may be, by subjective aesthetic reasons). In all cases 4 x 106 iterates of
Tss have been done. The projections of the 3-D tori show only the 10° first iterates.
For the slices we have considered all the iterates satisfying the slice condition. The
respective number of points in the slices displayed are 24979, 25298 and 25792. To get
a better feeling about the behaviour of the dynamics on the 3-D tori, one can look at
how they appear on a computer screen when displayed at several rates of points/second.
This is difficult to transmit in written form, so that we encourage the reader to try by
himself. One can see that the points on the (z,z) projection travel along the “figure
eight” shape of the set (this is very clear for zy = 0.76) and the amplitudes behave in
a pulsating way. These facts give a good evidence that the points sit in 3-D tori.

Frequency analysis

One can perform a frequency analysis of the z, y and z coordinates, as functions
of time, for the orbits with initial conditions the ones of the vertical periodic orbits of
the RTBP and zero initial phase of the Sun, as before. A refined Fourier analysis allows
for a precise determination of the basic frequencies (see Gémez et al.5). The method is
similar, but not equal, to the one used by Laskar®. The selected orbits have 3¢ between
0.24 and 0.92. Other values outside this interval lead to escape. The time span has
been 1024 revolutions of the Moon. The Figure 6 shows the evolution of the four basic
frequencies as a function of Z,. In the figure the number of the orbit, k, is associated
to zo by k = 50 x Zo. The basic frequencies 1 to 4 correspond to the analogous of the
long period frequency of the RTBP, the synodic Sun frequency, the short period and
the vertical period, respectively. The solar frequency is constant, of course. It stops
their appearition at orbit number 23 because the maximum amplitude (in any of the
x, y or z coordinates) is less than 1072, Some remarks are relevant.

The long period frequency decreases (in absolute value) with the vertical amplitude.
This is in good agreement with the RTBP behaviour, where a Normal Form computation
around Ls (see Gémez et al.5) gives, for the Earth-Moon problem, the expansion

w = —0.298208 + 0.2253197, — 0.17898212 + 0.07121172 + 0.051720I* +
+0.0001977 — 0.1063731¢ + 0.045702I7 + .. .,
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Figure 6. Evolution of the four basic frequencies along the family of orbits explored.

where the Hamiltonian is expanded in power series of three actions, I,, I, I, associated
to the short period, long period and vertical modes, respectively. The expansion above
is just %IEI(O,O,L). For I, one has I, = }(¢2 + p?) (and similar for I, ) and ¢, p, are
rather close to z, 2. For completeness we give also w, and w, from the Normal Form of
the RTBP as a function of the “vertical” action I, (and I, = I; = 0):

ws, = 0.964501+ 0.0891317, — 0.055905I7 + 0.035475I2 — 0.0042561* +
+0.042148I7 — 0.0105217F + 0.048638I7 + .. .,

w, = 1-0.0044711, — 0.000154]7 + 0.002088I3 + 0.0002417% — 0.0018461°
—0.0003791¢ + 0.00200617 + ...

It follows that, in the RTBP and along the “vertical” family, the short period
frequency increases and the vertical one decreases very slowly. This also happens in the
bicircular model along the family used in the simulations, as can be checked in Figure
6. An important effect of the Sun is that it increases the value of the vertical frequency
and decreases the short period frequency, with respect to what gives the RTBP. When
the z-amplitude is of medium size (say, around Zy = 0.22, see next Section) there is
a 1 to 1 resonance between the short period frequency and the solar one, leading to
stability. On the other hand, when the z-amplitude increases (near 7, = 0.93) the
vertical frequency and the short period one come into 1 to 1 resonance, leading again
to instability. In this upper part the effect of the Sun (due to the variation of the
frequencies with respect to the ones of the RTBP mentioned above) produces a delay
in the instabilization. Indeed, in the RTBP the vertical family becomes unstable near
20 = 0.89-

As one can check with the expression of w, above, the dependence of w, with
respect to I, is quite mild. This also happens in the bicircular model. Vertically the
motion is rather close to an harmonic oscillator. This can lead to a strong magnification
of the effect of perturbations with frequencies close to resonance with the vertical one.
The “twist condition” is very weak, say. The lack of robustness of the RTBP near L,
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and Ls in front of the perturbations, for the Earth-Moon mass ratio, can also be seen
from the torsion matrix (that is, the matrix of second derivatives of the Hamiltonian
with respect to the actions). Using the Normal Form around Ls one has that the torsion
matrix is non definite and the torsion is small. The eigenvalues are 2.19621, -1.28718
and -0.02578, approximately.

Discussion and tentative explanations

We summarize first the results obtained so far. As presented in Gémez et al.®; in
the circular RTBP there is a big set of points which display stable motion around Ls.
If, as we did, we take zero initial synodic velocity, this set of points is a kind of thick
shell (which is close, but definitely departs, from part of a spherical surface). The form
of this shell can be useful to try to derive “adapted” variables to carry out analytical
studies. For the elliptic RTBP the results are not too far from the previous ones.

However the bicircular problem shows a quite different behaviour. Starting with
zero initial velocity almost no point subsist until z = 0.25. But for z near 0.50 (i.e.
orbits which start with zero velocity in synodical coordinates at a distance from the
Earth-Moon plane which is of the order of magnitude of one half of the Earth-Moon
distance) a big amount of points subsists. Near the periodic solution which replaces
Ls the behaviour is unstable. The fact that for higher values of z the motion seems
to be on a 3-D torus which in turn is moving periodically with the period of the Sun,
becomes more evident after a frequency analysis.

A part of the points which subsist in the bicircular problem do also subsist in the
real one. A few points have been also seen to subsist starting on z = 0 in adimensional
coordinates (see Gémez et al.®).

Now we present tentative explanations concerning the escape mechanism, the na-
ture of the “boundary” of the set of remaining points and the rate of escape. These
explanations are of different kind: geometrical and analytical.

Geometrical considerations. First we present these considerations for the
RTBP. It seems that the local boundary of the stable set is related to resonances.
May be these resonances are of high order (order= -5_, |k;|). Orders as 10, 12 or 17
are common in the Earth-Moon case. A complete description of the involved resonances
is a hard task and it seems hopeless to try just analytical methods. A strong numerical
effort is required to have a detailed description of those resonances.

Furthermore we have detected zones of stable motion which do not look as quasi-
periodic, but chaotic close to resonance. This means that local resonance alone is not
enough to produce escape. Let us try to explain this. The local resonance is due, in
the simplest case to the appearition of some 2-D tori possessing stable and unstable
manifolds. But to go out from the stable zone it is necessary that the stable manifold
be connected to regions far away from Ls. These connections seem to be produced
by a heteroclinic intersection with the stable manifold of some invariant object. Let
us describe this object. We recall that the point L is of saddlexcentrexcentre type.
In particular it has a 4-D centre manifold. This manifold contains a Lyapunov orbit,
halo orbits, etc. and also a Cantor set (with big fractal dimension) of 2-D tori in each
level of energy. All these objects (periodic orbits and tori) are normally hyperbolic in
their level of energy. It seems that the global stable manifold of this centre manifold
(W*(WFE,)), which is a manifold of codimension 1, acts as the effective boundary of the
stable set.
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Some numerical computations of intersections of this 5-D manifold with the set
of the zero initial velocity, have been obtained. Generically this is a surface in the
(z,y,z) variables. That surface can be plotted together with the set of stable points
from direct numerical simulations (for instance using sections through z =ctant) to see
if the suspected relation holds (see Gémez et al.5). For small values of y the coincidence,
between the 5-dimensional manifold and the boundary of the stable set, becomes more
apparent.

Now we return to the bicircular model. We have already commented on the fact
that the orbit which replaces the libration point has a hyperbolic behaviour in some
directions. A transformation which (at least formally) skips the time dependence, if this
is possible (see the third Section), produces an autonomous Hamiltonian with a fixed
point of saddle x centre x centre type instead of the points L4 or Ls. Hence, these fixed
points also have codimension 1 invariant manifolds. We suspect that the “stability”
domains are “confined” by the codimension 1 manifolds (of centre-stable and centre-
unstable type) associated to the periodic (in the bicircular model) or quasiperiodic (in
better models) orbits which take the place of Ls, L4 and Ls.

We want to remark that these “rough boundaries” look very close to a “true”
boundary when the mass parameter decreases (e.g., in the RTBP Sun-Jupiter case).
Similar objects appear in many other problems when one looks at the stability zones
around a general totally elliptic point (for instance, in symplectic maps in dimension
four). In our case they come from the centre-unstable and centre-stable manifolds
associated to the libration point L3. In a similar way, the stability zones around the
Moon, for instance, can be seen to have a rough boundary made of the centre-unstable
and centre-stable manifolds associated to the libration points L; and L, of the Earth-
Moon system. Some interesting transfers to halo orbits around the Moon or to highly
elliptic lunar orbits, can use the fact that the manifolds for the L; Sun-Earth problem
and the corresponding ones for the Ly and L, Earth-Moon problems, do intersect for
suitable epochs. But this topic is outside the scope of the present work.

Analytical considerations on the rate of escape. We shall consider the rate
of escape of the points, according to the numerical simulations described before. It is
readily seen that, for the bicircular model and the set of initial data we have taken,
most of the points do not satisfy the stability criterion even after just 1 period of the
Moon. We want to look at the ultimate rate of escape, after a transient (probably as
long as a few hundreds of lunar periods, in our case).

First we look at a model problem. Consider the vicinity of a totally elliptic point
of a Hamiltonian system and assume that the frequencies at that point satisfy a non-
resonant diophantine condition (for some “admissible” resonances we refer to Giorgilli
et al.3). Then the rate of diffusion of the points at a distance R of the fixed point is
of the form exp(—%z) (see Giorgilli et al.?) for some positive values of ¢ and «, as it
should be, in good agreement with the Nekhorosev® estimates. This is a bound on the
time derivative of the radius, where the radius, R, is the square root of the sum of the
actions (or of some positive definite linear combination of them). On the other hand we
know that some power of the radius can be considered as a measure of the perturbation
with respect to an integrable model, for instance, a Normal Form up to some degree.
As it is well know, the set of points which are not in invariant tori is, in turn, a power of
the perturbation parameter. Furthermore, we shall make the simplificative assumption
that all the points which can go away from the fixed point, do really go away and with
the maximum speed given by the previous bound on the speed of diffusion.
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Summarizing, we consider, that for some radius, Ry, there are RjdR; particles
travelling away from 0 with a velocity equal to exp(—45), where s is some positive
exponent. We consider that the particles escape from the neighbourhood of the elliptic
point when they reach a value of the radius equal to Ry. Then it is possible to compute
two values, Ry ,—1 and Ry, such that for B; between them, the escaping time is between
n — 1 and n. We define the set of points escaping in this time interval as e,, and the
set of points which remain at time n as r,. Obviously r, = r, —7_ |, €; for n > m.
After carrying out all the computations we obtain

A
=1 Tognye

where L (eventually zero) are the points which subsist for all time and A, § are positive
quantities. Of course, 3 is related to the previous exponents o and s. We must remark
that the formula above is a first approximation, more accurate formulas requiring cor-
rections of the form log(logn) to be added to the denominator. For moderate values of
n this correction can be important. Furthermore, the “experimental” values of e,, i.e.,
obtained from some numerical simulation, seem to behave in an irregular way. Hence,
one has to consider successive values of r,, for k = 1,2,3,... not too close. To have
values of n, such that the fractions

Tng ™ Tngg

Trg—r = Tng

have a limit different from 1, and has to take ngy1 = n}, for some v greater than 1.

We have tested the approach above for the results of the numerical simulations,
concerning the points which remain after n lunar revolutions in the bicircular model.
To this end we have considered all the points which remain for more than 100 lunar
revolutions (and up to 10000 revolutions due to the severe CPU time requirements). We
have taken 64 time intervals, i.e., ng = 100 and ngqs = 10000. Using the previous relation
between successive values of n; one has to take v = 1.010889. Then we have obtained
the best fit (by minimum squares, after taking logarithms in the formula above) for
L, A and B by using the values of n with indices ranging from 32 to 64. The values
obtained for the parameters are

L = 4636.3, A = 521306, 8 = 2.19437.

With those data the relative differences between the values given by the formula above
and the observed data are less than 0.0022 for almost all the points (and certainly for
the second half of the set of data), reaching 0.0211 for n = 100. We remark that, close
to n = 100 the selected values of n are too close and the irregularity in the observed
behaviour seems to give a good evidence that the initial transient should be considered
till n = 400 or n = 500. The Figure 7 displays the data r,, for £ =0,1,...,64 versus
log(logn) and the fit with the coefficients given above.

A natural question shows up. We have derived the formula for r,, under some
simplifying assumptions, for an elementary model. Why it seems to work in the present,
harder case, of the bicircular model? An heuristic explanation can be as follows. The
role played by the elliptic fixed point in the elementary model, is played by different
invariant objects, mainly invariant tori. Instead of considering points in spherical shells
which travel with some velocity, one has to consider subsets of toroidal annuli. The
estimates for the speed of diffusion must also be of the Nekhorosev type, where now
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the meaning of R is the distance to some invariant object. Then one has to average to
take into account different contributions, but if most of them are of the same kind, it
is not a surprise that the general formula be of the same type as before.

SOME ANALYTIC COMPUTATIONS AND THE
BOUNDARY OF INSTABILITY NEAR THE
SMALL PERIODIC ORBIT

In this Section we shall consider different analytic tools to obtain an approximation
of the boundary where the transition from instability to stability occurs in the bicircular
model. We start at z = 0 near the small unstable periodic solution which replaces Ls,
and then the vertical component is increased.

Normal Form

To obtain a Normal Form, suitable for the analysis in a vicinity of the small periodic
orbit, first we introduce a new action variable, pg, canonically conjugate to the Sun’s
angle 0. Then the Hamiltonian becomes

1, 2 2 l—p H ms mg, .
H = wspo + 5(pz + P, + ;) +yp- — 2py — e e res E(ysme—zcosa),
without explicit appearition of the time. For shortness we just describe the steps to be
carried out for the computation of the desired Normal Form, refering to Gémez et al.®
for the details. We shall keep the names 6 and pg for the Sun’s angle and its related
momentum through all the transformations. In fact  remains unchanged, while p,
changes because the initial Hamiltonian is not autonomous.
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1. The first step is to shift the origin of coordinates to the periodic solution. One
needs the Fourier expansion of the periodic orbit. This can be obtained by some
symbolic computation or, in a more expeditive way, by computing both the peri-
odic solution and the corresponding Fourier analysis numerically.

2. At this moment the Hamiltonian has no terms of first degree in the coordinates.
All the other terms are monomials in the space coordinates and momenta, with
coefficients depending periodically on §. First we want to make the terms of
degree 2 of the Hamiltonian, H,, independent of . This is possible by Floquet’s
Theorem. Furthermore, it is easy to show that the transformation can be chosen
to be canonical. One needs a representation of the (periodic) matrix of change
of coordinates as a trigonometric series. Again one can use either a symbolic
computation of the coefficients or a numerical Fourier analysis. In this way the
actual terms of degree 2, H,, (we keep H to denote the Hamiltonian in all the
sequence of transformations) are independent of 0.

3. The next step is to put the terms of degree 2 in some suitable “diagonal” form:
1 1
Hy = M@ Py + 502(Q) + P) + 50a(Q5 + ),

where wy and ws are close to the frequencies of the RTBP w; and w,. The frequency
w, is the one which has dissappeared. In its place the behaviour is hyperbolic with
eigenvalue ;. We denote by ); and P; for j = 1,2,3, the current variables.

4. For further use it is convenient to introduce complex coordinates by means of

x. = @tVEIL o VEIR AR
J \/§ ’ 2 \/i ’

and we put X; = Q1,Y; = P1. Then we have

7=23,

Hy(X,Y) = M X Y) + V=1wp XoYs + vV —1ws X5Y5.

5. At this point we have to take the full Hamiltonian and perform all the changes
described so far. To do this is quite convenient to put all the changes together.
One obtains an affine transformation depending periodically on the angle #. Then,
as the inverses of the distances of the particle to Earth, Moon and Sun, rpg, rpp
and rpg, respectively, can be expanded by using the recurrence of the Legendre
polynomials, it is easy to obtain the expansion of the Hamiltonian in the X; and
Y;, j = 1,2,3 variables. The H, is already in Normal Form.

6. Now we have to show how to reduce the higher order terms of the Hamiltonian.
The actual Hamiltonian is of the form

H(X,Y,0,ps) = wsps + H2(X,Y) + ZHT(X, Y, 0),

r>2

with Hy as before and

H(X,Y,0) =3 REO)XFYF,
|k|=r

where k = (kl, ‘e ,ks), kl e (kl,kg, kg) and k‘2 = (k’4, IC5, k@)
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The purpose is to obtain a (periodic) change of variables transforming this Hamil-
tonian to a simpler one. That is, we will try to eliminate the dependence with
respect to 6 and, at the same time, to cancel the maximum possible number of
monomials. Let us describe the method to be used. The main point is contained
in the following proposition, which is presented in a general setting.

Proposition 1 Let us consider the Hamiltonian

H = wsps + Hy(X,Y) + i; Hi(X,Y) + H.(X,Y,0) + H41(X,Y,0) +
where r > 2, Hy(z,y) = Ew,;(iYi (wi€C), Hi(X,Y) =" hEXF YR
H.(X,Y,0) = 5" hEO)X* Y and hk(0 Zh cexp ( ;k;—\z/_)

Let G,(X.Y, 9|kl_r 3 g (O XY bea genemtzng function defined as follows:
|k|=r
(a) If k* # k? then:
k k
)= L. R Py Zw s P VD).

(b) If k' = k? then:
k.

ks
k
g, (0) = =exp (jOV-1).
,z;e(:)] 5\/
Then, the new Hamiltonian, H', obtained from H by means of the change of
variables given by the generating function G,,

H+{HG}+ {{HG}G}+

satisfies that
r—1

H' = wspg + Ha(z,y) + Y Hi(z,y) + H(z,y) + H 1 (z,y,0) + -,

i=3
where H!(z,y) = Z(h')f$klyk2;
Nk _ Ck Zf k! 7—4 k2
(h )r - { h,rC,O ifkl — kz

and z;, y;, 7 = 1,2,3 denote the new variables after the change.

We refer to Gémez et al.® for the proof.

Remark: The value ¢; that appears in the function (G, is arbitrary. Usually it will
be selected equal to zero, unless the divisors < w, k? — k' > were small, in which
case it would be chosen equal to A% . To have the final Hamiltonian as simple as
possible, it would be desirable that all the ¢; were chosen equal to 0 (except, of
course, the ones corresponding to the resonant terms k' = £?). But doing that,
the expressions of the generating functions contain the divisors < w, k? — k! >
that can be very small and produce convergence problems. For this reason, in
practice, one can use a threshold € and select ¢, = 0 only when the corresponding
divisor is greater than . Otherwise it is chosen to be equal to hfyo. With this,
one can expect to obtain a final Hamiltonian with only a few monomials, being a
useful approximation over a relevant region of the phase space.
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The results of the computation of the Normal Form

The steps described above have been implemented and applied to the case of the
bicircular model. The computations have been done, in fact, for the periodic orbit
replacing L. They are similar for Ls. Using a threshold ¢ = 1072 for the small divisors,
we have computed the Normal Form up to degree 12 (in the cartesian coordinates, and,
hence, up to degree 6 in the actions). This expansion contains only the exactly resonant
terms (this is because there is not any small divisor less than 1072 up to order 12), and
this implies that the Normal Form is integrable.

For the analysis it is convenient to translate the final Hamiltonian to real coordi-
nates (we are interested on the behaviour of the system for real values of the coordi-
nates). We use the inverse of the change of variables used when complexifying:

i —V-ly b —V=lzi+ui
\/‘i b 1 ﬁ bl

and (as before) u; = z; and vy = y3.
We can write this Hamiltonian in an simpler form by defining the actions

i=2,3,

U;

1 1
I =uvy, Iy = -2-(u§ + v%), I; = 5(“% + Ug)

We note that the variables us and vs are rather close to z and z.

We give that Hamiltonian in Table 2, where the three first columns contain the
exponents of I, I, and I3, and the fourth one contains the corresponding coefficient.

The Normal Form obtained so far shows that, around the equilibrium point which
takes the place of the periodic orbit, the Hamiltonian behaves like a saddle x centre
x centre. The action variable [; is related to the saddle. The local formal centre
manifold is defined by I; = 0. For any couple of (small enough) positive values of I,
and I3, we obtain an approximation of a 2-D torus, the frequencies being similar to the
long period one and the vertical one of the RTBP. Going back through the changes of
variables, we obtain 3-D tori, the new frequency being the solar synodic one. Along
the full centre manifold we can compute the normal hyperbolicity. This is given by the
function A = g%(o, I3, I5). Of course, at the origin A is the coefficient of Iy, that is, A;.

We can consider the part of the centre manifold restricted to /3 = 0 having I5 as
unique parameter. This describes a family of unstable periodic orbits of the Normal
Form, corresponding to 2-D tori of the bicircular problem. We want to know the value
of I5 for which the stability changes (and so does the dimension of the centre manifold).
From Table 2 we obtain the following expression for A, now being simply A(/3):

MIs) = —0.013852+ 0.257784I5 + 2.60731112 + 50.4965813 +
+1299.415I% + 38773.19I5 + . ..

Of course, the Normal Form of the kind considered here can not be convergent when
the desired bifurcation occurs (letting aside the small divisors problems that, in fact,
prevent from convergence in any open set). We can set A(/3) = 0 with the expression
given here to obtain a critical value of I5. We find I3 = 0.030481. This gives a value
for, say vs if us = 0, of 0.246905. The observation concerning us and vs tells us that
this gives an idea of the suitable value of z if z = 0. One can try to improve a little bit
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Table 2. Hamiltonian in Normal Form around the small unstable periodic orbit of the
bicircular problem.

1 0 0 -.1385220057080626D-01 | 2 1 2 -.1864225143531067D+07
0 1 0 -.3005039252506557D+00 | 2 0 3  .5304991639454239D+05
0 0 1 .1004006523604956D+01 | 1 4 0 -.4052415718452325D+08
2 0 0 .8515077021376744D+00 | 1 3 1 -.1360849493836872D+08
11 0 -.3324999040181953D+01 | 1 2 2  .5520658628803922D+05
1 0 1 .2577837871812799D+00 | 1 1 3 -.5699313229911387D+05
0 2 0 .3270045540584760D+00 | 1 0 4  .1299414585487088D+04
0 1 1 .2307565086566667D+00 | 0 5 0 -.2448924023843400D+07
0 0 2 -4032569929542033D-02 | 0 4 1 .1501613346456005D+07
3 0 0 .1037922842258645D+03 | 0 3 2  .1711773835404635D+06
2 1 0 -4565506222871429D4+03 | 0 2 3  .1632111440703841D+04
2 0 1 .3321899325302790D+02 | 0 1 4 -.9347880155609670D+02
1 2 0 -2146275456385827D+04 | 0 0 5  .1551444240916563D+01
1 1 1 -.4784863921619558D4+02 |6 0 0  .2987999377729337D+10
1 0 2 .2607311336225566D+01 | 5 1 0 -.2411838508681229D+11
0 3 0 .3096780901433248D+02 | 5 0 1  .1782373214959049D+10
0 2 1 .2494045964589006D+01 | 4 2 0 -.8672410442035261D+12
0 1 2 -.2270782098281886D+00 |4 1 1 -.1052914435151395D+11
0 0 3 .9052424722400662D-03 | 4 0 2 .4078275712719006D+09
4 0 0 .2499474130723898D+05 | 3 3 0 -.1116963084432885D+12
3 1 0 -.1379292451759401D+06 | 3 2 1 -.2505479615606837D+11
3 0 1 .1018100448948390D+05 |3 1 2 -.1622067585088890D+10
2 2 0 -.1748183316981774D+07 |3 0 3  .4405125443309778D+08
2 1 1 -3120287556473054D+05 | 2 4 0 .1858745324134717D+13
2 0 2 .1318002728888036D+04 | 2 3 1  .5250659284283364D+11
1 3 0 .1288209631845397D+07 | 2 2 2  .4716462061283490D+09
1 2 1 .4931293498255790D+05 | 2 1 3 -.1020454848295031D+09
11 2 -1616391528463035D4+04 | 2 0 4  .2189796196165091D+07
1 0 3 .5049658419448990D+02 | 1 5 0 -.4715529712174978D+12
0 4 0 -2709111320415782D405 | 1 4 1 -.2821114699272034D+11
0 3 1 -.3353580692587518D+04 |1 3 2 .9001096107686855D+09
0 2 2 .6040532947455749D+01 | 1 2 3  .8144952535614336D+07
0 1 3 -1944360487197618D+01 |1 1 4 -.2160288537221536D+07
0 0 4 4157193549100161D-01 | 1 0 5  .3877318738835637D+05
5 0 0 .7974901100840953D+07 | 0 6 0 .8912688288853617D+10
4 1 0 -.5407213341839783D+08 | 0 5 1  .5578588877780112D+09
4 0 1 .3996634109602074D+07 | 0 4 2 -.1075748940803764D+09
3 2 0 -.1253144279500538D+10 , 0 3 3 -.3296022936390645D+07
3 1 1 -.1807321686550926D+08 | 0 2 4  .8616212602968118D+05
3 0 2 .7164000260814325D+C6 | 0 1 5 -.4191316945624839D+04
2 3 0 .8247843021482749D+09 | 0 0 6  .5876577678574162D+02
2 2 1 .1380185818563243D+08

the estimate by proceding in an heuristic way. In the formula for A(/3) one can assume
that the coeflicients of higher order increase at a given rate, similar or slightly higher
than the quotient of the coeflicients of degree 5 and 4. Assuming an increase by a
factor 30 one gets a critical value for z of 0.233358, and if the factor is 40, one obtains
0.217431. However, one can not rely very much on this result, the main problem being
the low order at which we have computed the Normal Form. To increase the order in a
substantial way seems to be a formidable task. We better proceed to produce estimates
using a different analytic approach, which can lead to a higher order expansion with a
similar computational effort.
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The equations and the algorithm for the computation of un-
stable 2-D tori

Vertical periodic orbits of the circular 3-D RTBP give rise, in the case of the
bicircular problem, to 2-D tori. One of the frequencies is the vertical one, the other
being the solar synodic frequency. The Normal Form procedure gives good results only
for small z amplitude. We proceed to the direct computation of these tori.

Let &, n, ¢ be the coordinates with respect to the Ls point in the synodic system
(for the Ly case is similar). Then the equations of motion are ("= d/dt)

PSR PO 0
& = 48 an+a€V,
" — l_ g i
"o 9

where a = (1/27/4)(1—2x) and V is the potential accounting for the higher order terms
of the RTBP plus the solar effect:

Vo= 0-wY P, (u’ﬁ’)_f—p(ﬂ%m)pnwzpn(—(1/2)5—(%/2%7) -

n>3 n>3 p
+ms Z P, <(5+ w—1/2)cos(wst) — (n+ \/§/2)sin(w5t)> R_:
as 153 R a%

In the last expression one has p? = £24724(2, R? = (E4+u—1/2)2+(n+v/3/2)*+(2,
and ag, mg, ws denote the radius of the orbit, the mass and frequency of the Sun.

We write first € = &+ &, 7 = no +7, ( = (o + (, where &, no ((o = 0) are
the coordinates of the periodic solution, with frequency wg, which replaces Ls in the
bicircular problem. Let 1 = exp(iwst). Then & = i &ookt*, n0 = Lk nook¥’*. The
coefficients are known from the numerical solution and numerical Fourier analysis. We
look for a solution of the form (with complex coefficients)

€= G ¢t = mpd gt (=Y Ginal Tk,
1,7k 1,jk 1,7k
with [ >0, j,k € Z, where ¢ = exp(iwt), « is some (vertical) amplitude, which is being
considered as a parameter, and w is an amplitude depending (vertical) frequency, of the
form w = wg +wyo? +wsot 4. ... As normalizing condition on « we choose (11,0 = 1/2,
Ciio=0,V]> 1. As the solutions are real we have £ = £, _; _; and similar relations
hold for the n and ( coefficients. Furthermore, the symmetries of the problem imply
that in &, n, the indices [ and j are even, in the ( they are odd, and in all the cases
bl<t
Let us denote by & the sum ), Eirdib*. So € = aby + a®é + ... . Similar
representations are used for 7, (. First we discuss how we have computed the terms
in ¢; (£ and 7, being zero) and then how to proceed, in a different way, to compute
€nsMnsy Gy 0 2 2.
The standing equation is (" = —( + (9/9¢)V, and this, to order 1 in «, reads
!=—0+ %V(fo, N0,0)(;. Furthermore we keep (110 = 1/2, and we have to determine

wo, where (C1jxd¥*)" = (1" [—(jwo + kws)?]. By equating terms in ¢7F in the
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previous equation for {; we get a linear system (but the problem is nonlinear because of
wo) in the (1% coefficients |j| < jmaz, 0 < k < ks As the system is homogeneous one
has to take the right value of wg to make the solution possible and some normalization,
as it has been said. There are several possible ways to solve the problem. We can get wy
from the numerical integration of the variational equations along the periodic solution
(€0,m0,0). Another possibility is to use an iterative process.
We write (¢ + (;)*+1) = 3—5 (€0,70,0)(¢1)™ and we start with the initial guess
= (1/2)¢ (notice that we had to add to the representation used the complex conjugate
and that if k = 0 then the range ofj in the representation is 0 < j < jaz). Let us

denote by c ((;5 1) the product 2 ac2 V(€0,m0,0)(¢1)®. As we want to keep (11,0 = 1/2

this gives immediately the value of w(k“ by equating the terms in ¢'2)0:
1—(w (k+1))2](1/2) = cgkl)o Then the terms Cl(kfkl , {4, k) # (1,0) are given by

(1(1?,:) (k)k/( — (it + kws)?). When ¢(*+1) is available we substitute to get the

€1,
new cg *1 and the process is repeated.

Unfortunately, that process, as it is described, fails to converge. However, it has
been seen that it has just one unstable direction. This suggests to use an extrapo-
lation method (Aitken) that then leads to convergence. The value obtained for wy is
1.0040065236..., in perfect agreement with the monodromy matrix.

When (; is available we could continue the iterative- extrapolation process. How-
ever the number of unstable directions increases when we look for (&,,7n, () (remark
that if n is even we had to solve only for (£,,7,) and if n is odd, only for (). Hence
we need a different method. We describe first the procedure for (&,,7,).

We write the equations as

, (3 o*v v
5;: - 27777, - <Z£n —an, + 0€2 (60, 77070)§n 858 (507 05 )n > =

b
n

ov — - =
= [‘a?(fn—lvﬁn—h(.n—l) &1+ 2%-1}
9 0V 0%V
4 28 — (afn + Znn + b‘zg;}'(foa 70, 0)én + 8—«52(60’ 7o, 0)%) =

b
n

[%V(fn—u’?n 15 Cnm 1) = e 1“2571 1}

where the notation £,_; means £, + i + ... " {,_; (and similar for n,() and [ ]|,
denotes the terms in a”. Notice that in the [ ]|, terms, there is a contribution in o™
when ¢, n, ( are known to order n—1 in « because of the nonlinearities in the derivatives
of V and because of the powers of o appearing in w in the time derivatives.

For (, (n odd) the procedure is similar, but keeping &, 1,0 = 0 allows the determi-
nation of w,_; when equating the terms in a"@'°.

We remark that the systems of linear equations which appear to get (&,,7,) for
n = 2,4,... have the same matrix. The same thing happens for (,, n = 3,5,... .
Furthermore the systems for different values of j are uncoupled. Some caution has to
be taken with the poorly conditioned character of the matrices, specially in the ¢, case,
j = 1. It has been found very useful, to decrease the numerical errors, to work in
quadruple precision complex variables (or simulate it, depending on the software). The
computation of the derivatives of V is shortened by the use of recurrences derived from
the ones of Legendre polynomials.
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Truncated power series results

The previous algorithm has been implemented with [,., (and hence, jin..) = 41
and kme; = 18. From the results of the second Section, we know that the previous
2-D unstable tori should be convergent up to moderate values of o (and, definitely,
less than 0.25). In fact, the coefficients of w seem to give a radius of convergence
(M, — 6. even w /™) close to 0.219. If, instead, we consider the norm of ¢, as [&n] =
3k [€n k|, we can also get an idea of the radius of convergence of the expansions with
respect to . The same is true for the |n,[, |(s]. All of them give essentially the same
radius of convergence as w. Notice that for n large the numerical errors propagated
by the successive solutions at the previous orders, start to show up, giving a slightly
irregular behavior of the components (see Table 3).

A test has been passed as follows. Consider a value of @ and look at the approx-
imate quasiperiodic solution provided by the formulas above. For a given value of ¢
one can compute &,1,(, & 0", (', €, 9", (". Then, from the positions and velocities, one
obtains the acceleration from the direct equations of motion for the bicircular problem.
The difference with respect to the values computed from the series is the residual accel-
eration. Table 4 shows some results for a time span of 100 adimensional units with time
step 0.1. There is a remarkable agreement till « = 0.16 and still acceptable till o = 0.2.
Figures 8 and 9 show the (z,z) and (z,y) projections of the analytic orbits computed
for @ = 0.10 and o = 0.18. In both Figures we plot just one dot for each value of ¢,
these values being of the form k x 0.1 for £ = 0,1,...,100000, without joining succes-
sive points in the orbit. One can suspect that in the case of Figure 9 we are close to a
resonance. The frequencies turn out to be ws = 0.9251959855 and w, = 1.0038778341,
not too close to produce a low order resonance. The behaviour seen in the Figure 9 is
due to the time interval. Indeed, 18 X wgs X 0.1 +46 X w, X 0.1 — 27 is less than 3 x 1078.
Taking 1.1 x 10° points (with the same time step) shows a very good equidistribution
of points.

Discussion and Conclusions

Invariant 2-D unstable tori have been found by a symbolic manipulation imple-
mentation of a version of the Lindstedt-Poincaré method. By a suitable modification
and an additional computational effort, one can compute also 3-D unstable tori. The
frequency to be added is equivalent to the long period frequency of the RTBP. We
also recall that the action of the Sun produces an increase of the vertical frequency
(whose limit is 1 in the RTBP when the vertical amplitudes goes to zero). However, the
behaviour of the “vertical” frequency when the amplitude increases is preserved. An
increase of the amplitude produces a reduction of the frequency. The boundary of con-
vergence is associated to a bifurcation (as was already outlined in the previous Section):
The tori lose their hyperbolic character, becoming stable (in some weak sense). They
can be considered as “big” KAM tori of the bicircular problem. As sketched in the
second Section, the lose of stability, for z amplitudes around 0.22, is due to a resonance
between the “short period frequency” and the solar one.

The existence of stable zones for the bicircular model (and, in fact for the real
model, this one being a slight perturbation of the previous one, in the region of the
study) opens the way to a new series of space missions. Indeed, the stability of the
orbits implies that no station keeping is needed for the orbit dynamics. Furthermore is
has been seen that it is relatively cheap to reach those zones from a GTO or a parking
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Table 3. For the variables w, £, 7 and ¢ the non zero norms of the coefficients for
orders of a from 16 up to 41 are given, and also the estimated radii of convergence.

w £
16 .125580D+06 .214260D+00 || 16 .650326D+08 .226198D+00
18 .270934D+07 .215292D+00 || 18 .127693D+10 .225673D+00
20 .580404D+08 .216056D+00 || 20 .251957D+11 .225123D+00
22 .123691D+10 .216618D+00 || 22 .499663D+12 .224556D+00
24  .262616D+11 .217024D+00 || 24 .996014D+13 .223978D-+00
26 .556124D+12 .217307D+00 || 26 .199577D+15 .223396D-+00
28 .117566D+14 .217492D+00 || 28 .401983D+16 .222818D+00
30 .248292D+15 .217600D+00 || 30 .813808D+17 .222250D+00
32 .524165D+16 .217644D+00 || 32 .165577D+19 .221697D+00
34 .110661D+18 .217639D+00 || 34 .338509D+20 .221164D+00
36 .233726D+19 .217592D+00 || 36 .695257D+21 .220654D-+00
38 .494006D+20 .217514D+00 || 38 .143426D+23 .220170D+00
40 .104511D+22 .217412D+00 || 40 .297108D+24 .219713D+00
7 ¢
16 .471914D+08 .226247D+00 || 17 .547271D+08 .226223D+00
18 .926194D+09 .225725D+00 || 19 .107433D+10 .225699D-+00
20 .182662D+11 .225178D+00 || 21 .211934D+11 .225148D+00
22 .362062D+12 .224612D+00 || 23 .420179D+12 .224586D+00
24 .721361D+13 .224034D+00 || 25 .837397D+13 .224001D+00
26 .144470D+15 .223453D+00 || 27 .167751D+15 .223425D+00
28 .290843D+16 .222874D+00 || 29 .337852D+16 .222828D-+00
30 .588521D+17 .222304D+00 || 31 .683700D+17 .222295D+00
32 .119684D+19 .221749D+00 || 33 .139109D+19 .221694D-+00
34 .244575D+20 .221213D+00 || 35 .284283D+20 .221208D-+00
36 .502114D+21 .220701D+00 || 37 .583760D+21 .220677D+00
38 .103540D+23 .220214D+00 || 39 .120527D+23 .220077D+00
40 .214405D+24 .219754D+00 || 41 .249632D+24 .219731D-+00

Table 4. Test of errors for the unstable 2-tori obtained by the Lindstedt-Poincaré

method. The first column gives the amplitude.

residual accelerations in z, y and z, respectively.

11
12
13
.14
.15
.16
17
18
.19
.20
21

.118048D—13
.152708D—-13
.148928D—-12
.337156D-11
.669266D—10
.112226D—-08
.162949D—-07
.210096D—-06
.246850D—-05
.272526D—-04
.292881D—-03

.124831D-13
.175892D—13
.204631D—12
.490744D—-11
.957271D-10
.156734D—-08
.221698D—-07
.277842D—06
.319889D—-05
.352209D—-04
.380884D—-03

.181799D—14
.262290D—-14
.291295D-13
.710931D-12
.148328D-10
.259666D—09
.391360D—08
.532121D-07
.660951D—06
.769544D—-05
.873664D—-04

1he other three columns give the
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Figure 8. Projections (z,z) (top) and (z,y) (bottom) of the 2-torus of 2 amplitude equal
to 0.10. The final time is 10000 units (recall 27 is equivalent to the lunar period). The time
step is 0.1 time units. The distance unit is the Earth-Moon distance.
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Figure 9. Projections (z, 2) (top) and (z,y) (bottom) of the 2-torus of z amplitude equal to
0.18. The final time is 10000 units. All the units as in the previous Figure.
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orbit around the Earth (see Gomez et al.®). Possible space missions using this kind of
orbits are: Parking orbits for micro spacecrafts, ready to travel to asteroids approaching
the Earth-Moon system (possibly with a lunar gravity assisted manoeuvre); Deep space
astronomy, close enough to the Earth to realize easely the observational commands, and
far enough to have low noise level.

Acknowledgements

The authors have been supported by a CICYT Grant ESP91-0403 from the Spanish
Ministery of Education. They are indebted to the staff of ESOC, specially to Dr. J.
Rodriguez Canabal, for his encouragement during the realization of the ESOC Contract
9711/91/D/IM(SC), where applications of the present work can be found in detail.

REFERENCES

1. V.I. Arnol’d and A. Avez. “Problemes Ergodiques de la Mécanique Classique,”
Gauthier-Villars, Paris (1967).

2. E. Fontich and C. Simd,The splitting of separatrices for analytic diffeomorphisms,
Ergodic Theory and Dynamical Systems 10, 295-318 (1990).

3. A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simé, Effective stability
for a Hamiltonian system near an elliptic equilibrium point, with an application to
the restricted three body problem, J. Differential Equations 77, 167-198 (1989).

4. G. Gémez, J. Llibre, R. Martinez and C. Simé. “Study on Orbits near the Trian-
gular Libration Points in the Perturbed Restricted Three Body Problem,” ESOC
Contract 6139/84/D/JS(SC), Final Report (1987).

5. G. Gémez, A. Jorba, J. Masdemont and C. Simé. “Study of Poincaré Maps for Or-
bits near Lagrangian Points,” ESOC Contract 9711/91/D/IM(SC), Final Report
(1993).

6. J. Laskar, A numerical experiment on the chaotic behaviour of the solar system,

Nature 338, 237-238 (1989).

7. V.F. Lazutkin, I.G. Schachmanski and M.B. Tabanov, Splitting of separatrices for
standard and semistandard mappings, Physica D40, 235-248 (1989).

8. N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly-
integrable Hamiltonian systems, Russ. Math. Surveys 32, No 6, 1-65 (1977).

9. C. Simd, Averaging under fast quasiperiodic forcing, University of Barcelona Pre-

print (1993).

370




