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Outline

• A Taylor N-body integrator.

• JPL model.

• Restricted (N + 1)–body problems: propagation of a region of the phase

space.

Applications:

• Apophis;

• probe accelerated by a constant low–thrust.
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N–body model

Motion of the Solar System described by the N–body model:

Ẍi =
11

∑

j=1, j 6=i

Gmj(Xj −Xi)

r3
ij

, i = 1, . . . , 11. (1)

• We consider the mutual gravitational attraction of 9 planets, Sun and Moon.

• Units adopted: AU, kg, day.

• Are we neglecting effects which may be relevant?
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N–body integrator

We take advantage of:

• the conservation of the centre of mass to compute the orbit of the Sun and

thus keep fixed the centre of mass at the origin;

• the symmetry of the problem to save computational time.

We performed simulations up to 1000000 years to check the accuracy

obtained:

• we cannot distinguish between the variation obtained for the first integrals

and a random walk;

• only source of error is the round off.
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Variation of H
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Variation of hx
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Variation of hy
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Variation of hz
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JPL Solar System Ephemerides

We compare the results given by our N – body integrator with the JPL

ephemerides DE405.

Ephemeris: tabulation of computed positions and velocities (and/or derived

quantities) of an orbiting body at specific times.

JPL Ephemerides DE405:

• Files which store information to derive position of Sun, Earth, Moon and the

planets.

• Information stored as coefficients of interpolatory polynomials.

• DE405 defined from December 9, 1599 to February 1, 2200.

• J2000 coordinates.
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J2000 coordinates

J2000 Reference system:

• origin at the Solar System barycentre;

• XY plane parallel to the mean Earth Equatorial plane;

• Z axis orthogonal to this plane;

• X axis points to the vernal point;

• Y axis to have a positive oriented reference system.

All these references are taken at 2000.0 (Jan 1, 2000, at 12:00 UT).
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The JPL model

Most significative effects considered in DE405:

• point mass interactions among Moon, planets and Sun;

• general relativity;

• Newtonian perturbations of selected asteroids;

• action upon the shape of the Earth from Moon and Sun;

=⇒
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The JPL model

• action upon the shape of the Moon from Earth and Sun;

• physical libration of the Moon, modelled as a solid body with tidal and

rotational distortion, including both elastic and dissipational effects;

• the effect upon the Moon’s motion caused by tides raised upon the Earth

by Moon and Sun.
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The JPL Horizons System

JPL Horizons system to find initial conditions for any body in the Solar System:

http://ssd.jpl.nasa.gov/?horizons
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N – body model vs JPL ephemerides

Main discrepancies due to:

• N–body model does not consider relativistic correction for the orbit of

Mercury;

• N–body model does not consider non–sphericity of the Earth for the

motion of the Moon.

Effects:

• relativistic correction to the precession of perihelion of Mercury,

∆ω ≈ 42.978′′ per century.

• J2 correction to the precession of perigee of the Moon,

∆ω ≈ −6 × 10−5 rad per year.
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N – body model vs JPL ephemerides

Mercury:
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Apophis

Restricted (N + 1)–body problem: massless particle affected by 9 planets,

Sun and Moon.

Apophis: NEO exhibiting a close approach with the Earth on April 13, 2029.

e 0.191

i 3.331 deg

a 0.922 AU

P 323.5d
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Apophis: numerical integration

Apophis’ equation of motion:

Ẍa =
11

∑

j=1

Gmj(Xj −Xa)

r3
ja

. (2)

We propose an alternative method to integrate it:

• JPL ephemerides for the main bodies.

• Taylor integrator for Apophis: the step of integration is small enough to

compute the jet for the planets as affected just by the mutual gravitational

attraction.
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Apophis: numerical integration

Earth–Apophis and Moon–Apophis distance (km) as a function of time (day),

starting from September 1, 2006.
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Apophis: numerical integration

video
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Apophis: propagation of a mesh of points

First way to propagate a region of the phase space is to propagate a mesh of

points (box).

• Initial condition: uncertainty only in position; 7 km long on the tangent to

the orbit direction and 3 km long on two other given orthogonal directions.

• The box stretches out along the direction of the orbit as time goes by.
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Apophis: propagation of a mesh of points

Recent observations give:

• σa ≈ 9.6 × 10−9 AU;

• σM ≈ 1.08 × 10−6 degrees.

It follows:

• uncertainty of about 1.4 km for the position;

(9.6 × 10−9 × 1.5 × 108)

• uncertainty of about 2.6 km along the velocity’s direction.

(1.08 × 10−6 ×
π

180
× 1.5 × 108)
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Apophis: propagation of a mesh of points

First approximation of the motion of Apophis given by the two–body problem

approximation.

Kepler’s third law n2a3 = µ gives an estimate of the propagation of an

uncertainty in position:

2na3∆n+ 3a2n2∆a = 0.

It follows that any initial condition associated with ai = a0 + ∆a = 1 + ∆a

will be characterised by

ni = n0 + ∆n = 1 −
3

2
∆a.

After m revolutions of the nominal orbit, the i–orbit will be displaced by an

angle

∆ψ = −
3

2
mT0∆a = −3mπ∆a ≈ −10m∆a.

– p.22/40



Apophis: propagation of a mesh of points

Earth–box distance (km) as a function of time (day) starting from September 1,

2006.
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Apophis: variational equations

We considered first and second order variational equations to approximate the

box along time.

• They provide accurate information on the evolution over time of close initial

conditions with a lower computational effort.

• It would be possible to consider higher order variational equations to obtain

a even better description of the dynamics.
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Apophis: variational equations

Let us consider

ẋ = f(x), x ∈ U ⊂ R
n, (3)

and let φt(x) be the solution of (??) with φ0(x) = x.

If f is of class Cr, then φ is also of class Cr and thus:

φt(x+ h) = φt(x) +
∂φt(x)

∂x
h+

1

2
hT ∂

2φt(x)

∂x2
h+ . . . (4)

The variational eqns of order j are the differential eqns satisfied by
∂jφt(x)

∂xj .
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Apophis: variational equations

First variational equations:

d

dt

∂φt(x)

∂x
= Df(φt(x))

∂φt(x)

∂x
. (5)

Second variational equations:

d

dt

∂2φt(x)

∂x2
=

(∂φt(x)

∂x

)T

D2f(φt(x))
(∂φt(x)

∂x

)

+Df(φt(x))
∂2φt(x)

∂x2
.

(6)

Initial conditions:

∂φt(x)

∂x

∣

∣

∣

t=0
= I,

∂2φt(x)

∂x2

∣

∣

∣

t=0
= 0.
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Apophis: variational equations

In components, second variational equations read:

d

dt
wk,ij =

n
∑

q,p=1

∂2fwk

∂wq∂wp

wq,iwp,j +
n

∑

q=1

∂fwk

∂wq

wq,ij,

where wk denotes the k–component of φt(x).

In our case, we can reduce the number of equations:

• first variational eqns from 36 to 18;

• second variational eqns from 216 to 63.
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Apophis: variational equations

We take an orthonormal basis composed by the tangent to the orbit vector and

by two vectors orthogonal to this one and we consider how an uncertainty in

position is reflected along these directions.

We apply the variational terms of first and second order to this orthonormal

basis at each step of integration.

Recall:

φt(x+ h) = φt(x) +
∂φt(x)

∂x
h+

1

2
hT ∂

2φt(x)

∂x2
h+ . . .
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Apophis: variational equations

The results show that we need the quadratic approximation given by the

second variational equations to describe the first estimated close approach of

Apophis with the Earth (Friday 13 April 2029).

After that, the dynamics becomes very sensitive to the initial conditions and

there exists an instant of time from which it is no longer possible to predict the

behaviour of the box with this approach.
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Apophis: variational equations
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Computational time

• CPU computational time with Intel Xeon CPU 2.66GHz.

• Numerical integration from 1 September 2006 to 13 April 2029.

Equations CPU time (s)

vector field 1.169

first variational 1.572

second variational 11.129
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Probe

Transfer of a probe from the Earth to the Moon.

Forces considered:

• gravitational attraction of 9 planets, Sun and Moon;

• constant low–thrust in a given direction.
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Low thrust: numerical integration

Ẍsat =
11

∑

j=1

Gmj(Xj −Xsat)

r3
jsat

+ FT

Vsat − Vc

‖Vsat − Vc‖
, (7)

where Vc ∈ R
3 is the velocity of the body w.r.t. which we are

accelerating/braking and FT is the thrust magnitude.

Observed significant loss of digits:

• Initial condition w.r.t. Solar System Barycenter, far from Earth – Moon

neighbourhood.

• Initial error grows in time because of the dynamics.
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Low thrust: numerical integration

(??) faces the problem in an inertial reference system with origin at the Solar

System Barycentre, but the motion of the spacecraft takes place in the

Earth–Moon neighbourhood. This means that we are dealing with an initial

condition which keeps few information about the dynamics we are interested

in.

On the other hand, the extra force introduced is not as big as to gain altitude
soon and thus the spacecraft performs thousands of revolutions before escap-
ing from the Earth.
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Low thrust: numerical integration

New coordinates:

Sun

Moon

Earth

Low − Thrust

If Y = Xsat −Xc and V Y = Vsat − Vc, then

Ÿ =
11

∑

j=1

Gmj(Xj −Xc − Y )

r3
jcY

− Ẍc + FT

V Y

‖V Y ‖
. (8)

Planets’ data still from JPL ephemerides.
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Low thrust: numerical integration

Eq. relative error absolute error

(??) 1.56e-9 1.53e-9

(??) 7.16e-13 7.e-13

Eq. relative error absolute error

(??) 1.03e-5 1.41e-7

(??) 1.45e-9 2.e-11

Table 1: Relative and absolute error in position (up) and velocity (down) obtained by integrating

equations (??) and (??) starting from a same initial condition up to 730.5 days. The errors refer

to the results obtained in double precision and considering the solution obtained with quadruple

precision as the exact one.
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Low thrust: propagation of a region

We apply the same concepts explained for Apophis: propagation of a cloud of

initial conditions and usage of first and second order variational equations.

• Initial condition: uncertainty only in position; 30 cm in the three directions.

• The box stretches out along the direction of the orbit as time goes by.

• Quadratic approximation needed according to the distance to a main body

and to the time integrated.
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Low thrust: propagation of a region
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Low thrust: considerations

The instant of performing the manoeuvre becomes a critical aspect in the

propagation of a region of the phase space.

• We can decide to fix the same value of time for each point in the box: the

goal of the mission might not be achieved.

• We can decide to set another requirement to be fulfilled: it would mean to

consider as many missions as the points in the box.
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