Part I: Numerical Fourier analysis of quasi—periodic
functions

I.1 The procedure

f(t) ~Qs(t A w)
DFT(f) = DFT(Qf)

I.2 Error estimation

e Applying the above procedure, the system to
be solved can be written as

9(y + Ay) = b+ Ab.

e T he exact frequencies and amplitudes would
be obtained if Ab = 0.

e A bound for the error is given by
[Ay|l < IDg(y) I Ab]l.
o We will bound ||Dg(y)~1|| and ||Ab]|.

1.3 Applications

e Academic example, to show the procedure and
the accuracy of the error estimation

e Solar System models:

SS = RTBP + Perturbations

|l (Fourier analysis)
SS = RTBP + Perturbations(wi, w2, ...)



Part II: The neighborhood of the collinear equi-
librium points in the RTBP

Final goal: To get Poincaré section representations
of the flow around L1 3,.
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Tools: Parallel algorithms for the computation of dif-
ferent kinds of families of periodic orbits and invariant
tori.



I.1 Refined Fourier analysis procedure

Given a real analytic quasi—periodic function, f(t),
at N equally—spaced points on an interval [0, T],

T

WL oy =1—,

{f( l)}z_o l N

the goal is to compute a trigonometric approximation

Ny

Q1) = A5+ > (A cos(2w%t) + A sin(27r%t).

=1

The Discrete Fourier Transform (DFT) of f is defined
through

f(tl)——(CfTN(O)+ fTN( )COS( gt))-l—
N/fjl(cfmw cos(T) + sy () sin(ZT2),

wherej 1

cronG) = %Jl: (tl)cos(Qw%l), j:O,...,g,

sion() = %le(tl)sin(Qw%l), j=1,...,g—1.

|
o



Algorithm

. Set an starting thresold for collecting peaks of
the modulus of the DFT of f(t).

. Find initial approximations of the frequencies,
starting from the peaks of the DFT greater than
the thresold.

. Find the amplitudes of the frequencies found in
the previous step (DFT(Qs) = DFT(f)).

. Simultaneously refine ALL the frequencies and
amplitudes of the current quasi—periodic approx-
imation of f.

. Perform a DFT of the input signal minus the
current quasi—periodic approximation obtained
in step 4, decrease the thresold and go back to
step 2.



Equations of step 3

We ask DFT(Qs) = DFT(f), being

Ny

Qr(t) = A5+ Y (4] cos(27r%t) + A3 sin(27r%t).

=1

The system of equations to be solved is linear and
(14 2Nf) x (14 2Nf):

Ny
Agey v (0) + > (AfEr(0) + Ajc) v (0)) = ¢y y(0)
=1
f
At () ) A G) + AT () = ()
=1
f
> (AL + AT () = s ()
=1
where j = [, 4+ 0.5], I =1 + Ny, and
”h(j) = ' v,
CV;,N(J) — C;hn(ﬂ)7T’N(j)> EZ}?N(]) — S;hn(ﬂ)’T’N(j)
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Equations for step 4

The system of equations is a (1 4+ 3Ny) x (1 + 3Ny)
non—linear system which is solved by Newton’s method:

Ny

Ageltn x(0) + ) (AL (0) + AT (0))

=1

!
Ageltn v G+ (AT GO + AT ()

=1

> (AN G + AT ()

f
Agesty NG + ) (AT G + A s v GD)

=1

being ji = [vi + 0.5], j;" # ji.lj;" — jil = 1.

C??T,N(O)

¢y (i)

sy (i)

fTN(J+)



An example:
f(t) = cos(2m0.23¢t) — L sin(27w0.27t) + sin(2mw0.37t).

1. Starting thresold: 0.8
modulus of the DFT of the input data:

1 T T T T T T T T T

0.8 r
0.6

0.4 r
02
0 1 1 1 1 1

0 0.05 0.1 015 02 025 03 035 04 045 05

= peaks j =61, 5 = 189.
2. Approximation of frequencies (Laskar's method):

peak 61 = frequency 0.11999948789
peak 189 = frequency 0.36999965075

3. Computation of amplitudes from known frequencies:
Frequency Cosine amplitude Sine amplitude
0.119999487888 0.999907666367 -0.000823654552
0.369999650752 0.000561727398 0.999937098420

modulus of the DFT of the residual

0.0003

0.0002 -

0.0001 F A/\ /\R
O 1 1 1 1 1 1 1 1

0 005 01 015 02 025 03 035 04 045 05

4. Iterative refinement:
Frequency Cosine amplitude Sine amplitude

0.120000000003 1.000000000686  0.000000005106
0.369999999995 0.000000006660  1.000000000297
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5. modulus of the DFT of input signal minus step 4:

0.0003

0.0002 -
0.0001
0 1

0 0.05

1 T T

01 015 02 025 03

035 04 045 05

0.8 r
0.6
0.4
0.2

0

\

0 0.05 0.1

New threshold: 0.2

015 02 025 03

035 04 045 05

2. Approximation of frequencies (Laskar’'s method):
peak 138 = frequency 0.2699999999988849

3. Amplitudes from known frequencies:

Frequency

0.120000000003
0.369999999995
0.269999999999

Cosine amplitude
1.000000000586
0.000000007480

-0.000000000897

4. Iterative refinement:

Frequency

0.12000000000000
0.37000000000000
0.27000000000000

modulus of the DFT

5e-14 T

Cosine amplitude
0.99999999999999

-0.00000000000001
0.00000000000000

of the residual:

Sine amplitude
0.000000005245
0.999999999164

-0.499999999946

Sine amplitude

-0.00000000000008
1.00000000000000

-0.50000000000000

4e-14
3e-14
2e-14
1e-14

o

OMJWAAA\A

0.05 01 015 02 025

0.

3 0 045 0

0.35 4 .5

7-b



I.2 Error estimation

We assume

e f is real analytic and quasi—periodic,

f(t) = AG+ ) (Af cos(2mkwt) + Aj sin(2rkwt)),

kezm
kw>0

and its Fourier coefficients a; satisfy the Cauchy
estimates

VA2 + (A2 < ceH v e zm,

The frequency vector w = (w1,...wn) Satisfies a
Diophantine condition

D
|kw| > —,
K|

with D, 7 > 0.

e We determine the frequencies {Vz}f\ﬁl of order
<ro—1 W~ Tkw, 1 < |k|] < ro—1) and the

corresponding amplitudes {Af}f\ﬁo, {A7 fV:fl.



Strategy

Let us denote,

fro(t) = A5+ > (Af cos(2rkwt) + Aj sin(2rkwt)).
|k|<ro—1
kw>0
The system of equations used for simultaneous im-

provement of frequencies and amplitudes can be writ-
ten as

Ac+§ (AT (0) + AT (@) = e (O F €y (0
=1
Ny
Agcrllh(ji) + E (AZCEZ;?N(.%) + A?CZZI”LN(]l)) = C;lj;,T,N<ji) + C;L}ifm’T’N(ji)
=1
Ny
E (Alcgzl}j]v(yl)+A;SZ;?N(]%)) = f TN(jl)-i_Sf fro TN(jl)
=1
Ny
A6c52h<y+>+§ (Aot G 4+ Ales, v GH) = o o G e, 1 G-
gy + Ay) b Ab

We would get the exact frequencies and amplitudes
if Ab=0.

The error in frequencies and amplitudes is given,
in the first order approximation, by

1Ayl S 1Dg(y) ™ ool Db co-
We will obtain bounds for ||Dg(y) 1|« and ||Ab||.



Bound for || Dg(y) 1|eo

Preliminaries
We can write
2 Boi ... DBon,
. O Bi1 ... Bin
0] BNf,l “e BNf,Nf

We split M = Mp + My,

2 0 - 0 O Boi1 ... Bopn,
e I S B
0 0 BNf,Nf 0 BNf,l 0

The idea is to obtain bounds for |[M;}|, ||[Mol|l and
use

1 1Mp]
T 1 IMpHIMol|

|(Mp + Mo)~

The components B;; of M (i # 0) have the following
general aspect

Asoe  (Gi) + A;ocy (i) v (i)
Acagzh’]\f(jz) + Asas (]z) _nhN(JZ) NnhN(jZ)

Aes™ G + 405N G iy GBI G
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First simplification: M — M

The first simplification consists in the use of the Trun-
cated Continuous Fourier Tansform (C,S),

1 T n —ionl 1 n . - on .
5| @OrOe T = 2 0) +isp0)
instead of the DFT (c,s).

We define CS™(j) as in the discrete case.

In this way,

M = Mp—+ Mo
| (substitute DFT by TCFT)
M = Mp+ Mp

Remark 1: The difference between ¢s and CS can be
bounded from a discrete version of Poisson’s sum-
mation formula:

oo
Fra@@) = D Cfn

l=——00

JHINy

Remark 2: Explicit formulae for the components of
M can be obtained.
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Formulae for the components of M

The components of the matrix M are given by

sin (27 (v —j))

S, N sin (2m(—v — j))
C'G) = Ku ol =) + e ),
o he(v=3) (v —3)
ac,"(j) = K ( b= ) b (=) ),
where
K, = (—=1)"(ny!)?
21
bn(@) = ] @+0
l=—ny
h(x) 2m cos(2wx) — rp, (x) sin(2wx),

hi(x) 2nsin(2rx) — ry, () (1 — cos(2nz)),

f‘: 1 _ Y, (@)
e+l Yn ()

l=—nh

7n, (T)
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Second simplification: M — 9

The second simplification consist in eliminating the
second summands of the expressions of the compo-
nents of M as given in the previous lemma.

In this way,

M = Mp+ Mp
| (remove the second summands)

M = Mp+ Mo

Remark 1: Tbg difference between the components
of M and 9 (CS and @) can be bounded.

Remark 2: the expression for s only depends on the
difference v — 3.
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Bound for M)«

Since Mp is diagonal, to compute 97(51 we only need
to invert its diagonal blocks ‘B;;

Ao\ (5i) + A0 (i) E:;';Nm g’;ﬁgN(g‘i)
ASOE™ \ (5i) + A050" \ () s () s, (i)
Afac_s,’f”zv(ﬁ) T AS&CSZhN(Jz ) ¢s, N(]z—i_) CSV N(]z )
For that, we first show that, if (A¢, AF) # (0,0), B,
iS invertible either setting ¢s = ¢ Oor ¢s = s.

The actual bounds of ‘B;; are computed numerically
for each nj, by first minimizing w.r.t. ¢s = ¢,5 and
maximizing w.r.t. 8 € [0,2x], |v — j|] < 1/2 the supre-
mum norm of

=1 . T . ; = ; R ) -1
acm,N(]i) cos6 + a,EVz,N(JZ) sin¢ cViaN(']i) E,V""N(Ji)
8§”h'N(jz) cosf + 9s)" y(si)sind 5 \(i) 8, (i)

o (i) cosf + acsly (4 sin 6 CS"’N(«% ) G

We call G,, the obtained quantity. Some values are

np 0 1 2 3
Gn, | 4.84 | 8.83 | 13.3 | 17.7

In this way, we get

||(9'RD) 1” < maX(Amm> 1)Gnh7

being
A = ((AD2 + (4212
Amz’n = i:r?Lr}Vf{Al, e ,ANf}
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Bounds for | M~ 1|«

The computation of the bound for ||Dg(y)~1|| is com-
pleted by following the following scheme:

MM < max(A,L, 1)Gy,

min?

U
. 195
MBI < m yrrp
1 — [, l[9%p — Mo
4
_ IMB
MM < T
1 = [|[MpH[lMp — Mp]
4 [[Moll < Mol + (1Mo — Mol + [|[Mo — Mol
_ M5
M| 3

T 1 MpHlMol
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Bound for ||Ab||x
We have

—5“6' Nnh, oA
&b < 2C rpeajx; e " Mn (Thw — 7)),

where |7L§§;| is the envelope displayed below (N = 16,
ny = 0).

1
09+
08
0.7
06
05 |
04t |
03/
|
0; R R AR A avaravayi AR B IR B A A A A A avaa A AR I
-16 12 8 -4 0 4 8 12 16

The Diophantine condition gives a lower bound for
| Tkw — j|:

TD
Tho —j] > —1
(k] + 517

For |k| small, |h%(Tkw — 5)| < 1.

After some order r,, |7@§{}L(Tkw — j)| may approach 1.
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Therefore,

r.—1 0o
Abl| < 2C(max e Ok R (Thw—7) |[+max eIkl
|Ab|| < (jEJ k|§=:7“ [h( )l na; k; )

where:

e T he first term is bounded by replacing the DFT
by the TCFT. This introduces an additional er-
ror term due to this approximation.

e All the sums are reduced to sums of the form
>, 3% %, which are bounded by incomplete Gamma
functions.
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Final theorem
Under the stated hypothesis, the error in frequencies
and amplitudes can be bounded as
Ayl S 1M (| Ab],

where
| M|
M| Mol

M| <
1|

and
ol < 20 (

Ny
V20> A)(r + IN(GiSsy — 1+ 1) — IN(riyr — 2 — i) + 2Ny

=1

14-2n
((QTZ;?Q)T —-1- Tlh,) 4

Ny
\/5(2 A (m + In([Vmin] + na) — IN([min] — 1 —nn)) + 2Ny

=1

+ ([len] _ nh)1+2nh

Ny
4(\/5(2 A’)(W+|”(N_QO+”h)_|n(N—Qo—1—nh))—|—2Nf)(1+$)

=1

+
(N _ QO _ nh)l+2nh
and
_ MG _ [Russl _ Gy,
M 1 < D , M 1 < D , m 1 < h ,
N VT M P e s B |97 < (LA
being
4(nh!)2(\/EAmaz(w+|n(N—Qo+nh)—|n(N—QO—1—nh))+2)(1+ﬁ)
€1 - W(N—Qo—nh)l_'_th
(np!)2 (\/§Amam(7r—i—ln(2[umm]+nh)—|n(2[umm]—nh—1)) + 2)
g = y
2 W(Q[Vmin]—nh)l_'_th
Q = T(2ro—2)|wle~+1,

17
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Error estimates:
Final theorem (cont.)

As for ||Ab|,
2+
o <

m—1

(n1)?etto DN (ml—l) (2 —ro+1)™ G (2r0— 1, o7 —2, I+ 7(142n4), 5)

=0

X{r«>ro} E,m(TD)+2m,

2(n1)2e’2 (1 4+ s2)Gr(ro+2,r— 142, m—1,6)

2np,

(N — 2 — ny)1+2m

+ 65%Goo(r*+%am_l75))a

+ X{rs>ro}

where
Q = Tli+ro—2)||wllec+1
TD :
e = max(ro,min([( — )"~ ro+2].
max((CL2) T2 4+ 1+ ny, 2(1 + )
N—-—1—ny
- " 1
et D)
_ _ 142n
E* = (Z* 11—}—2nh) h)
z, Ok
TD
Zx = )
(T*+TO_2)T

In the above formulas, X{conditiomn equals 1 if condi-
tion is true and O otherwise.
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I.3 Applications
“Academic”’ example

We consider the quasi—periodic function
sin(27rw1t —+ g01) Sin(Qﬂ'th —+ gOQ)

t) = ‘ '
foo(t) 1 —-0.9cos(2rwit 4+ 1) 1 — 0.9 cos(2mwat + ¢2)

Explicit formulae for frequencies and amplitudes can
be obtained, as well as the Cauchy estimates and
the Diophantine condition.

We have performed Fourier analysis of this function
for several T, N.

pn=0.9

log10(error)

INNISTE T YN SICTREN

log10(error)

log2(T/N)

Solid line: actual error. Dashed line: estimated error.
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Numerical test of the bounds obtained:
actual error vs. predicted error

In the preceeding slide, the difference between the
error predicted and the actual error is big because
of the Diophantine condition, which is reached for
for very few orders |k|.

The points in the plot below represent min;—const. |kw|
for |k| = 1+ 1000. The curve represents the values of
the Diophantine condition 0.85355/|k]|.

10 T T T T T T T T T

1

0.1

min|ke|

0.01 |

0.001

0.0001

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Ik|

If we substitute the first term of ||Ab|| by what is
obtained just before the use of the Diophantine
condition, the following figure is obtained.

1=0.9 1=0.9

log10(error)

“
/
/ “
/ / “
/ o S
Y / / / “
/ / / / S
/ / / / ;)
/ / / / /
/ / / /
/ /
= /
= P

9 10

log10(error)

>
_9'8
710° 1og2(T/N) 14

121

757 >
log2(T)~ 14 1535 77512

1 1 1 1 1 1
13 42 41 10 9 8 7 -6 5
log2(T/N)

Solid line: actual error. Dashed line: estimated error.
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