
Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Parallel computations and memory management

M. Gastineau

IMCCE - Observatoire de Paris - CNRS UMR8028
77, avenue Denfert Rochereau

75014 PARIS
FRANCE

gastineau@imcce.fr

http://www.imcce.fr/Equipes/ASD/trip/trip.html
http://www.imcce.fr/Equipes/ASD/trip/trip.html


Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Contents
Parallel computations

• shared memory

• distributed computations

Memory management

• garbage collection

• reference couting

• explicit memory management



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Shared memory systems
Split the work on several processors 

All threads will share same memory space ➪ no copy !

Processor 0 Processor 1 Processor 2 Processor 3

Process TRIP

memory

Thread
slave 0

Thread
slave 1

Thread
slave 3

Thread
slave 2

Thread master



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Shared Memory Systems
OpenMP

• Simplest way to parallelize regular loops but performance could 
depend on the architecture of the computer and the location of 
the data

       NUMA                                                UMA 

!"#$%&'

()* ()*

!!!

%+,'&-$++'.%$+

!"#$%&'

()* ()*

!"#$%&' !!! !"#$%&'

()* ()* ()* ()*

!"#$%&'

()* ()* ()*!!!

()* ()* ()*!!!



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Shared Memory Systems
Pthreads API

• set of very basic functions ➪ require large additional lines of code

• master-slave model

- The master splits the work and gives it to each slave thread

Thread

slave 0

Thread

slave 1

Thread

slave 3

Thread

slave 2

Thread

 master

WORK



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Shared Memory Systems
Pthreads API

• work stealing model

- Each thread has a queue of available work that can be done by others.

- Unused thread get part of the work from the queue of others threads.

- load imbalance disappears.

- Used in TRIP for irregular tasks using lock-free technique to access the 
queue

Thread 0
idle

Thread 1
idle

Thread 3
working

Thread 2
idle

WORK shareable work

WORK shareable work



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

write to a shared vaiable
a = 1

value of a ?

Thread 0 Thread 1 Thread 2

a=a+1 a=a+1 a=a+1



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

write to a shared vaiable
a = 1

value of a ?

Thread 0 Thread 1 Thread 2

a=a+1 a=a+1 a=a+1

load “a”
increment the register

store “a”



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

write to a shared vaiable
a = 1

value of a ?

Thread 0 Thread 1 Thread 2

a=a+1 a=a+1 a=a+1

4

lock lock lock

unlock unlock unlock



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Speedup
Amdhal’s law

• Ts : time of the serial section

• Tp : time of the parallelized section

• N : number of elementary processor (PE)

• As an example, if Ts is only 10%, the problem can be sped up 
by only a maximum of a factor of 10, no matter how large the 
value of N used.

Speedup = 1
Ts+Tp/N

Ts

Ts

Tp

Tp/N

run on a serial processor

run on N processors

N1



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Example of speedup

 2

 4

 6

 8

 10

 12

 14

 16

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

sp
ee

du
p

number of processors

 0

 50

 100

 150

 200

 250

 300

 2  4  6  8  10  12  14  16

tim
e 

(s
)

number of processors



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

parallelization of the product

V(10 variables, 57000 termes)**2

0
1
2
3
4
5
6
7
8

 1  2  3  4  5  6  7  8

sp
ee

du
p

number of processors

8 Intel Itanium2 processors

0
1
2
3
4
5
6
7
8

 1  2  3  4  5  6  7  8

sp
ee

du
p

number of processors

8 Intel Itanium2 processors

flat vector
recursive vector

0
1
2
3
4
5
6
7
8

 1  2  3  4  5  6  7  8

sp
ee

du
p

number of processors

8 Intel Itanium2 processors

flat vector
recursive vector

recursive list



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

distributed computation 
Split work on several computers

• exchange messages between computers : MPI

• problem of the communication costs 

Example of distributed specialized algebra manipulators

• distribute terms over nodes

- ParFORM

- CABAL

• disribute task over the grid

- GAP



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Communications with general computer algebra system
specialized system could not solve all problems !

• need to exchange data between general and specialized systems

MathML protocol 

• easy to produce

• very verbose but supported by all general systems
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<apply id=’id10’>
<plus/>
<cn id=’id1’ type=’integer’>1</cn>
<apply id=’id4’>
<times/>
<cn id=’id2’ type=’integer’>3</cn>
<ci id=’id3’>x</ci>

</apply>
<apply id=’id9’>
<times/>
<cn id=’id5’ type=’integer’>4</cn>
<apply id=’id8’>
<power/>
<ci id=’id6’>x</ci>
<cn id=’id7’ type=’integer’>2</cn>

</apply>
</apply>

</apply>
</math>

1 + 3x + 4x2



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Communications with general computer algebra system
OpenMath protocol

• precise semantic of each object and each function

• very flexible protocol but emerging standard

• will have specialized dictionaries for polynomials

1 + 3x + 4x2

<OMOBJ>
<OMA>
<OMS cd = "arith1" name="plus"/>
<OMI>1</OMI>
<OMA>
<OMS cd = "arith1" name="times"/>
<OMI>3</OMI>
<OMV name="x"/>

</OMA>
<OMA>
<OMS cd = "arith1" name="times"/>
<OMI>4</OMI>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMI>2</OMI>

</OMA>
</OMA>

</OMA>
</OMOBJ>



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Allocated objects
Small objects

• element of list for the recursive list

• element of the leaf node in the burst tries

• arrays for small degree

Large objects

• arrays of coefficients for homogeneous block and flat vector

• arrays of exponents for flat vector

Objectives of the memory manager

• reduce memory consumption

• good performance



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Garbage collection
detect unused objects to recycle them

avoid memory leaks and “double free”

overhead

• locate reachable objects

• higher space consumption

• less locality of the data

frequency of the garbage collecting ?

before collecting

after collecting



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Reference counting
Reference counting

• each object has a count of the number of references on it

• the counter is incremented when a reference to it is created

• the counter is decremented when a reference to it is destroyed

• the object is destroyed when the counter reaches 0.

Overhead

• one integer for every object

• less locality of the objects 

• need a lock in a multithread context



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Explicit memory management
system call : malloc and free

developer should take care to every deallocations and references 
on objects

• memory leak

• “double free” bug

• invalid reference to destroyed objects

memory could be reused immediately

most explicit memory managers introduce overheads

• space

• execution time



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

space overhead
overhead to each allocated block of memory

•  size and  status

• alignment

e.g., Doug Lea’s Malloc used in the GNU C library

• align on 8 bytes on 32-bit architectures

!"#$%&'(')&*+*)&$,

!"#$%&'('%")'*#

)$#+,-."%/$##

0#1(%/$##

!"#$%&'(')&*+*-.$$

)$#+,-."%/$##

0#1(%/$##

!"#$%&'(')&*+*-.$$

!"#$%&'(')&*+*)&$,

!"#$%&'('%")'*#



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

execution time overhead

system call  ➪ switch to kernel mode

locks for allocation or deallocation in a multithread context 

some system memory managers are not efficient with small 
objects

algorithm to allocate blocks of memory (e.g., best-fit)

Time execution  of VxV on Apple  G5 - MacOS X

0

100

200

300

400

500

600

700

800

900

5 6 7 8 9 10

degree

ti
m

e
 (

s
e
c
o

n
d

e
s
)

0.98a33 - system malloc

0.98a33 - optimized malloc



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmarks of the system memory manager

Computation 

Series stored as recursive list

total degree = 12

V (λ, λ′, X,Xb, Y, Y b, X ′, Xb′, Y ′, Y b′
︸ ︷︷ ︸) : 28800 terms

V 2 : 3 660 000 terms

G5-OSX IA64-linux x86-linux ev68-tru64

1 CPU 1 1 1 1

2 CPUs 1,07 1,09 1,06 1

G5-
OSX

IA64-
linux

x86-
linux

ev68-
tru64

0

0,2

0,4

0,6

0,8

1

1,2

Memory usage

1 CPU

2 CPUs

G5-OSX IA64-linux x86-linux ev68-tru64

1 CPU 1 1 1 1

2 CPUs 2 0,95 1,08 4,75

G5-

OSX

IA64-

linux

x86-

linux

ev68-

tru64

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

Normalized CPU execution time



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Problems on multi-processor or multi-core processor

False-sharing

Memory contention



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Optimized explicit memory manager
Available memory managers

• Hoard http://www.hoard.org

• Michael Maged allocator : lock-free allocator

• Streamflow http://people.cs.vt.edu/~scschnei/streamflow/

Optimized for multi-thread context

• avoid contention memory and false-sharing and one global list 
of free pages

• small objects  doesn’t have header ➪ better locality

same performance for single thread context 

http://www.hoard.org
http://www.hoard.org
http://people.cs.vt.edu/~scschnei/streamflow/
http://people.cs.vt.edu/~scschnei/streamflow/


Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Allocation

Operating systems split memory in large pages (4 or 16 or 64 Kbytes)

For large blocks (> 4Kbytes)

• request pages directly to the operating system kernel

For small blocks

• request one page and split the page in chunks of same size

• one page contains only objects of same size  ➪ only header



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Custom memory manager for small blocks

•
Thread 1 Thread nThread 2 ...

Heap 1 Heap 2 Heap n

...

Fully free pages

Fully used pages

Partially used pages



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmarks
Product of 2 series (10 variables, 28800 ~> 3660000 terms)
Normalized to the system memory manager (malloc/free)

G5-OSX IA64-linux x86-linux ev68-tru64

1 CPU 0,73 0,88 0,8 0,81

2 CPUs 0,73 0,88 0,8 0,81 2,96

G5-OSX IA64-linux x86-linux ev68-tru64

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

G5-OSX IA64-linux x86-linux ev68-tru64

1 CPU 0,87 0,79 0,68 0,67

2 CPUs 0,92 0,82 0,69 0,72 2,96

0,43 0,39 0,34 0,34

0,46 0,41 0,34 0,36

G5-OSX IA64-linux x86-linux ev68-tru64

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 CPU

2 CPUs

CPU execution time

Memory usage



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Custom memory manager for intermediate blocks

Thread 1 Thread nThread 2 ...

Heap 1

Used chunks

Free chunks

Free chunks

...
n1

Heap 2
Free chunks

...
n1

Heap n

Free chunks

...
n1

...



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmarks

50.0

52.5

55.0

57.5

60.0

ptmalloc hoard vlalloc

execution time on 2 CPUs

100Mb

150Mb

200Mb

250Mb

ptmalloc hoard vlalloc

Maximum memory usage

G5-OSX IA64-linux x86-linux ev68-tru64

Malloc OS 1 1 1 1,03

Vlalloc TRIP 0,9 1,01 1 0,88

G5-OSX IA64-linux x86-linux ev68-tru64

0

0,2

0,4

0,6

0,8

1

1,2

Normalized execution time on 2 CPUs

Malloc OS

Vlalloc TRIP



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmarks

1
2
3
4
5
6
7
8

1.00

1.99

2.96

3.89

4.79

5.69
6.42

7.01

1.00

1.99

2.96

3.89

4.79
5.66

6.43
7.01

speedup

malloc OS
vlalloc TRIP

1 000Mb

1 375Mb

1 750Mb

2 125Mb

2 500Mb

1 2 3 4 5 6 7 8
processors

Memory 
usage


