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Shared memory systems
Split the work on several processors 

All threads will share same memory space ➪ no copy !

Processor 0 Processor 1 Processor 2 Processor 3

Process TRIP

memory

Thread
slave 0

Thread
slave 1

Thread
slave 3

Thread
slave 2

Thread master
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Shared Memory Systems
OpenMP

• Simplest way to parallelize regular loops but performance could 
depend on the architecture of the computer and the location of 
the data
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Shared Memory Systems
Pthreads API

• set of very basic functions ➪ require large additional lines of code

• master-slave model

- The master splits the work and gives it to each slave thread

Thread

slave 0

Thread
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Thread

slave 3

Thread

slave 2

Thread

 master
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Shared Memory Systems
Pthreads API

• work stealing model

- Each thread has a queue of available work that can be done by others.

- Unused thread get part of the work from the queue of others threads.

- load imbalance disappears.

- Used in TRIP for irregular tasks using lock-free technique to access the 
queue

Thread 0
idle

Thread 1
idle

Thread 3
working

Thread 2
idle

WORK shareable work

WORK shareable work
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write to a shared vaiable
a = 1

value of a ?

Thread 0 Thread 1 Thread 2

a=a+1 a=a+1 a=a+1
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write to a shared vaiable
a = 1

value of a ?

Thread 0 Thread 1 Thread 2

a=a+1 a=a+1 a=a+1

load “a”
increment the register

store “a”
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write to a shared vaiable
a = 1

value of a ?

Thread 0 Thread 1 Thread 2

a=a+1 a=a+1 a=a+1

4

lock lock lock

unlock unlock unlock
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Speedup
Amdhal’s law

• Ts : time of the serial section

• Tp : time of the parallelized section

• N : number of elementary processor (PE)

• As an example, if Ts is only 10%, the problem can be sped up 
by only a maximum of a factor of 10, no matter how large the 
value of N used.

Speedup = 1
Ts+Tp/N

Ts

Ts

Tp

Tp/N

run on a serial processor

run on N processors

N1
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Example of speedup
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parallelization of the product

V(10 variables, 57000 termes)**2
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distributed computation 
Split work on several computers

• exchange messages between computers : MPI

• problem of the communication costs 

Example of distributed specialized algebra manipulators

• distribute terms over nodes

- ParFORM

- CABAL

• disribute task over the grid

- GAP
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Communications with general computer algebra system
specialized system could not solve all problems !

• need to exchange data between general and specialized systems

MathML protocol 

• easy to produce

• very verbose but supported by all general systems
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<apply id=’id10’>
<plus/>
<cn id=’id1’ type=’integer’>1</cn>
<apply id=’id4’>
<times/>
<cn id=’id2’ type=’integer’>3</cn>
<ci id=’id3’>x</ci>

</apply>
<apply id=’id9’>
<times/>
<cn id=’id5’ type=’integer’>4</cn>
<apply id=’id8’>
<power/>
<ci id=’id6’>x</ci>
<cn id=’id7’ type=’integer’>2</cn>

</apply>
</apply>

</apply>
</math>

1 + 3x + 4x2
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Communications with general computer algebra system
OpenMath protocol

• precise semantic of each object and each function

• very flexible protocol but emerging standard

• will have specialized dictionaries for polynomials

1 + 3x + 4x2

<OMOBJ>
<OMA>
<OMS cd = "arith1" name="plus"/>
<OMI>1</OMI>
<OMA>
<OMS cd = "arith1" name="times"/>
<OMI>3</OMI>
<OMV name="x"/>

</OMA>
<OMA>
<OMS cd = "arith1" name="times"/>
<OMI>4</OMI>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMI>2</OMI>

</OMA>
</OMA>

</OMA>
</OMOBJ>
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Allocated objects
Small objects

• element of list for the recursive list

• element of the leaf node in the burst tries

• arrays for small degree

Large objects

• arrays of coefficients for homogeneous block and flat vector

• arrays of exponents for flat vector

Objectives of the memory manager

• reduce memory consumption

• good performance
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Garbage collection
detect unused objects to recycle them

avoid memory leaks and “double free”

overhead

• locate reachable objects

• higher space consumption

• less locality of the data

frequency of the garbage collecting ?

before collecting

after collecting
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Reference counting
Reference counting

• each object has a count of the number of references on it

• the counter is incremented when a reference to it is created

• the counter is decremented when a reference to it is destroyed

• the object is destroyed when the counter reaches 0.

Overhead

• one integer for every object

• less locality of the objects 

• need a lock in a multithread context
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Explicit memory management
system call : malloc and free

developer should take care to every deallocations and references 
on objects

• memory leak

• “double free” bug

• invalid reference to destroyed objects

memory could be reused immediately

most explicit memory managers introduce overheads

• space

• execution time
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space overhead
overhead to each allocated block of memory

•  size and  status

• alignment

e.g., Doug Lea’s Malloc used in the GNU C library

• align on 8 bytes on 32-bit architectures
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execution time overhead

system call  ➪ switch to kernel mode

locks for allocation or deallocation in a multithread context 

some system memory managers are not efficient with small 
objects

algorithm to allocate blocks of memory (e.g., best-fit)

Time execution  of VxV on Apple  G5 - MacOS X
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Benchmarks of the system memory manager

Computation 

Series stored as recursive list

total degree = 12

V (λ, λ′, X,Xb, Y, Y b, X ′, Xb′, Y ′, Y b′
︸ ︷︷ ︸) : 28800 terms

V 2 : 3 660 000 terms

G5-OSX IA64-linux x86-linux ev68-tru64

1 CPU 1 1 1 1
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Problems on multi-processor or multi-core processor

False-sharing

Memory contention
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Optimized explicit memory manager
Available memory managers

• Hoard http://www.hoard.org

• Michael Maged allocator : lock-free allocator

• Streamflow http://people.cs.vt.edu/~scschnei/streamflow/

Optimized for multi-thread context

• avoid contention memory and false-sharing and one global list 
of free pages

• small objects  doesn’t have header ➪ better locality

same performance for single thread context 

http://www.hoard.org
http://www.hoard.org
http://people.cs.vt.edu/~scschnei/streamflow/
http://people.cs.vt.edu/~scschnei/streamflow/
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Allocation

Operating systems split memory in large pages (4 or 16 or 64 Kbytes)

For large blocks (> 4Kbytes)

• request pages directly to the operating system kernel

For small blocks

• request one page and split the page in chunks of same size

• one page contains only objects of same size  ➪ only header
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Custom memory manager for small blocks

•
Thread 1 Thread nThread 2 ...

Heap 1 Heap 2 Heap n

...

Fully free pages

Fully used pages

Partially used pages
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Benchmarks
Product of 2 series (10 variables, 28800 ~> 3660000 terms)
Normalized to the system memory manager (malloc/free)

G5-OSX IA64-linux x86-linux ev68-tru64

1 CPU 0,73 0,88 0,8 0,81

2 CPUs 0,73 0,88 0,8 0,81 2,96
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Custom memory manager for intermediate blocks

Thread 1 Thread nThread 2 ...

Heap 1

Used chunks

Free chunks

Free chunks

...
n1

Heap 2
Free chunks

...
n1

Heap n

Free chunks

...
n1

...
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Benchmarks
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Benchmarks
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