Parallel computations and memory management

M. Gastineau

IMCCE - Observatoire de Paris - CNRS UMR&028

77, avenue Denfert Rochereau
75014 PARIS
FRANCE

gastineau@imcce.fr

CENTRE NATIONAL . .
DE LA RECHERCHE I . vatoire
SCIENTIFIQUE

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

http://www.imcce.fr/Equipes/ASD/trip/trip.html
http://www.imcce.fr/Equipes/ASD/trip/trip.html

Contents

¢ Parallel computations
e shared memory

e distributed computations

¢ Memory management
e garbage collection
e reference couting

e explicit memory management

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Shared memory systems

¢ Split the work on several processors

Thread master

Thread Thread Thread Thread
slave 0 slave 1 slave 2 slave 3

¢ All threads will share same memory space = no copy !

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Shared Memory Systems

¢ OpenMP

e Simplest way to parallelize regular loops but performance could
depend on the architecture of the computer and the location of
the data

interconnexion

NUMA UMA

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Shared Memory Systems

¢ Pthreads API
* set of very basic functions = require large additional lines of code
* master-slave model

- The master splits the work and gives it to each slave thread

WORK
Thread

master Thread Thread Thread
slave 0 slave 1 slave 2

Thread

slave 3

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Shared Memory Systems

¢ Pthreads API

e work stealing model

Each thread has a queue of available work that can be done by others.

Unused thread get part of the work from the queue of others threads.

load imbalance disappears.

Used in TRIP for irregular tasks using lock-free technique to access the

queue
Thread 0

shareable+=

Thread 1
idle

Thread 2
(o])

Thread 3

shareable work

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

write to a shared vaiable

Thread 0 Thread 1 Thread 2

¢ valueofa?

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

write to a shared vaiable

Thread 0 Thread 1 Thread 2

a=a+1

load ““a”

increment the register

€¢c_

store a

¢ valueofa?

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

write to a shared vaiable

Thread 0 Thread 1 Thread 2

lock lock lock

a=a+1 a=a+1 a=a+1
unlock unlock unlock

¢ valueofa? 4

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Speedup

¢ Amdhal’s law

e Ts : time of the serial section

Speedup = .
e Tp : time of the parallelized section P P= T.51,/N

* N : number of elementary processor (PE)

run on a serial processor

|

run on N processors

e As an example, if Ts 1s only 10%, the problem can be sped up
by only a maximum of a factor of 10, no matter how large the
value of N used.

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Example of speedup

time (s)

speedup

300

250

200

150

100

50

16

14

12

10

\\\
[\\\77) -
| | | | | |
4 6 8 10 12 14 16
number of processors
I I I I
| | | | | | | | | | | | |
1 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of processors

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

parallelization of the product

speedup

O = DD WO & 01 O N ©

V(10 variables, 57000 termes)**2

8 Intel ltanium2 processors

! !

| flat vector 3 | 3

*************** recursive vector e
~recursive list | | ;

number of processors

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

distributed computation

€c

€

Split work on several computers
* exchange messages between computers : MPI

e problem of the communication costs

Example of distributed specialized algebra manipulators
e distribute terms over nodes

- ParFORM

- CABAL
e disribute task over the grid

- GAP

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Communications with general computer algebra system

¢ specialized system could not solve all problems !

* need to exchange data between general and specialized systems
¢ MathML protocol

e casy to produce

e very verbose but supported by all general systems

<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<apply id=’id10’>
<plus/>
<cn id=’id1’ type=’integer’>1</cn>
<apply id=’id4’>
<times/>
<cn id=’id2’ type=’integer’>3</cn>
<ci id=’id3’>x</ci>
1+ 3z + 47° — </apply>
<apply id=’id9’>
<times/>
<cn id=’id5’ type=’integer’>4</cn>
<apply id=’id8’>
<power/>
<ci id=’id6’>x</ci>
<cn id=’id7’ type=’integer’>2</cn>
</apply>
</apply>
</apply>
</math>
Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Communications with general computer algebra system

¢ OpenMath protocol
e precise semantic of each object and each function
e very flexible protocol but emerging standard

e will have specialized dictionaries for polynomials

<0MOBJ>
<OMA>
<OMS cd = "arithl" name="plus"/>
<OMI>1</0MI>
<OMA>
<OMS cd = "arithl" name="times"/>
<OMI>3</0MI>
14+ 31+ 472 Gy <OMV name="x"/>
</0MA>
<OMA>
<OMS cd = "arithl" name="times"/>
<OMI>4</0MI>
<0OMA>

<OMS cd="arithl" name="power"/>
<0OMV name="x"/>
<0OMI>2</0MI>
</0MA>
</0MA>
</0MA>
</0MOBJ>

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Allocated objects

€

€

€

Small objects
e clement of list for the recursive list
e clement of the leaf node in the burst tries

e arrays for small degree

Large objects
e arrays of coefficients for homogeneous block and flat vector

e arrays of exponents for flat vector

Objectives of the memory manager
* reduce memory consumption

e 9¢00d performance

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Garbage collection

before collecting

¢ detect unused objects to recycle them -
¢ avoild memory leaks and “double free” < Next0bjPtr
ROOTS -
rﬂ:::;;:gﬂ
¢ overhead Statisties >
. Locals —m -
* locate reachable objects cy .
Registers
* higher space consumption >
e less locality of the data
after collecting
slrong
¢ frequency of the garbage collecting ? ET';.’;"{::: « NextOhjPir
|
Lecals
CPrU
Registers »
—

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Reference counting

¢ Reference counting
e cach object has a count of the number of references on it
 the counter 1s incremented when a reference to it is created
 the counter 1s decremented when a reference to it 1s destroyed

* the object 1s destroyed when the counter reaches 0.

¢ Overhead
e one integer for every object
* less locality of the objects

* need a lock in a multithread context

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Explicit memory management

€

€

€

“€c

system call : malloc and free

developer should take care to every deallocations and references
on objects

* memory leak
e “double free” bug

 invalid reference to destroyed objects

memory could be reused immediately

most explicit memory managers introduce overheads
* space

* execution time

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

space overhead

¢ overhead to each allocated block of memory
e size and status

e alignment

Size/status = free
previous free
next free
Size/status = used

User data space

Size/status = free
previous free

next free

Size/status = used

User data space

¢ e.g., Doug Lea’s Malloc used in the GNU C library

e align on 8 bytes on 32-bit architectures

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

execution time overhead

“€c

system call = switch to kernel mode

“€c

locks for allocation or deallocation in a multithread context

some system memory managers are not efficient with small

€

objects

Time execution of VxV on Apple G5 - MacOS X

900

800 -

700 -

600 +

%4
o
o

——0.98a33 - system malloc
——0.98a33 - optimized malloc

400 ~

time (secondes)

300 +

200 +

100 +

degree

¢ algorithm to allocate blocks of memory (e.g., best-fit)

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmarks of the system memory manager

¢ Computation V(A N, X, Xb,Y,Yb, X', Xb.Y', YY) : 28800 terms

total degree = 12
V2.3 660 000 terms

¢ Series stored as recursive list

Normalized CPU execution time Memory usage
5 12
4,5
4 H
3,91 0,8
3,
2,5 0,6- 11 CPU
2. B 2 CPUs
1’57 0,4’
1 0,2,
- 1l
O ‘ ‘ ‘ O \ \ w
G5- IA64- x86- evBs- G5- IA64- x86- ev68-
OSX linux linux truc4 OSX linux linux truc4

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Problems on multi-processor or multi-core processor

Dual Caore Processor with
Shared L? cache

=
Care O Cora 1

{ L1 Cache L1 Cache |

- Cache r"

¢ False-sharing

Meamory

¢ Memory contention

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Optimized explicit memory manager

¢ Available memory managers

* Hoard http://www.hoard.org

* Michael Maged allocator : lock-free allocator

e Streamflow http://people.cs.vt.edu/~scschnei/streamflow/

€

Optimized for multi-thread context

e avoid contention memory and false-sharing and one global list
of free pages

* small objects doesn’t have header = better locality

€

same performance for single thread context

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

http://www.hoard.org
http://www.hoard.org
http://people.cs.vt.edu/~scschnei/streamflow/
http://people.cs.vt.edu/~scschnei/streamflow/

Allocation

"6

Operating systems split memory in large pages (4 or 16 or 64 Kbytes)

€

For large blocks (> 4Kbytes)

* request pages directly to the operating system kernel

¢ For small blocks

e request one page and split the page in chunks of same size

e one page contains only objects of same size = only header

dactivie He

5 il vl .
[= e bl 1 [M P bl 2 - - - Page blk k g
= _." -\1-\{ etive T o
; -

Pl ail

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Custom memory manager for small blocks

Heap 1

]
G

Thread 2

Heap 2

Fully used pages
Partially used pages

Fully free pages

Heap n

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmarks

0,9
0,8 -
0,7 1
0,6
0,5+
0,4
0,3+
0,2
0,1+

¢ Product of 2 series (10 variables, 28800 ~> 3660000 terms)

Normalized to the system memory manager (malloc/free)

0,9-
0,8 -
0,7 -
0,6
0,5
0,4 -
0,3
0,2
0,1

G5-0SX

|AG4-linux

CPU execution time

x86-linux ev68-tru64

[/1CPU

Memory usage

G5-0SX

IA64-linux

x86-linux ev68-trub4

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Custom memory manager for intermediate blocks

Heap 1
1 Free chunks

Heap 2

1 Free chunks

Heap n

4 Free chunks N

|| Free chunks
72z Used chunks

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmarks

execution time on 2 CPUs Maximum memory usage
60.0 250Mb
>/ 200Mb
55.0
| 50Mb
52.5
50.0 |OOMb
ptmalloc hoard vlalloc ptmalloc hoard vlalloc
Normalized execution time on 2 CPUs
1,2
1 _
0,8
[Malloc OS
0,6 - M Vialloc TRIP
0,4
0,2
0

I I I
G5-0SX IA64-linux x86-linux ev68-tru64
Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmarks

8
7
6
speedu 5
P P 4
3
2

I - malloc OS

'» — vlalloc TRIP
2 500Mb
Memory 2 125Mb

usage | 750Mb

| 000Mb

I 2 3 4 5 6 7/ 8
processors

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

