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Long Time Integrations

Refined Fourier analysis procedures

Introduction

Objective

Given
I a real analytic quasi–periodic function, f (t),
I N equally–spaced values of it on an interval [0,T],

{f (tl)}N−1
l=0 , tl = l

T
N
,

the goal is to compute a trigonometric approximation

Qf (t) = Ac
0 +

Nf∑
l=1

(
Ac

l cos(2π
νl

T
t) + As

l sin(2π
νl

T
t).

whose frequencies and amplitudes are a good approximation of
the ones of f .
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Refined Fourier analysis procedures

Introduction

Previous methodology
I A common approach in experimental sciences:

“perform a DFT and look for peaks”

DFT : f ,T,N −→ {Ff ,T,N(k)}N−1
k=0

Ff ,T,N(k) :=
1
N

N−1∑
j=0

f (tj)e−i2πk j
N =

1
N

N−1∑
j=0

f (tj)e−i2π k
T tj

For instance, for f (t) = cos(2π0.13t)− 1
2 sin(2π0.27t) + sin(2π0.37t),

the modulus of the DFT, |Ff ,T,N(k)|, is
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Introduction

Previous methodology
I A common approach in experimental sciences:

“perform a DFT and look for peaks”

DFT : f ,T,N −→ {Ff ,T,N(k)}N−1
k=0

Ff ,T,N(k) :=
1
N

N−1∑
j=0

f (tj)e−i2πk j
N =

1
N

N−1∑
j=0

f (tj)e−i2π k
T tj

The DFT can be thought as a function of harmonics (left) or
frequencies (right):

0 7→ Ff ,T,N(0) 0 7→ Ff ,T,N(0)
1 7→ Ff ,T,N(1) 1/T 7→ Ff ,T,N(1)

...
...

N − 1 7→ Ff ,T,N(N − 1) (N − 1)/T 7→ Ff ,T,N(N − 1)
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Introduction

Previous methodology
I A common approach in experimental sciences:

“perform a DFT and look for peaks”
I Laskar’s procedure[4, 3]: consider the function that maps an harmonic

to the corresponding Fourier coefficient of f :

k 7−→ |ak| :=
∣∣∣ 1
T

∫ T

0
f (t)e−i2πktdt

∣∣∣
For f (t) = ei2πωt,

I |ak| has a global maximum at k = ω.
I The |DFT | samples approximations of |ak| at integer values of k.
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Previous methodology
I A common approach in experimental sciences:

“perform a DFT and look for peaks”
I Laskar’s procedure[4, 3]: consider the function that maps an harmonic

to the corresponding Fourier coefficient of f :

k 7−→ |ak| :=
∣∣∣ 1
T

∫ T

0
f (t)e−i2πktdt

∣∣∣
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f (t) = ei2πωt, ω = 0.76, T = 64, N = 256 =⇒ ωT = 48.64
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Introduction

Previous methodology
I A common approach in experimental sciences:

“perform a DFT and look for peaks”
I Laskar’s procedure[4, 3]: consider the function that maps an harmonic

to the corresponding Fourier coefficient of f :

k 7−→ |ak| :=
∣∣∣ 1
T

∫ T

0
f (t)e−i2πktdt

∣∣∣
By using a numerical quadrature rule, the previous integral can be
evaluated from the samples of f for any value of k.
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Fourier analysis of discrete signals

A windowed Fourier Transform

I Fourier Fransform:

f̂ (ω) =
∫ +∞

−∞
f (t)e−i2πωtdt.

I Windowed Fourier Transform (window χ[0,T](t)):∫ +∞

−∞
χ[0,T](t)f (t)e−i2πωtdt =

∫ T

0
f (t)e−i2πωtdt.

I Normalized, Windowed Fourier Transform (WFT, the one we will
consider):

φf ,T(ω) =
1
T

∫ T

0
f (t)e−i2πωtdt.
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Fourier analysis of discrete signals

Leakage
For a complex exponential term, f (t) = ei2πνt,

φei2πνt,T(ω) =
ei2π(ν−ω)T − 1
i2π(ν − ω)T

.

We have ∣∣∣ei2πx − 1
i2πx

∣∣∣ =
∣∣∣ sinπx
πx

∣∣∣ = | sinc x|,
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Fourier analysis of discrete signals

Leakage
For several complex exponential terms,

f (t) = aνei2πνt +
∑

ξ∈Ω\{ν}

aξei2πξt,

(Ω is the set of frequencies fo the signal), so that

|φf ,T(ω)| = |aν | | sinc
(
T(ν − ω)

)
|+

∑
ξ∈Ω\{ν}

O
( 1

T(ξ − ω)

)
,

The second term in the last equation is responsible for the peak of |φf ,T(ω)|
near ω = ν not being exactly at ν.
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Fourier analysis of discrete signals

Leakage
For several complex exponential terms,

f (t) = aνei2πνt +
∑

ξ∈Ω\{ν}

aξei2πξt,

(Ω is the set of frequencies fo the signal), so that

|φf ,T(ω)| = |aν | | sinc
(
T(ν − ω)

)
|+

∑
ξ∈Ω\{ν}

O
( 1

T(ξ − ω)

)
,
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Fourier analysis of discrete signals

Leakage
In order to not to have leakage, the set of frequencies needs to satisfy

Ω ⊂ {k/T, k ∈ Z}.
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f (t) = cos(2πωt), T = 64 and N = 256
Left: ω = 0.75 =⇒ Tω = 48

Right: ω = 0.76 =⇒ Tω = 48.64
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Reducing leakage: filtering
We can substitue χT(t) in the WFT by the Hanning window (of filter) of
order nh:

Hnh
T (t) = qnh

(
1− cos

2πt
T

)nh

.

being qnh = nh!/
(
(2nh − 1)!!

)
.

The corresponding WFT is denoted by

φnh
f ,T(ω) :=

1
T

∫ T

0
Hnh

T (t)f (t)e−i2πωtdt,
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Fourier analysis of discrete signals

Reducing leakage: filtering
For f (t) = ei2πνt,

φei2πνt,T(ω) =
ei2π(ν−ω)T − 1
i2π(ν − ω)T

= O
(

1
(ν − ω)T

)
,

vs

φnh
ei2πνt,T(ω) =

(−1)nh(nh!)2
(
ei2π(ν−ω)T − 1

)
i2π
∏nh

j=−nh

(
(ν − ω)T + j

) = O
(

1(
(ν − ω)T

)1+2nh

)
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Fourier analysis of discrete signals

Reducing leakage: filtering
The DFT can also be filtered:

Fnh
f ,T,N(k) :=

1
N

N−1∑
j=0

Hnh
N (j)f (j T

N )e−i2π k
N j.
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Fourier analysis of discrete signals

Aliasing
The DFT is N–periodic:

Fnh
f ,T,N(k) :=

1
N

N−1∑
j=0

Hnh
N (j)f (j T

N )e−i2π k
N j.

It is actually the N–periodification of the WFT:

Fnh
f ,T,N(k) = φnh

f ,T

( k
T

)
+
∞∑

l=1

(
φnh

f ,T

(k + lN
T

)
+ φnh

f ,T

(k − lN
T

))
.

Moreover, for f real (always in practice), we have the symmetry

Fnh
f ,T,N(k) = Fnh

f ,T,N(N − k).

Therefore, a fundamental domain for the DFT is

[0,N/2] (harmonics), [0,N/(2T)] (frequencies).
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Fourier analysis of discrete signals

Aliasing
The aliasing effect consists on:

I In frequency domain: due to N–periodicity and the symmetry,
any frequency of the signal outside [0,N/(2T)] gives a peak in
[0,N/(2T)].
Such a peak is called an alias or an aliased frequency.

I In time domain: two periodic terms corresponding to aliased
frequencies

ei2πνt, ei2π(ν+kN/T)t,

have the same values at {j T
N }

N−1
j=0 (stagecoach wheel effect).
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The method

Algorithm[1]

1. Set an starting thresold for collecting peaks of the modulus of the
DFT of f(t).

2. Find initial approximations of the frequencies, starting from the
peaks of the DFT greater than the thresold.

3. Find the amplitudes of the frequencies found in the previous step, by
solving DFT(Qf ) = DFT(f ).

4. Simultaneously refine ALL the frequencies and amplitudes of the
current quasi–periodic approximation of f , by solving
DFT(Qf ) = DFT(f ).

5. Perform a DFT of the input signal minus the current quasi–periodic
approximation obtained in step 4, decrease the thresold and go back
to step 2.
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The method

Computing amplitudes from known frequencies
We ask DFT(Qf ) = DFT(f ), being

Qf (t) = Ac
0 +

Nf∑
l=1

(
Ac

l cos(2π
νl

T
t) + As

l sin(2π
νl

T
t).

Since we work with real signals, we use the sine and cosine transforms:

cnh
f ,T,N(k) =

2
N

N−1∑
j=0

f (j T
N )Hnh

N (j) cos
(
2π k

N j
)
, k = 0, ..., N

2 ,

snh
f ,T,N(k) =

2
N

N−1∑
j=0

f (j T
N )Hnh

N (j) sin
(
2π k

N j
)
, k = 1, ..., N

2 − 1.

They are realted to the DFT in complex form by

Fnh
f ,T,N(k) =

1
2

(
cnh

f ,T,N(k)− isnh
f ,T,N(k)

)
, k = 0, . . . ,N/2.
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The method

Computing amplitudes from known frequencies
The system of equations to be solved is linear and (1 + 2Nf )× (1 + 2Nf ):

Ac
0cnh

1,T,N(0) +
Nf∑

l=1

(
Ac

l cnh
νl,N(0) + As

l c̃
nh
νl,N(0)

)
= cnh

f ,T,N(0)

Ac
0cnh

1,T,N(j) +
Nf∑

l=1

(
Ac

l cnh
νl,N(j) + As

l c̃
nh
νl,N(j)

)
= cnh

f ,T,N(j)

Nf∑
l=1

(
Ac

l snh
νl,T(j) + Ac

l s̃nh
νl,T(j)

)
= snh

f ,T,N(j)

where j = [νl + 0.5], l = 1÷ Nf , and

cnh
1 (j) = cnh

1,T,N(j),
cnh
νl,N(j) = cnh

cos( 2πνl
T ),T,N

(j), snh
νl,N(j) = snh

cos( 2πνl
T ),T,N

(j),

c̃nh
νl,N(j) = cnh

sin(
2πνl

T ),T,N
(j), s̃nh

νl,N(j) = snh

sin(
2πνl

T ),T,N
(j).
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The method

Simultaneous improvement of frequencies and amplitudes
We solve by Newton’s method the following (1 + 3Nf )× (1 + 3Nf )
non–linear system:

Ac
0cnh

1,T,N(0) +
Nf∑

l=1

(
Ac

l cnh
νl,N(0) + As

l c̃
nh
νl,N(0)

)
= cnh

f ,T,N(0)

Ac
0cnh

1,T,N(ji) +
Nf∑

l=1

(
Ac

l cnh
νl,N(ji) + As

l c̃
nh
νl,N(ji)

)
= cnh

f ,T,N(ji)

Nf∑
l=1

(
Ac

l snh
νl,N(ji) + As

l s̃
nh
νl,N(ji)

)
= snh

f ,T,N(ji)

Ac
0csnh

1,T,N(j+i ) +
Nf∑

l=1

(
Ac

l csnh
νl,N(j+i ) + As

l c̃snh
νl,N(j+i )

)
= csnh

f ,T,N(j+i )

being ji = [νi + 0.5], j+i 6= ji,|j+i − ji| = 1.
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The method

A (toy) example
For f (t) = cos(2π0.13t)− 1

2 sin(2π0.27t) + sin(2π0.37t),
T = N = 512, nh = 0.
1. Starting thresold: 0.8
modulus of the DFT of the input data:
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⇒ peaks j = 61, j = 189.
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The method

A (toy) example
For f (t) = cos(2π0.13t)− 1

2 sin(2π0.27t) + sin(2π0.37t),
T = N = 512, nh = 0.
2. Approximation of frequencies (Laskar’s method):

peak 61 ⇒ frequency 0.11999948789
peak 189 ⇒ frequency 0.36999965075

3. Computation of amplitudes from known frequencies:

Frequency Cosine amplitude Sine amplitude
0.119999487888 0.999907666367 -0.000823654552
0.369999650752 0.000561727398 0.999937098420

modulus of the DFT of the residual
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The method

A (toy) example
For f (t) = cos(2π0.13t)− 1

2 sin(2π0.27t) + sin(2π0.37t),
T = N = 512, nh = 0.
4. Iterative refinement:

Frequency Cosine amplitude Sine amplitude
0.120000000003 1.000000000686 0.000000005106
0.369999999995 0.000000006660 1.000000000297

5. modulus of the DFT of input signal minus step 4:
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New threshold: 0.2
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The method

A (toy) example
For f (t) = cos(2π0.13t)− 1

2 sin(2π0.27t) + sin(2π0.37t),
T = N = 512, nh = 0.
5. modulus of the DFT of input signal minus step 4:
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New threshold: 0.2
2. Approximation of frequencies (Laskar’s method):

peak 138 ⇒ frequency 0.2699999999988849

3. Amplitudes from known frequencies:

Frequency Cosine amplitude Sine amplitude
0.120000000003 1.000000000586 0.000000005245
0.369999999995 0.000000007480 0.999999999164
0.269999999999 -0.000000000897 -0.499999999946
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The method

A (toy) example
For f (t) = cos(2π0.13t)− 1

2 sin(2π0.27t) + sin(2π0.37t),
T = N = 512, nh = 0.
4. Iterative refinement:

Frequency Cosine amplitude Sine amplitude
0.12000000000000 0.99999999999999 -0.00000000000008
0.37000000000000 -0.00000000000001 1.00000000000000
0.27000000000000 0.00000000000000 -0.50000000000000

modulus of the DFT of the residual:
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Error estimation

Assumptions
I f is real analytic and quasi–periodic,

f (t) = Ac
0+
∑
k∈Zm

kω>0

(
Ac

k cos(2π〈k, ω〉t)+As
k sin(2π〈k, ω〉t)

)
=
∑
k∈Zm

Amei2π〈k,ω〉t,

ω = (ω1, . . . , ωm) rationally independent,
and its Fourier coefficients ak satisfy the Cauchy estimates,√

(Ac
k)2 + (As

k)2 ≤ Ce−δ|k| ∀k ∈ Zm.

I The frequency vector ω = (ω1, . . . ωm) satisfies a Diophantine
condition: for D, τ > 0,

|kω| ≥ D
|k|τ

,

I We determine the frequencies {νl}
Nf
l=1 of order ≤ r0 − 1

(νl ≈ Tkω, 1 ≤ |k| ≤ r0 − 1).
The order of the freq. 〈k, ω〉 is |k| = |k1|+ · · ·+ |km|.
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Error estimation

Strategy[2]
Let us denote

I fr0 : the truncation of f to the frequencies we want to determine:

fr0(t) = Ac
0 +

∑
|k|≤r0−1

kω>0

(
Ac

k cos(2πkωt) + As
k sin(2πkωt)

)
.

I y = (A0, ν1,Ac
1,A

s
1, . . . , νNf ,A

c
Nf
,As

Nf
): the exact frequencies and

amplitudes.
I y + ∆y: the computed frequencies and amplitudes.

The system we solve for iterative improvement of frequencies and
amplitudes is

DFT(Qf )︸ ︷︷ ︸
g(y+∆y)

= DFT(fr0)︸ ︷︷ ︸
b

+ DFT(f − fr0)︸ ︷︷ ︸
∆b

We would get the exact frequencies and amplitudes if ∆b = 0.



Long Time Integrations

Refined Fourier analysis procedures

Error estimation

Strategy[2]
I System for iterative improvement of frequencies and amplitudes:

Ac
0 +

NfX
l=1

`
Ac

l cnh
νl,N

(0) + As
lecnh
νl,N

(0)
´

= cnh
fr0 ,T,N

(0) + cnh
f−fr0 ,T,N

(0)

Ac
0cnh

1 (ji) +

NfX
l=1

`
Ac

l cnh
νl,N

(ji) + As
lecnh
νl,N

(ji)
´

= cnh
fr0 ,T,N

(ji) + cnh
f−fr0 ,T,N

(ji)

NfX
l=1

`
Ac

l snh
νl,N

(ji) + As
lesnh
νl,N

(ji)
´

= snh
fr0 ,T,N

(ji) + snh
f−fr0 ,T,N

(ji)

Ac
0csnh

1 (j+i ) +

NfX
l=1

`
Ac

l csnh
νl,N

(j+i ) + As
l ecsnh
νl,N

(j+i )
´

= csnh
fr0 ,T,N

(j+i ) + csnh
f−fr0 ,T,N

(j+i ).

where f − fr0 =
∑
|k|≥r0

Akei2πkt.
I The error term ∆b consists of DFT

I of periodic terms with frequencies not being computed,
I evaluated in harmonics corresponding to frequencies being computed.

Therefore, the error term ∆b can be considered leakage of the
remainder, f − fr0 .
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Error estimation

Strategy[2]
I The error term ∆b can be considered leakage of the remainder

DFT(f − fr0) =
∑
|k|≥r0

Ak DFT(ei2πkωt)

I The effect of the terms of the remainder on the error ∆b is
I The DFT of terms corresponding to low–order frequencies, {kω}|k|&r0

,
evaluated at the harmonics {ji, j+i }, will be small if the harmonics Tkω are
far from {ji, j+i }.
This can be achieved by increasing T as long as there is no aliasing.

I The DFT of terms corresponding to high–order frequencies may not be
small (Tkω can be made arbitrarily close to a ji for large enough |k|).
However, the corresponding amplitudes will be small due to the Cauchy
estimates q

(Ac
k)

2 + (As
k)

2 ≤ Ce−δ|k| ∀k ∈ Zm,

so they will be not harmful.
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Error estimation

Bounding

I The system we solve for iterative improvement of frequencies and
amplitudes is

DFT(Qf )︸ ︷︷ ︸
g(y+∆y)

= DFT(fr0)︸ ︷︷ ︸
b

+ DFT(f − fr0)︸ ︷︷ ︸
∆b

We would get the exact frequencies and amplitudes if ∆b = 0.
I The error in frequencies and amplitudes is given, at first order, by

‖∆y‖∞ . ‖Dg(y)−1‖∞‖∆b‖∞.

I Bounds can be obtained for ‖Dg(y)−1‖∞ and ‖∆b‖.
I Main idea: instead of the DFT, bound the WFT, for which

I explicit formulae can be obtained, that
I are more easily handled.



Long Time Integrations

Refined Fourier analysis procedures

Error estimation

Bound for ‖Dg(y)−1‖∞
We can write

Dg(y) =: M =

0BBB@
2 B0,1 . . . B0,Nf

0 B1,1 . . . B1,Nf

...
...

. . .
...

0 BNf ,1 . . . BNf ,Nf

1CCCA .

We split M = MD + MO,

M =

0BBB@
2 0 . . . 0
0 B1,1 . . . 0
...

...
. . .

...
0 0 . . . BNf ,Nf

1CCCA +

0BBB@
0 B0,1 . . . B0,Nf

0 0 . . . B1,Nf

0
...

. . .
...

0 BNf ,1 . . . 0

1CCCA .

M is close to block-diagonal, so the idea is to obtain bounds for ‖M−1
D ‖, ‖MO‖ and

use

‖(MD + MO)−1‖ ≤ ‖M−1
D ‖

1− ‖M−1
D ‖‖MO‖

.
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Bound for ‖∆b‖∞
We have

‖∆b‖ ≤ 2C max
j∈J

∞∑
|k|=r0

e−δ|k||h̃nh
N (Tkω − j)|

where |h̃nh
N | is the envelope displayed below (N = 16, nh = 0).
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Refined Fourier analysis procedures

Error estimation

Bound for ‖∆b‖∞
We have

‖∆b‖ ≤ 2C max
j∈J

∞∑
|k|=r0

e−δ|k||h̃nh
N (Tkω − j)|

The Diophantine condition gives a lower bound for |Tkω − j|:

|Tkω − j| ≥ TD
(|k|+ |kj|)τ

− 1.

For |k| small, |h̃nh
N (Tkω − j)| � 1.

After some order r∗, |h̃nh
N (Tkω − j)| may approach 1.

Therefore,

‖∆b‖ ≤ 2C
(

max
j∈J

r∗−1∑
|k|=r0

e−δ|k||h̃nh
N (Tkω − j)|+ max

j∈J

∞∑
|k|=r∗

e−δ|k|
)
.
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Bound for ‖∆b‖∞
In

‖∆b‖ ≤ 2C
(

max
j∈J

r∗−1∑
|k|=r0

e−δ|k||h̃nh
N (Tkω − j)|+ max

j∈J

∞∑
|k|=r∗

e−δ|k|
)
,

I The first term is bounded by replacing the DFT by the WFT. This
introduces an additional error term due to this approximation.

I All the sums are reduced to sums of the form
∑

j jαe−δj, which are
bounded by incomplete Gamma functions.
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Accuracy test
We consider the quasi–periodic function (ω = (1,

√
2), ϕ = (0.2, 0.3))

f0.9(t) =
sin(2πω1t + ϕ1)

1− 0.9 cos(2πω1t + ϕ1)
· sin(2πω2t + ϕ2)

1− 0.9 cos(2πω2t + ϕ2)
.

Explicit formulae for frequencies and amplitudes can be obtained, as well as
the Cauchy estimates and the Diophantine condition.
We have performed Fourier analysis of this function for several T,N,
computing the first 20 frequencies (|k| ≤ 5).
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Error estimation

Accuracy test

Error in amplitudes only:
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