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Abstract

We investigate the main phase space properties of the QR-flow when restricted to up-
per Hessenberg matrices. A complete description of the linear behavior of the equilibrium
matrices is given. The main result classifies the possible α- and ω-limits of the orbits for this
system. Furthermore, we characterize the set of initial matrices for which there is conver-
gence towards an equilibrium matrix. Several numerical examples show the different limit
behavior of the orbits and illustrate the theory.
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1 Introduction

One of the basic problems in numerical linear algebra is the computation of eigenvalues and
eigenvectors of a matrix. To this end, one uses iterative methods and, among them, the methods
based on QR-iteration are usually effective [15]. As an alternative, there are methods based
on the solution of a Cauchy problem of an ordinary differential equation in the space of n-
dimensional matrices. We refer to the review [6] for a general description of this type of methods.
Here, we study the so called QR-flow which can be seen as the continuous analogous of the QR-
iteration.

The QR-flow for symmetric Jacobi (real tridiagonal) matrices X was first derived in the
context of the Toda lattice [29] for a finite number of mass points. In Flaschka variables [13]
the equations of motion can be rewritten in Lax form

X ′ = [X, k(X)] = Xk(X)− k(X)X, (1)

where k(X) = X−− (X−)> is a skew-symmetric projection of X (where X− is the strictly lower
triangular part of X). The Lax pair structure implies the following properties:

1. The eigenvalues of the linear operator X are integrals of motion of (1), that is, the flow
X(t) is isospectral, see [13]. In particular, the coefficients of the characteristic polynomial
of X are also first integrals.

2. Given a real n-dimensional matrix A, the (unshifted) QR-iteration algorithm applied to
X0 = exp(A) is the evaluation at integer times of X(t) (see [28, 11]). For this reason, the
flow is usually referred as the QR-flow.

For the Toda lattice, the coefficients of the characteristic polynomial of X are independent first
integrals in involution, see [19, 13]. Moreover, the solution X(t) converges to a diagonal matrix,
see [23]. The last convergence property also holds whenever the QR-flow is considered on the
set of symmetric matrices, see [24]. We refer to [30, 22] for further details on the Toda lattice
and its generalizations.

The goal of this paper is to analize the dynamics of the QR-flow when applied to upper
Hessenberg general matrices. This flow interpolates (in a proper way) the QR-iterates of the
exponential of the initial matrix. The main result gives a detailed description of the structure
of the α, ω-limit sets for any initial n-dimensional upper Hessenberg matrix.

We recall (see for example [17]) that, given an ordinary differential equation on Rn such that
defines a complete flow ϕ (that is, a flow defined for all t ∈ R), the α, ω-limit sets of a point
p ∈ Rn are

α(p) = {q ∈ Rn; ∃(tn) such that tn → −∞ and ϕ(tn, p)→ q as n→∞},
ω(p) = {q ∈ Rn; ∃(tn) such that tn →∞ and ϕ(tn, p)→ q as n→∞}.

One has ω(ϕ(t, p)) = ω(p) and α(ϕ(t, p)) = α(p) for all t ∈ R. As the orbits of the QR-flow are
bounded, see Section 2, these sets are non-empty, compact, invariant by the flow and connected.
A point q is homoclinic to an equilibrium point p if α(q) = ω(q) = {p}. If, on the other hand, if
there exist p1 6= p2 equilibria such that α(q) = {p1} and ω(q) = {p2} then we say that the orbit
of q is heteroclinic to p1 and p2.

We emphasize in this sense that the QR-flow is one of the exceptional cases in which such a
description of the α, ω-limit sets can be obtained. As discussed in this work, this fact is indeed a
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consequence of the concrete Lax pair formulation that admits the QR-flow, see Prop.2.2. Other
results presented in this work and that are required to obtain the main result or that follow
from it include:

• A complete list of the equilibrium matrices is given.

• The behavior of the linearization at the equilibrium matrices is described.

• A characterization of the set of matrices for which the QR-flow converges to a limit matrix,
that is, of the set matrices that are homo/heteroclinic to equilibria.

• The structure of the α- and ω-limits, including equilibrium matrices, periodic orbits and/or
invariant tori.

• Estimates on the rate of convergence towards the α- and ω-limits are explicitly derived.

• Several paradigmatic examples of the different theoretical situations are given.

We believe that these results can be potentially useful to design adapted algorithms for com-
puting the spectrum of a general matrix (we recall that any matrix can be reduced to an upper
Hessenberg, see for instance [15]). In this sense we remark that

• We show that a real Schur normal form for any initial upper Hessenberg matrix can be
computed (but clearly not in an efficient way!) by combining the QR-flow with the QR-
iteration without any shift strategy.

• Any effective implementation of the QR-iteration requires shifts strategies. Although in
the flow setting such strategies are useless, the QR-flow can be numerically integrated
using a variable stepsize integrator. If the numerical integrator is chosen properly, the
timesteps can be larger than one. Since the time-one map of the QR-flow corresponds
to QR-iterates of the exponential of the matrix, the previous property can be though as
performing more than one QR-iterate per integration step.

• In general, continuous realization methods can have some advantages in front their discrete
counterpart, as was pointed out in [5]. In this direction, we would like to add that the
variational equations can be used as a tool to study the smooth dependence of solutions on
parameters. For the QR-flow setting, this means that one can obtain (in a straightforward
way) Taylor expansion of the eigenvalues for matrices depending on parameters. This can
be useful for bifurcation analysis.

The QR-flow is a particular example of an isospectral flow, that is, a flow such that all the
points of an orbit are similar matrices. In the case of the QR-flow, the points of an orbit are
orthogonally similar matrices. Due to the simple structure of the QR-flow equations we have
used a high-order Taylor method for numerical integration of the ODE. We are aware of adapted
methods for isospectral flows [2, 3] which can be very convenient in this setting. However, we
stress that by keeping the local error below the machine accuracy, the Taylor integrator respects
isospectrality up to numerical errors (but nothing prevents from a bias for very long times of
integration). We refer to [21] for analogous comments in the symplectic setting.
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The main result of this paper is inspired by the analogous Parlett’s result in [26] for the QR-
iteration. For reader’s convenience we briefly recall the Parlett’s result. Such a result describes
the form to what tend the QR-iterates (H(s))s∈N of an initial unreduced upper Hessenberg
matrix H(1). Concretely,

Theorem 1.1. (Parlett’68) Let w1 > . . . wr > 0 the distinct modulus of the eigenvalues of
H(1). Of the eigenvalues of modulus wi, let p(i) have even multiplicities mi

1 ≥ mi
2 ≥ · · · ≥

mi
p(i) > mi

p(i)+1 = 0, and let q(i) have odd multiplicities ni1 ≥ ni2 ≥ · · · ≥ niq(i) > niq(i)+1 = 0.

If 0 /∈ Spec (H(1)) then, as s → ∞, H(s) becomes block triangular with blocks H
(s)
i,j , i ≤ j.

Moreover, Spec (H
(s)
i,i ) converges to the set of eigenvalues with modulus ωi. Each H

(s)
i,i tends to a

block triangular substructure in which emerge mi
j−mi

j+1 unreduced diagonal blocks of dimension

j for 1 ≤ j ≤ p(i), and nij − nij+1 unreduced diagonal blocks of dimension j for 1 ≤ j ≤ q(i).
The union of the spectra of these blocks converges to the eigenvalues of even and odd multiplicity
respectively. If, on the other hand, 0 ∈ Spec (H(1)) and has multiplicity m, the last m columns
and m rows are discarded from H(s) and the previous statement holds.

The paper is organized as follows. In Section 2 we present the equations of the QR-flow
for upper Hessenberg matrices and we state some basic properties. In Section 3 we obtain
the equilibrium matrices for the QR-flow and we describe their linear behavior (that is, the
behavior of the linearization of the QR-flow at the equilibrium matrix). In particular, a complete
description of the spectrum of the linearised system at the equilibrium matrices is given. Some
technical lemmas used to this end are given in Appendix A. Next, in Section 4, we discuss
about the structure of the elements of the ω-limit set of any initial matrix. As said, the main
result can be seen as the analogous of Parlett’s classical result in [26] but in the flow setting.
Moreover, for the QR-flow a detailed description of the ω-limit set, making explicit the order in
which the diagonal blocks appear, can be obtained: given X0 ∈ Hn which is not an equilibrium
matrix, either ω(X0) is an equilibrium matrix or it does not contain equilibrium matrices. In
the latter case, the orbit of an element Y ∈ ω(X0) is a (multi-)periodic orbit on a torus of
suitable dimension. A complete proof is given in Section 4, with the help of some technical
lemmas included in Appendices B and C. As a consequence of the previous result we provide
in Sections 4.1 and 4.2 the convergence results in the Wilkinson and/or Parlett sense, useful for
the numerical computation of eigenvalues using the QR-flow. Also, the velocity of convergence
towards the ω-limit behavior is explicitly obtained. In Section 4.3 we characterize the set of initial
matrices for which there is convergence of the QR-flow to an equilibrium matrix. In particular,
the orthogonal, normal and symmetric matrices are included in this set, see Section 4.3.1.

In Section 5 we consider the restriction of the QR-flow to dimensions 2,3 and 4, for which
further details on the dynamics of the ω-limit can be explicitly given. In Section 6 we illustrate
the complexity of the phase space in a simple 3-dimensional example. Finally, in Section 7 we
provide some conclusions and possible future research directions.

The notation in Table 1 will be used through the text. On the other hand, we shall use the
Diag and diag operators through the text: if Ai ∈Mni,ni , 1 ≤ i ≤ m, then

Diag(A1, . . . Am) =

 A1

. . .

Am

 ∈ BDn
n1,...,nm

and, ifA ∈ BUTn
n1,...,nm

∪BLTn
n1,...,nm

, then diag(A) = (A1,1, . . . , Am,m) ∈Mn1,n1×· · ·×Mnm,nm .
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Mn,m Set of n×m real matrices.

In Identity matrix of dimension n

Real matrices subsets:

Hn Set of n-dimensional upper Hessenberg matrices

H?
n Set of n-dimensional unreduced upper Hessenberg matrices

Tn Set of n-dimensional upper triangular matrices

Dn Set of n-dimensional diagonal matrices

On Set of n-dimensional orthogonal matrices

Symn Set of n-dimensional symmetric matrices

Skewn Set of n-dimensional skew-symmetric matrices

Block real matrices subsets:

BUTn
n1,...,nm

Set of n-dimensional block upper triangular matrices with

diagonal blocks belonging to Mni,ni , i = 1, . . . ,m,
n = n1 + · · ·+ nm.

BDn
n1,...,nm

Set of n-dimensional block diagonal matrices with diagonal

blocks belonging to Mni,ni , i = 1, . . . ,m, n = n1 + · · ·+ nm.

BLTn
n1,...,nm

Set of n-dimensional block lower triangular matrices with

diagonal blocks belonging to Mni,ni , i = 1, . . . ,m,
n = n1 + · · ·+ nm.

Table 1: Notation for the matrices sets used through the text.

2 The QR-flow on Hn as an isospectral flow

It is well-known, see for example [6] and references therein, that given a smooth map k :
Mn,n −→Mn,n the solution of the Cauchy problem

X ′ = [X, k(X)], X(0) = X0, (2)

isX(t) = G(t)−1X0G(t), whereG(t) is the solution of the Cauchy problemG′ = Gk(X(t)), G(0) =
In. Hence the flow defined by (2) is an isospectral flow. On the other hand, if we consider the
Cauchy problem

X ′ = [X, k(X)], X(0) = X0,
G′ = Gk(X), G(0) = In,

then, as before, X(t) = G(t)−1X0G(t), and G(t) is orthogonal if, and only if, k(X) ∈ Skewn

for all X ∈Mn,n. Note that in this case the solution of (2) satisfies ‖X(t)‖2 = ‖X0‖2 and then
the flow is complete (defined for all t ∈ R).
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The QR-flow is obtained by considering k(X) = X− − (X−)> ∈ Skewn, being X− the
strictly lower triangular part of X, in (2) above. The following proposition, see [7, 6], relates
the QR-flow at integer times of X0 ∈Mn,n with the QR-iteration of exp(X0) and associates to
the isospectral flow suitable Cauchy problems with solution the Q and R matrices of the QR-
factorization. Note that the QR-factorizations considered here, and from now on, have diag(R)
with positive elements. This guarantees uniqueness of the QR-factorization provided the matrix
to be factorized is non-singular.

Proposition 2.1. Given X0 ∈ Mn,n denote by X(t) the solution of the Cauchy problem X ′ =
[X, k(X)], X(0) = X0. Define Q(t) and R(t) as the solutions of the Cauchy problems

Q′ = Qk(X(t)), Q(0) = I, and R′ = kc(X(t))R, R(0) = I, (3)

respectively, where kc(X) = X − k(X). Then, for all t ∈ R, the following four properties hold:

1. etX0 = Q(t)R(t),

2. Q(t) ∈ On and R(t) ∈ Tn,

3. X(t) = Q(t)>X0Q(t) = R(t)X0R(t)−1,

4. etX(t) = R(t)Q(t).

Proof: One has Q(t) ∈ On and X(t) = Q(t)>X0Q(t). First we will prove that R is upper
triangular and X(t) = R(t)X0R(t)−1. The first statement is trivial, because kc(X) is upper
triangular for any matrix X. To see the second one we define C(t) = R(t)X0R(t)−1. Then
C ′(t) = [kc(X(t)), C(t)], C(0) = X0. Moreover, X ′(t) = [X, k(X)] = [kc(X(t)), X(t)], X(0) =
X0, and by uniqueness of solutions of the Cauchy problem we get that X(t) = C(t), for all t ∈ R.
With this we have proved 2. and 3. In order to prove 1., we define S(t) = Q(t)>etX0 . Then
S(0) = I and

S′(t) = (Q(t)>)′etX0 +Q>X0e
tX0 = (−k(X(t)) +X(t))S(t) = kc(X(t))S(t).

Again by uniqueness of the solutions we have that S(t) = R(t), which proves 1. Finally, 4.

follows from R(t)Q(t) = Q(t)>etX0Q(t) = etQ(t)>X0Q(t) = etX(t). �

As said, the last proposition implies that eX(n), n ≥ 1, are the iterates of the QR-iteration
applied to the matrix eX0 . Precisely, this means that A1 = eX(0) = Q1R1, A2 = R1Q1 = eX(1) =
Q2R2, A3 = R2Q2 = eX(2) = Q3R3, etc, hence the QR-iterates of eX(0) are given by Ak. This
was first observed in [27]. Note that, in general, Q(k) 6= Qk and R(k) 6= Rk, k ∈ N.

It is immediate to see that the set Hn is invariant by the QR-flow. Indeed, if X0 ∈ Hn,
by Prop. 2.1, we know that X(t) = R(t)X0R(t)−1. As R(t) is upper triangular, it follows that
X(t) ∈ Hn for all t ∈ R. From now on, we shall consider the QR-flow restricted to Hn. In this
case, the equationX ′ = [X, k(X)] defines a dynamical system on RNd , whereNd = (n2+3n−2)/2
is the dimension of the set of upper Hessenberg matrices.

Remark 2.1. It is interesting to comment about the connection of our results and the results on integ-
rability of the QR-flow. In [10] it is proved the integrability of the QR-flow on the open set G of matrices
M ∈Mn,n satisfying the generic assumptions

1. if (M)k ∈Mn−k,n−k denotes the matrix obtained by deleting the first k rows and the last k columns
of M , then one assumes, for 1 ≤ k ≤ [n/2], that Pk(M,λ) = det(M − λIn)k is a polynomial in λ
of degree n− 2k (that is, the leading coefficient does not vanish),

2. the matrix (M −M>)/2 ∈ Skewn has a simple spectrum,
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3. the roots of Pk(M,λ) for 0 ≤ k ≤ [(n− 1)/2] are distinct, and

4. zero is a regular value of the function J : C2 → C given by J(h, z) = det((1− h)M + hM> − zIn).

The authors construct action-angle variables and derive the integrability of the QR-flow on G. As a
consequence of this construction it was proved that the orbit of M ∈ G under the QR-flow is contained
into an invariant connected set diffeomorphic to Rl × Tc for suitable dimensions l and c. Note that:

• As already pointed out in [10] matrices in Hn are not generic in the sense above but integrability on
a suitable open set Ĝ containing Hn could be proved by adapting the previous result, see related
comments in [9]. For generic matrices H ∈ Hn the invariant set containing its orbit must be
diffeomorphic to Rl × Tc being c the number of pairs of complex eigenvalues of H.

• For matrices H ∈ Hn (not necessarily in Ĝ) having at least a pair of complex eigenvalues ω(H)
can be contained into W ∼= Tc. For example in Figs. 5 and 6 we consider matrices H0, H1 ∈ H4

such that ω(H0) ∼= T2 while ω(H1) is a periodic orbit contained in W ∼= T2, in agreement with the
statement of the previous item. But there are also matrices H having at least a pair of complex
eigenvalues such that ω(H) is an equilibrium matrix, see for example cases 5, 6 and 7 in Section 5.3
for H ∈ H4. This situation happens when H is on the stable invariant manifold of an equilibrium
matrix which is neither upper triangular nor skew-symmetric, see Section 4.3.

3 Equilibrium matrices

In this section we characterize which upper Hessenberg matrices are equilibria of the QR-flow.
To this end, it is important to introduce for X ∈ Mn,n and Y ∈ Mm,m the operator BX,Y :
Mn,m →Mn,m defined by

BX,Y (Z) = XZ − ZY. (4)

We also define, for n = m and X = Y , LX = BX,X . Then LX(Z) = [X,Z]. We summarize in
Appendix A some properties of these linear operators.

A matrix X ∈ Hn is an equilibrium matrix of the QR-flow if [X, k(X)] = 0. Given X ∈ Hn

there is m ∈ N and there are (unique) n1, . . . , nm ∈ N such that

X =

 A1,1 · · · A1,m

. . .
...

Am,m

 ∈ BUTn
n1,...,nm

, (5)

where Ai,i ∈ H?
ni

. With this notation we have the following result.

Theorem 3.1. A matrix X ∈ Hn is an equilibrium matrix of the QR-flow if, and only if, for
i = 1, . . . ,m, the block Ai,i in (5) is of the form Ai,i = λiIni +k(Ai,i) and Bk(Ai,i),k(Aj,j)(Ai,j) = 0
for all 1 ≤ i < j ≤ m.

Proof: One has [X, k(X)] = 0 if, and only if, [Ai,i, k(Ai,i)] = 0 for all i and Bk(Ai,i),k(Aj,j) = 0
for all i < j. Since k(Ai,i) ∈ Skewni ∩H?

ni
has simple eigenvalues then Ai,i can be expressed as

a polynomial of degree ni − 1 in k(Ai,i) (see for example Theorem 3.1 in [32]). But Ai,i ∈ H∗n
and one infers sequentially for s = ni − 1, ni − 2, . . . , 2 that the coefficient associated to the
monomial k(Ai,i)

s vanishes. Hence Ai,i = λiIni + µik(Ai,i), for suitable coefficients µi, λi ∈ R.
But k(Ai,i) = λik(Ini) + µik

2(Ai,i) = µik(Ai,i) and one gets µi = 1.
Reciprocally, if Ai,i = λiIni + k(Ai,i) then [Ai,i, k(Ai,i)] = 0 for all 1 ≤ i ≤ m, and X ∈ Hn,

given by (5), is an equilibrium matrix. �
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Remark 3.1. 1. Every fixed point X ∈ Hn is the sum X = A+R, of a matrix A ∈ Skewn∩Hn and
a matrix R ∈ Tn such that they commute. This follows since [X, k(X)] = [R,A] which vanishes if
they commute.

2. The set of equilibria of the QR-flow contains Tn and the set

Zn = {A ∈ Hn, A = λIn +B, B ∈ Skewn, λ ∈ R}.

More general, if one considers X ∈ Skewn ∩Hn as a matrix of BUTn
n1,...,nm

with Ai,i ∈ H?
ni

and
given D = Diag(D1,1, . . . , Dm,m) ∈ BDn

n1,...,nm
with Di,i = λIni

then X + D is an equilibrium
matrix.

3. Under the hypotheses of the Theorem 3.1, if X is an equilibrium matrix then, for any Q ∈
BDn

n1,...,nm
∩On the matrix Q>XQ is an equilibrium matrix.

4. Given 1 ≤ i < j ≤ m such that Spec (k(Ai,i)) ∩ Spec (k(Aj,j)) = ∅ then Ai,j = 0. This is a
consequence of the fact that Ai,j ∈ Ker (Bk(Ai,i),k(Aj,j)) and that Bk(Ai,i),k(Aj,j) is an invertible
operator, see Prop. A.1. Consequently, if this is true for all 1 ≤ i < j ≤ m then X is normal (i.e.
X>X = XX>).

5. Only for n = 2 the set of equilibria is equal to Tn ∪ Zn. For n = 3 if an equilibrium matrix is
not upper triangular then it is normal. For n ≥ 4 there are equilibrium matrices which are neither
upper triangular nor normal, see Section 5.3.

3.1 Eigenvalues of equilibria

The goal of this section is to study the linear behavior at an equilibrium matrix X ∈ Hn.
We denote by F : Hn → Hn the vector field F(X) = [X, k(X)]. One has F(X + εY ) =
F(X) + ε([X, k(Y )] + [Y, k(X)]) +O(ε2) because k(X + εY ) = k(X) + εk(Y ) by linearity of k.
Hence DF(X)Y = [X, k(Y )] + [Y, k(X)], for all Y ∈ Hn.

Consider X as given by (5). The following theorem characterizes the spectrum of DF(X). In
particular, we prove that all the hyperbolic directions of the equilibrium matrix X are associated
to real eigenvalues of DF(X). That is the restriction of the dynamics to the unstable/stable
invariant manifolds W u/s(X) is of repelling/attractor node type (i.e. no focus type hyperbolic
components are present). On the other hand, all equilibrium matrices X have a non-trivial
center manifold W c(X) of, at least, dimension n−m+ 1.

Theorem 3.2. With the previous notation, if X ∈ Hn is an equilibrium matrix one has

Spec (DF(X)) = Spec (DF(k(X))) ∪ SpecB ∪ Dλ,

where

Spec (DF(k(X))) =
⋃

1≤i≤m
Spec (DF(k(Ai,i)), SpecB =

⋃
1≤i<j≤m

Spec (Bk(Ai,i),k(Aj,j)),

and
Dλ =

⋃
1≤i≤m−1

{λi+1 − λi} .

Moreover, all the non-zero real eigenvalues are contained in Dλ. Concretely:

1. The eigenvalues of Bk(Ai,i),k(Aj,j) are ±i (µ1±µ2) where ±iµ1 ∈ Spec (k(Ai,i)) and ±iµ2 ∈
Spec (k(Aj,j)).
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2. Denote by ±iµj, 1 ≤ j ≤ r, with 0 ≤ µ1 < µ2 < · · · < µr, the eigenvalues of k(Ai,i),
where r = (ni + 1)/2 if ni odd and r = ni/2 otherwise. Then the non-zero eigenvalues of
DF(k(Ai,i)) are ±i (µi − µj), 1 ≤ i < j ≤ r, and ±i (µi + µj), 1 ≤ i ≤ j ≤ r, where we
assume i+ j 6= 2 whenever ni odd.

Proof: We consider the following subspaces of Hn. Let M1 ⊂ BUTn
n1,...,nm

be the subspace
of strict upper block triangular matrices, M2 = BDn

n1,...,nm
and M3 ⊂ Hn be the subspace of

matrices B of the form Bi,j = Ai,j if i < j, where A ∈ M1, and Bi,j = −Bj,i if i > j, and
Bi,i = 0. Note that Hn = M1 ⊕M2 ⊕M3 and DF(X)(M1) ⊂M1, DF(X)(M2) ⊂M1 ⊕M2.
This implies that

Spec(DF(X)) = Spec(A1) ∪ Spec(A2) ∪ Spec(A3),

where A1 = DF(X)|M1, A2 = Π2 ◦DF(X)|M2, A3 = Π3 ◦DF(X)|M3, and Πi : Hn →Mi is
the projection of Hn over Mi, i = 2, 3. Moreover, we have that

M1 =

m⊕
i=1

m⊕
j=i+1

M
(i,j)
1 , M2 =

m⊕
i=1

M
(i)
2 , M3 =

m−1⊕
i=1

M
(i)
3 , where

M
(i,j)
1 = {Y = (Yk`)1≤k,`≤m ∈M1 |Yk,` = 0 for (k, `) 6= (i, j)},

M
(i)
2 = {Y = (Yk`)1≤k,`≤m ∈M2 |Yk,` = 0 for (k, `) 6= (i, i)},

M
(i)
3 = {Y = (Yk`)1≤k,`≤m ∈M3 |Yk,` = 0 for k > ` s.t. (k, `) 6= (i+ 1, i)}.

In order to finish the proof of the theorem, we will use the following lemma:

Lemma 3.1. The operators Ai, i = 1, 2, 3 satisfy the following properties:

1. A1(M
(i,j)
1 ) ⊂M

(i,j)
1 , and A1|M(i,j)

1 = −Bk(Ai,i),k(Aj,j),

2. A2(M
(i)
2 ) ⊂M1 ⊕M

(i)
2 , and Π2 ◦ A2|M(i)

2 = DF(Ai,i)

3. A3(M
(i)
3 ) ⊂M1 ⊕M2 ⊕M

(i)
3 and Π3 ◦ A3|M(i)

3 (Y ) = (λi+1 − λi)Y, for all Y ∈M
(i)
3 .

Proof of Lemma 3.1: If Y ∈ M
(i,j)
1 then M = DF(X)Y = [Y,K(X)] ∈ M

(i,j)
1 , where

Mi,j = Yi,jk(Aj,j)− k(Ai,i)Yi,j = −Bk(Ai,i),k(Aj,j). This proves 1.

To prove 2. first we define D = Diag(A1,1, . . . , Am,m) ∈ BDn
n1,...,nm

Then X = D+ X̂, where

X̂ ∈ M1. If Y ∈ M
(i)
2 , then DF(X)Y = [D + X̂, k(Y )] + [Y, k(D)] = [D, k(Y )] + [Y, k(D)] +

[X̂, k(Y )], where [D, k(Y )] + [Y, k(D)] ∈ M
(i)
2 and [X̂, k(Y )] ∈ M1. Therefore, Π2 ◦ A2|M(i)

2 =

DF(Ai,i), and A2(M
(i)
2 ) ⊂M1 ⊕M

(i)
2 .

Finally 3. follows because, if Y ∈M
(i)
3 ,

DF(X)Y =[D + X̂, k(Y )] + [Y, k(D)] = [X̂, k(Y )] + [kc(Y ), k(D)] + [kc(D), k(Y )]

=[X̂, k(Y )] + [kc(Y ), k(D)]− [kc(D), (Y −)>] + [kc(D), Y −].

Then, [X̂, k(Y )] + [kc(Y ), k(D)]− [kc(D), (Y −)>] ∈M1⊕M2 and [kc(D), Y −] = Z1 +Z2, where

Z1 ∈M1 ⊕M2 and Z2 ∈M
(i)
3 , such that (Z2)i+1,i = (λi+1 − λi)Yi+1,i.

�
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Following with the proof of the theorem, we have

Spec(A1) =
m⋃
i=1

m⋃
j=i+1

Spec(Bk(Ai,i),k(Aj,j)),

Spec(A2) =
m⋃
i=1

Spec(DF(Ai,i)), Spec(A3) =
m−1⋃
i=1

{λi+1 − λi}.

It remains to see that the eigenvalues of Bk(Ai,i),k(Aj,j) and of DF(Ai,i) are of the form
γ = iµ, µ ∈ R. From Prop. A.1 in Appendix A, taking into account that k(Ai,i) are skew-
symmetric, it follows that the eigenvalues of Bk(Ai,i),k(Aj,j) are of this form. From Prop. 3.2 it
follows the result about the spectrum of DF(Ai,i), see below. �

Remark 3.2. In particular, it follows from the proof of Lemma 3.1 that if X ∈ Tn is an equilibrium
matrix then DF(X) is diagonalizable. This was proved also in [4].

As a consequence of Theorem 3.2, in order to obtain all the eigenvalues of DF(X), we need to
determine the eigenvalues of the blocks Ai,i ∈ Skewn ∩H?

n. Hence, below we consider X ∈ H?
n.

First we begin with a proposition relating the eigenvalues and the eigenvectors of the operator
LX with those of DF(X).

Proposition 3.1. Let X ∈ H?
n ∩ Skewn.

1. If S ∈ KerLX ∩ Symn, S 6= 0, then R = S − k(S) ∈ Tn, R 6= 0, is such that DF(X)R ∈
Skewn and DF(X)2(R) = 0. Moreover, DF(X)(R) = 0, iff S = R = λI.

2. If S ∈ Symn ⊕ i Symn is an eigenvector of eigenvalue λ 6= 0 of LX and A = k(S),
R = S − k(S) then A + λ−1[X,A] + R is an eigenvector of eigenvalue −λ of DF(X).
Moreover, if X ∈ Hn then A+ λ−1[X,A] +R ∈ Hn.

Proof:

1. Recall that DF(X)R = [X, k(R)] + [R, k(X)] = [R, k(X)] = [R,X]. Moreover, by hypo-
thesis

LX(S) = [X,S] = [X, k(S)] + [X,R] = 0.

This means that B = [R,X] = [X, k(S)] is skew-symmetric. Finally,

DF(X)B = [X,B] + [B,X] = 0.

To prove the second part, notice that if DF(R) = [R,X] = 0 then [X, k(S)] = [X,S] = 0.

First we claim that if [X,S] = (aij)1≤i,j≤n, [X, k(S)] = (bij)1≤i,j≤n and a11 = b11 = 0 and
aij = bij = 0, for 2 ≤ i, j ≤ n then S is a diagonal matrix. Indeed, if n = 2 is obviously
true. Suppose that it is true for n− 1 ≥ 2 then we can write

S =

(
s11 c>

c S1

)
, X =

(
0 −b>
b X1

)
,

where S1 and X1 are (n− 1)× (n− 1) matrices such that S1 = S>1 and X>1 = −X1, and
b, c ∈ Rn−1, such that b> = (β, 0, . . . , 0), and β 6= 0. It is immediate to see that

k(S) =

(
0 −c>
c k(S1)

)
.
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Then

[X,S] =

(
−2b>c b>(s11I − S1)− c>X1

(s11I − S1)b+X1c bc> + cb> + [X1, S1]

)
,

[X, k(S)] =

(
0 c>X1 − b>k(S1)

X1c− k(S1)b cb> − bc> + [X1, k(S1)]

)
.

If c = (c1, . . . , cn−1), as, by hypothesis, b>c = 0 then c1 = 0 and the matrices cb> ± bc>
have all their elements equal to zero except, perhaps, the ones of the first row and first
column from the second element on. Then, by the induction hypothesis, we have that S1

is a diagonal matrix. This implies that bc> = cb>, and, therefore, c = 0, which implies
that S is also a diagonal matrix.

Finally, in order to finish the proof of the first part of the Prop. 3.1, we note that if
[X,S] = 0 and S is diagonal, (this implies that [X, k(S)] = [X, 0] = 0) then S = λI.

2. Suppose that [X,S] = λS, where λ 6= 0. If A = k(S) and R = S − k(S) we have

DF(X)S = [X, k(A+R)] + [A+R, k(X)] = [X,A] + [A,X] + [R,X] = [R,X]

= [S,X]− [A,X] = −λS − [A,X] = −λA− [A,X]− λR
= −λ(A+ λ−1[A,X] +R).

Then, if H = A + λ−1[A,X] + R we have that DF(X)H = −λH. Finally, if X is up-
per Hessenberg then [R,X] + λR = −λ(A + λ−1[A,X]), and as [R,X] and R are upper
Hessenberg, so is H. �

Proposition 3.2. Let X ∈ H?
n ∩ Skewn. Then

1. The dimension of KerDF(X) is n. In particular Skewn ⊂ KerDF(X).

2. All the non-zero eigenvalues of DF(X) are pure imaginary and simple.

3. The dimension of the generalized eigenspace of eigenvalue zero is (3n − 2)/2 if n is even
and (3n− 1)/2 if n is odd.

Proof: Consider Y ∈ Hn such that DF(X)(Y ) = 0. We express Y = R + A, R ∈ Tn,
A ∈ Skewn. One has DF(X)(Y ) = DF(X)(R) = 0. By Prop. 3.1 the matrix R is of the form
R = λIn. This proves item 1.

By Prop. A.2 all the non-zero eigenvalues of LX |Symn correspond to eigenvalues of DF(X)
(note that there is a change of sign). Moreover, there are n2 simple pure imaginary eigenvalues
of LX |Symn if n is even and n2−1 otherwise. This proves that there are, at least, n2 (or n2−1
if n odd) eigenvalues of DF(X) different from zero.

Now, consider Y ∈ Hn such that DF(X)2(Y ) = 0. Expressing Y = R + A, R ∈ Tn,
A ∈ Skewn, then DF(X)2(Y ) = DF(X)2(R) = 0. By Prop. A.2 the dimension of the set of
matrices R ∈ Tn such that DF(X)2(R) = 0 equals the dimension of KerLX ∩ Symn and this
dimension is n/2 if n is even and (n+1)/2 otherwise. Adding n−1 (the dimension of Skewn) we
obtain that the dimension is larger or equal than (3n− 2)/2 if n even and (3n− 1)/2 otherwise.

Finally, since the sum of the dimensions of all the eigenspaces equals the dimension of Hn,
there are no other matrices in the generalized eigenspace of eigenvalue zero of DF(X) and there
are no more eigenvalues of DF(X) different from zero. �

Remark 3.3. The previous theorems provide a systematic way to proceed to determine the equilibrium
matrices and its spectra. We shall give further details for dimensions n ≤ 4 in Section 5 where a complete
description is possible and helps to clarify the general procedure.
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Example 3.1. We consider

X =


0 −2 0 0
2 0 −3 0
0 3 0 −4
0 0 4 0

 ∈ H?
4 ∩ Skew4. (6)

The eigenvalues of X are

λ±,± = ±i

√
(29± 3

√
65)/2 ∈ iR.

Then DF(X) ∈M13,13 and, by Theorem 3.2,

Spec (DF(X)) =

{
05,±3

√
5 i ,±

√
13 i ,±

√
58± 6

√
65 i

}
.

On the other hand, Ker (DF(X)) = 〈I4〉⊕(Skew4∩H4). From Prop. 3.2 one has dim(Ker (DF(X)))) =
4, and DF(X) posseses a generalized eigenvector of eigenvalue 0 associated to a Jordan block.

As follows from the theoretical results, this is, indeed, the general situation: given X =
(xi,j)1≤i,j≤n ∈ Skew4 ∩ H4 one has Ker (DF(X)) = 〈I4〉 ⊕ (Skew4 ∩ H4) and a generalized
eigenvector is given by

T =


0 0 x2,1 0
0 −x3,2

2 0 x4,3

0
x22,1−x24,3−x23,2

2x3,2
0

0
x22,1−x24,3

2x3,2

 ,

as one can check that DF(X)(T ) ∈ Skew4 ∩H4 (i.e., it belongs to Ker (DF(X))).
If x3,2 = 0 (i.e. if X is reduced), the linear dynamics around X changes. Given X ∈

Skew4 ∩ H?
4 there exists Q ∈ O4 such that XR := Q>XQ = XR ∈ Skew4 ∩ (H4 \ H?

4).
Obviously SpecDF (XR) = SpecDF (X). However, Ker (DF(XR)) = 〈Is2〉⊕〈Ii2〉⊕ (Skew4∩H4)
being

Is2 =

(
I2 0
0 0

)
, and Ii2 =

(
0 0
0 I2

)
,

and, consequently, dim(Ker (DF(XR))) = 5 > dim(Ker (DF(X)))).

Remark 3.4. Let X,R ∈ Tn. Then DF(X)R = 0 and, therefore, zero is an eigenvalue. The other
eigenvalues of DF(X) are xi+1,i+1 − xi,i, i = 1, . . . , n− 1, where X = (xij)1≤i,j≤n.

4 Asymptotic behavior of the orbits of the QR-flow

In this section we prove that, given X0 ∈ Hn the set ω(X0) is an equilibrium matrix or it does
not contain equilibrium matrices. In the latter case, the orbit of an element Y ∈ ω(X0) is a
(multi-)periodic orbit on a torus of suitable dimension. Concretely, we characterize the block
diagonal part (for suitable blocks) of the elements of the ω-limit of an initial matrix X0 ∈ Hn.
In the general case, given Y ∈ ω(X0), the orbit of Y is a (multi-)periodic function defined over
a torus of dimension the number of eigenvalues with non-vanishing imaginary part divided by
two. Hence, this torus has dimension ≤ n/2 and it is embedded into a phase space of dimension
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Nd = (n2 + 3n − 2)/2. Note that resonances between the frequencies can decrease the number
of fundamental periods to describe the orbit and, in such a case, the torus can be of lower
dimension.

The ordering of the diagonal blocks of Y gives us a decomposition of the torus into a product
of lower dimensional tori, obtained as a projection of the torus into suitable invariant subspaces
(under the QR-flow) of lower dimension related to the number of non-real eigenvalues of Y with
the same real part.

Remark 4.1. 1. Note that the equation (1) is invariant with respect to t 7→ −t, X 7→ −X. In
particular, the reversing involution implies that the ω- and α-limit sets have the same properties.
Consequently, we just consider the ω-limit set in the following.

2. Let X0 ∈ Hn and assume that ω(X0) contains an equilibrium matrix Y . Then, X0 = A + B
where A ∈ Skewn, Spec(B) ⊂ R and AB = BA. Indeed, by Remark 3.1 item 1, Y = Ã + R
with Ã ∈ Skewn and R ∈ Tn. The property follows because there exists Q ∈ On such that
X0 = Q>Y Q = Q>ÃQ+Q>RQ = A+B.

Remark 4.2. We will suppose that the matrix X0 is unreduced. Otherwise, we divide X0 into blocks with
unreduced diagonal blocks. The form of the system X ′ = [X, k(X)] implies that if X0 = (xij)1≤i,j≤n the
QR-flow is invariant in any hypersurface xj+1,j = 0. Then, X(t) = (Xi,j(t))1≤i,j≤m ∈ BUTn

n1,...,nm
being

Xi,i(t), 1 ≤ i ≤ n, unreduced. One has etX(0) = Q(t)R(t), where diag(etX(0)) = (etX1,1(0), . . . , etXm,m(0)).
Moreover, Q(t) = Diag(Q1(t), . . . , Qm(t)) ∈ BDn

n1,...,nm
and Xi,j(t) = Q>i (t)Xi,j(0)Qj(t), 1 ≤ i ≤ j ≤ m.

This implies that Y ∈ ω(X0) admits the same block partition defined by the diagonal blocks of X0, that
we call Y1,1, . . . , Yk,k, and Yj,j ∈ ω(Xj,j), j = 1, . . . , k.

The Theorem 4.1 below characterizes the structure of the matrices Y ∈ ω(X0). A basic tool
to prove it is to reduce X0 ∈ H?

n to a suitable reordered Jordan normal form. The existence
of such a Jordan normal form follows from by Prop. 4.1 below. Let us first introduce some
notations. Given λ ∈ Spec(X0) we denote by mult(λ) the (algebraic) multiplicity of λ. Assume
that α1 > α2 > · · · > αm, m ≤ n, are the real parts of the eigenvalues of X0. One has

Spec(X0) =
m⋃
j=1

Rj =
m⋃
j=1

(R0
j ∪R1

j ),

where Rj = {λ ∈ Spec(X0),Reλ = αj}, R0
j is the set of λ ∈ Rj of even multiplicity and R1

j

is the set of λ ∈ Rj of odd multiplicity. Denote by 2mi
j − i the maximum multiplicity of the

eigenvalues of Rij , i = 0, 1. Note that either m0
j = m1

j or m0
j = m1

j − 1 assuming that all blocks
(associated to eigenvalues of different multiplicity) are present, see Remark 4.3 for other cases.
We shall denote by dj = 2sj − 1 where sj = m0

j +m1
j . Furthermore,

Rij =

mi
j⋃

k=1

Rij,k, i = 0, 1, where Rij,k = {λ ∈ Rij , with multiplicity 2k − i}.

Let cij,k := #Rij,k, i = 0, 1, and assume that

Rij,k = {αj , αj ± iβ
(1)
j,k,i, . . . , αj ± iβ

((cij,k−1)/2)

j,k,i }, if cij,k odd, and

Rij,k = {αj ± iβ
(1)
j,k,i, . . . , αj ± iβ

(cij,k/2)

j,k,i }, if cij,k even.

If cij,k is odd we consider the vector of block-matrices Λij,k=(Λij,k,1, . . . ,Λj,k,(cij,k+1)/2), where

Λij,k,1 = αj , Λij,k,` =

(
αj −β(`−1)

j,k,i

β
(`−1)
j,k,i αj

)
, ` = 2, . . . , (cij,k + 1)/2,
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Analogously, for cij,k even, we consider Λij,k = (Λij,k,1, . . . ,Λj,k,cij,k/2
), where

Λij,k,` =

(
αj −β(`)

j,k,i

β
(`)
j,k,i αj

)
, ` = 1, . . . , cij,k/2.

Proposition 4.1. Let X0 ∈ H?
n and assume the previous described structure and the notation

introduced above. There exists T ∈ GL(n,R) with the following properties:

1. T−1X0T = D where D ∈ BDn
n1,...,nm

is such that

Dj,j =


D

(j)
1,1
...

. . .

D
(j)
dj ,1

· · · D
(j)
dj ,dj

 ∈ BLT
nj
r1,j ,...,rdj,j

,

being D
(j)
k,k ∈ BLT

rk,j
ν , where ν = ν(j, k) is equal to (2, 2, . . . , 2) if rk,j is even, and ν =

(1, 2, . . . , 2) otherwise. Moreover,

diag
(
D

(j)
sj±2k,sj±2k

)
=
(

Λ1
j,mj

,Λ1
j,mj−1

, . . . ,Λ1
j,k+1

)
,

diag
(
D

(j)
sj±(2k+1),sj±(2k+1)

)
=
(

Λ0
j,mj

,Λ0
j,mj−1

, . . . ,Λ0
j,k+1

)
,

and

Spec(D
(j)
sj−2k,sj−2k) = Spec(D

(j)
sj+2k,sj+2k) = R1

j \ ∪k`=1R
1
j,`,

Spec(D
(j)
sj−2k−1,sj−2k−1) = Spec(D

(j)
sj+2k+1,sj+2k+1) = R0

j \ ∪k`=1R
0
j,`,

2. T−1 = LU , where L ∈ BLTn
n1,...,nm

and U ∈ BUTn
n1,...,nm

. The matrix U is such that

(a) The matrices Uj,j are of the form

Uj,j =


U

(j)
1,1 · · · U

(j)
1,dj

. . .
...

U
(j)
dj ,dj

 , U
(j)
k,k ∈ BUT

rk,j
ν .

(b) UX0U
−1 = D +N , where N ∈ BLTn

n1,...,nm
is such that Ni,i = 0 for 1 ≤ i ≤ m.

See Appendix B for a proof of Prop. 4.1. The reordered Jordan normal form that we will
use is derived as follows. For m ≥ n, we denote by E(m,n) the matrix

E(m,n) =

(
In
0

)
∈Mm,n.

For each block Dj,j ∈ BLT
nj
r1,j ,...,rdj,j

there exists a matrix L̂j,j ∈ BLT
nj
r1,j ,...,rdj,j

, such that

L̂ = Diag(L̂1,1, . . . , L̂m,m) reduces D = Diag(D1,1, . . . , Dm,m) to the following form

L̂DL̂−1 =:D̃ = Diag(D̃1,1, . . . , D̃m,m), D̃j,j = L̂j,jDj,jL̂
−1
j,j ∈ BLT

nj
r1,j ,...,rdj,j

, (7)
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where

D̃
(j)
sj±2k,sj±2k = Diag(Λ1

j,mj
,Λ1

j,mj−1
, . . . ,Λ1

j,k+1) = Diag(D̃
(j)
sj±2k+2,sj±2k+2,Λ

1
j,k+1),

D̃
(j)
sj±(2k+1),sj±(2k+1)=Diag(Λ0

j,mj
,Λ0

j,mj−1
,. . .,Λ0

j,k+1)=Diag(D̃
(j)
sj±(2k+3),sj±(2k+3),Λ

0
j,k+1),

and the non-zero blocks of D̃ outside the diagonal are:

D̃sj+k+2,sj+k=E(rsj+k,j , rsj+k+2,j)
>, D̃sj−k+1,sj−k−1 =E(rsj+k−1,j , rsj+k+1,j), k≥0.

The existence of the lower triangular L̂ introduced above follows from the fact that X0 ∈ H?
n

and hence it is nonderogatory (i.e. such that all the eigenvalues have geometric multiplicity one).
The matrix D̃ is the reordered Jordan normal form of X0 that will be used to prove Theorem 4.1.
See Fig. 1 right for an illustration of the form of a typical block D̃j,j of D̃. Similar canonical
normal forms were used in [25, 26] to study the convergence of the QR-iteration in the complex
setting.

Theorem 4.1. Let X0 ∈ H?
n with the structure and notation introduced in Prop 4.1. The

structure of Y ∈ ω(X0) has the following properties:

1. Y is of the form

Y =

 Y1,1 · · · Y1,m

. . .
...

Ym,m

 ∈ BUTn
n1,...,nm

,

where Spec(Yj,j) = Rj and nj =
∑

λ∈Rj
mult(λ).

The subdiagonal elements of X(t) that lead to the block structure of Y above are o(exp((αj+1−
αj + η)t)), as t→∞ and for any η > 0, see Lemma 4.1.

2. The matrices Yj,j are of the form

Yj,j =


Y

(j)
1,1 · · · Y

(j)
1,dj

. . .
...

Y
(j)
dj ,dj

 ∈ BUT
nj
r1,j ,...,rdj,j

,

being Y
(j)
k,k ∈ H?

rk,j
, for 1 ≤ k ≤ dj = 2sj − 1, sj = m0

j +m1
j , rk,j = #Spec(Y

(j)
k,k ), therefore

all the eigenvalues of Y
(j)
k,k are simple. Moreover,

Spec(Y
(j)
sj−2k,sj−2k)=Spec(Y

(j)
sj+2k,sj+2k)=R1

j \
k⋃
`=1

R1
j,`, 0≤k≤m1

j − 1,

Spec(Y
(j)
sj−2k−1,sj−2k−1)=Spec(Y

(j)
sj+2k+1,sj+2k+1)=R0

j \
k⋃
`=1

R0
j,`, 0≤k≤m0

j − 1.

The subdiagonal elements of (X(t))j,j that lead to the block structure of Yj,j tend to zero
(at least, see Remark 4.3 below) as t−1, see Lemma 4.2.
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Remark 4.3. An example of the form of a block Yj,j is shown in Fig. 1 left. We remark that, in a general
situation, some of the blocks Yj,j might be missing depending on the multiplicity of the eigenvalues of
X0. However, one can consider zero-dimensional blocks to apply the general theorem. This will provide
zero-dimensional blocks in the ω-limit that have no meaning and should be removed from the final
structure. Accepting this convection, Theorem 4.1 provides the structure of the elements of the ω-limit
in all situations. See the following Example 4.1.

Example 4.1. Let X0 ∈ H?
7 such that Spec (X0) = {1 + i , 1 − i , 1 + i , 1 − i , 2 + i , 2 − i , 2},

that is mult(1 + i ) = mult(1 − i ) = 2, mult(2 + i ) = mult(2 − i ) = mult(2) = 1. One has
R1 = {2 + i , 2 − i , 2} and R2 = {1 + i , 1 − i }. Let us examine the block associated to R1 and
R2 separately.

The structure of the block Y1,1 associated to R1 is compatible with the general structure
of Theorem 4.1. The eigenvalues of Y1,1 are those of X0 with real part equal to two. One has
R0

1 = ∅, R1
1 = R1 and m0

1 = 0, m1
1 = 1. Moreover, s1 = d1 = 1 and n1 = r1,1 = 3, which gives

only one three-dimensional sub-block Y1,1 = Y
(1)

1,1 ∈ H?
3.

The block associated to R2 does not have the general structure of the Theorem 4.1 since
all the eigenvalues of R2 have multiplicity two and the block associated to multiplicity one is
missed. One has R0

2 = R2, R1
2 = ∅. Hence, we add a “ficticious” zero-dimensional block so that

m0
2 = m1

2 = 1 and we consider the block Y2,2 associated to this modified structure of R2. Then,

s2 = 2, d2 = 3 and n2 = 4. This gives three diagonal sub-blocks Y
(2)
i,i ∈ H?

ri,i , i = 1, 2, 3, of

Y2,2 with dimensions r1,1 = 2, r2,2 = 0 and r3,3 = 2. This holds since R0
2,1 = {1 + i, 1 − i} and

R1
2,1 = ∅, hence Spec (Y

(2)
2,2 ) = ∅ and Spec (Y

(2)
1,1 ) = Spec (Y

(2)
3,3 ) = R0

2. The block Y2,2 contains the

eigenvalues of X0 with real part equals one. The block Y
(2)

2,2 is zero-dimensional and we remove
it.

Finally, we conclude from the previous considerations that Y ∈ ω(X0) is such that diag(Y ) =

(Y1,1, Y2,2), Y1,1 ∈ H?
3, diag(Y2,2) = (Y

(2)
1,1 , Y

(2)
3,3 ), Y

(2)
i,i ∈ H?

2, i = 1, 3.

Proof: Let T ∈ Mn,n be the matrix that reduces X0 ∈ H?
n to the form given by Prop. 4.1.

In particular, X0 = TDT−1 and T = U−1L−1. One has

etDL = etDLe−tDetD = L̃(t)etD, (8)

where L̃(t) ∈ BLTn
n1,...,nm

with L̃(t)i,i = Ini . Indeed, limt→∞ L̃(t) = In. This follows from the
following fact. Consider i > j, then αi − αj < 0 and

L̃i,j(t) = etDi,iLi,je
−tDj,j = e(αi−αj)tet(Di,i−αiIni )Li,je

−t(Dj,j−αjInj ),

which tends to 0 as t→∞ because et(Di,i−αiIni ) grows, at most, as a polynomial in t.

Denote by T = Q1R1 the QR-factorization of T . Using (8) it follows that

etX0 = TetDT−1 = Q1R1e
tDLU = Q1R1L̃(t)etDU. (9)

Now, consider the QR-factorization R1L̃(t) = Q̂(t)R̂(t). Then limt→∞ Q̂(t)R̂(t) = R1 and,
by uniqueness of the QR factorization, it follows that limt→∞ Q̂(t) = In.

By Prop. 2.1 we have that etX0 has a QR factorization etX0 = Q(t)R(t), and the solution of
the QR-flow with initial condition X0 is X(t) = Q(t)−1X0Q(t).
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On the other hand, R̂(t)etDU ∈ BUTn
n1,...,nm

. Therefore, the orthogonal matrix of its QR-

factorization is diag(Q1(t), . . . , Qm(t)). By the uniqueness of the QR-factorization, we obtain

Q(t) = Q1Q̂(t)Diag(Q1(t), . . . , Qm(t)), (10)

and, since Q>1 X0Q1 = R1DR
−1
1 ,

X(t) = Diag(Q1(t)>, . . . , Qm(t)>)Q̂(t)>R1DR
−1
1 Q̂(t)Diag(Q1(t), . . . , Qm(t)).

If Y ∈ ω(X0) then let (tk)k≥0 → ∞ be a sequence such that limk→∞X(tk) = Y and Q
0
j =

limk→∞Qj(tk), 1 ≤ j ≤ m. Then,

Y = Diag((Q
0
1)>, . . . , (Q

0
m)>)R1DR

−1
1 Diag(Q

0
1, . . . , Q

0
m), (11)

which proves the first part of the theorem.

The second part follows from a similar argument but using the reordered Jordan normal
form (7). Hence, the analogous of (9) in this case is

etX0 = T L̂−1etD̃L̂T−1, (12)

which, by Lemma C.1, reduces to

etX0 = T L̂−1PPetD̃L̂T−1 = Q2R2M(t)U = Q2R2L̄(t)R̄(t)U, (13)

whereM(t) = PetD̃L̂L = L̄(t)R̄(t), L̄(t) ∈ BLTn
n1,...,nm

is such that diag(L̄(t)) = (L̄1,1(t), . . . , L̄m,m(t))

where L̄j,j(t) ∈ BLT
nj
r1,j ,...,rdj,j

, limt→∞ L̄(t) = In, and Q2R2 is the QR-factorization of T L̂−1P .

Note also that diag(R̄(t)) = (R̄1,1(t), . . . , R̄m,m(t)) where R̄j,j(t) ∈ BUT
nj
r1,j ,...,rdj,j

, 1 ≤ j ≤ m.

The last expression has the same structure than (9) but with R̄(t) instead of etD. The same
reasoning as in the first part gives

Y = Diag((Q
0
1)>, . . . , (Q

0
s)
>)R2PD̃PR

−1
2 Diag(Q

0
1, . . . , Q

0
s), (14)

where s = d1 + · · · + dm. This gives the structure of the ω-limit of the second part of the
theorem. It remains to prove that the blocks are unreduced, the corresponding proof will given
in Lemma 4.3. �

Next, we discuss about the decay of the subdiagonal elements of X(t) = (xi,j)i,j ∈ H?
n

between the m blocks of its ω-limit structure described by (11).

Lemma 4.1. For 1 ≤ j ≤ m− 1, let `(j) =
∑j

i=1 ni. One has

|x`(j)+1,`(j)| ≤Mj e
(αj+1−αj)t tkj , Mj > 0,

for |t| large enough, where 0 ≤ kj ≤ max(2m0
j+1, 2m

1
j+1 − 1) + max(2m0

j , 2m
1
j − 1)− 2.

Proof: From Prop. 2.1, X(t) = R(t)X0R(t)−1 and etX0 = Q(t)R(t). From (9), etX0 =
Q1Q̂(t)R̂(t)etDU and, using (10), R(t) = Diag(Q1(t)>, . . . , Qm(t)>)R̂(t)etDU. We consider the
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block partition of X(t) induced by Diag(Q1(t)>, . . . , Qm(t)>) and we denote by (X(t))i,j the
corresponding blocks. If Hi+1,i :=Ui+1,i+1(X(0))i+1,iU

−1
i,i , then

(X(t))i+1,i = Qi+1(t)>R̂i+1,i+1(t)etDi+1,i+1Hi+1,ie
−tDi,iR̂i,i(t)

−1Qi(t)

= e(αi+1−αi)tZi(t),

where

Zi(t)=Qi+1(t)>R̂i+1,i+1(t)et(Di+1,i+1−αi+1Ini+1 )Hi+1,ie
−t(Di,i−αiIni )R̂i,i(t)

−1Qi(t).

Note that Zi(t) ∈ Mni+1,ni and, since X(t) ∈ H?
n, only (Zi(t))1,ni 6= 0. Finally, since Qi(t) are

bounded, R̂(t) has limit when t→∞ and the eigenvalues of Di,i−αiIni are purely imaginary, the
growth of Zi(t) is polynomial with degree bounded by the sum of maximum of the multiplicities
of the eigenvalues of Di,i and Di+1,i+1 minus two. This implies the result. �

Next lemma discusses the decay of the subdiagonal elements of a block (X(t))j,j that lead

to the blocks Y
(j)
k,l , that is, sub-blocks inside a block Yj,j . For simplicity, we denote by X(t) =

(xi,j)i,j ∈ H?
n one of these blocks.

Lemma 4.2. For 1 ≤ j ≤ r − 1, let ˆ̀(j) =
∑j

i=1 ri. One has, for |t| large enough,

|xˆ̀(j)+1,ˆ̀(j)| ≤Mj t
−1, Mj > 0.

Proof: Using (12) one obtains

R(t) = Diag(Q1(t)>, . . . , Qd(t)
>)R̂(t)R̄(t)U. (15)

Consider the block partition so that diag(Ξ(t)) = (Ξ1,1(t), . . . ,Ξd,d(t)) for the matrices Ξ =

R, R̂, R̄, U and X(t). If we denote by Hi+1,i = Ui+1,i+1(X(0))i+1,iU
−1
i,i , 1 ≤ i ≤ d− 1, then

(X(t))i+1,i = Qi+1(t)>R̂i+1,i+1(t)Ri+1,i+1(t)Hi+1,iRi,i(t)
−1R̂i,i(t)

−1Qi(t), (16)

where R(t) = etαPetAPR(t) according to Lemma C.3. Moreover, from Lemma C.4

R(t) = W (t)R1(t)Ŵ (t), (17)

where L1(t)R1(t) is the LU-block factorization of R0N(t), N(t) = Ŵ (t)L̂Ŵ−1(t). Using (24),

R0N(t) =


∑d

i=1 t
p(i,1)(R0)1,iL̂i,1

∑d
i=2 t

p(i,2)(R0)1,iL̂i,2 . . . (R0)1,dL̂d,d
...

...
...

tp(d,1)(R0)d,dL̂d,1 tp(d,2)(R0)d,dL̂d,2 . . . (R0)d,dL̂d,d

 ,

and, since p(i, j−1) ≤ p(i, j) ≤ p(i−1, j), one has (R0N(t))i,j = O(1), i ≥ j, and (R0N(t))i,j =
O(tp(i,j)) otherwise. Note that, since (R0)i,i+1 = 0, it follows that (R0N(t))i,i = (R0)i,iL̂i,i(I +
O(t−1)) and, moreover, that (R0N(t))i,i+1 = O(t−1). The LU-block factorization of (R0N(t))
verifies

(L1(t))i,i = Iri , (L1(t))i,j = O(tp(i,j)), i > j,

(R1(t))i,i = (R0)i,iL̂i,i +O(t−1), (R1(t))i,i+1 = O(tp(i,i−1)),

(R1(t))i,j = O(1), j ≥ i+ 2.
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From (17) and the expressions in Lemma C.4, one obtains

(R(t))i,i = ts−i (R0)i,iL̂i,i(I +O(t−1)), where s = (d+ 1)/2. (18)

We conclude from (16) that X(t)i+1,i = t−1B(t) where B(t) is a bounded matrix. This
proves the result. �

Remark 4.4. We recall that some blocks of the ω(X0) might be missing because the multiplicities of
the eigenvalues. In case there is a missing block the expected decay is O(t−2), see Example 4.2.

Finally, we prove that the blocks Y
(j)
k,k , 1 ≤ k ≤ dj , in Theorem 4.1 are unreduced. We

consider a block (X(t))
(j)
k,k that corresponds to the block Y

(j)
k,k . As before, for simplicity, we

denote by X(t) = (xi,j)i,j ∈ H?
r one of these blocks.

Lemma 4.3. The blocks Y
(j)
k,k are unreduced, that is, there exists a constant M > 0 such that

|xi+1,i| ≥M, 1 ≤ i ≤ r − 1, for all t ∈ R.

Proof: From (15), taking into account that PetAP ∈ BDn
r1,...,rd

, it follows that

R(t) = e−tα tk−sRk,k(t) = Qk(t)
>R̂k,k(t)B(t)Uk,k,

where B(t) = B̃(t)(R0)k,kL̂k,k(I +O(t−1)), being B̃(t) = (PetAP )k,k ∈ Or. In particular, B(t)

and B(t)−1 are bounded. Then, R(t) and R(t)−1 are bounded (because limt→∞ R̂(t) = R2

is invertible). It follows that (R(t))i,i > 0 are upper bounded and lower bounded. Since
X(t) = R(t)X0R(t)−1, if we denote X0 = (x0

i,j)1≤i,j≤n, then, for some constant M > 0, one has

|xi+1,i| = (R(t))i+1,i+1 |x0
i+1,i| (R(t))−1

i,i ≥M.
�

Example 4.2. We illustrate the decay of the corresponding subdiagonal elements for a concrete
matrix of the form of Example 4.1. Concretely, we consider X0 ∈ H?

7 similar to the matrix
Diag(A1, A2, 2) by a random similarity matrix with coefficients in [0, 1] , where

A1 =


1 −1 0 0
1 1 2 0
0 0 1 −1
0 0 1 1

 , and A2 =

(
2 −1
1 2

)
.

As discussed in Example 4.1 one expects (X(t))4,3 → 0 and (X(t))6,5 → 0 as t→∞. Concretely,
in Fig. 2 we observe that (X(t))4,3 ∼ e−t while (X(t))6,5 ∼ t−2, as expected from Lemma 4.2.
The coefficient -2 of the power-law decay of (X(t))6,5 is due to the fact that R1

2 is empty (the
corresponding block is missed), see details in Example 4.1.

4.1 Convergence in Wilkinson’s sense

Let us comment about Wilkinson (essential) convergence in the QR-iteration setting. Given
X0 ∈ Hn we consider the sequence {Xk}k≥0 of QR-iterates.

Definition 4.1. The QR-iteration algorithm applied to X0 essentially converges if the sequence
{Xk}k≥0 tends to an upper triangular matrix as k →∞.
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In [14] it was proved that if the eigenvalues of X0 are assumed to be of different modulus
then the QR-iteration converges essentially to an upper triangular matrix. We can consider the
same idea of Wilkinson convergence but within the QR-flow setting. Indeed, from Theorem 4.1,
it immediately follows the following result. Note that in this setting we have convergence instead
of essential convergence. By remark 4.2 we can extend the convergence property to X0 ∈ Hn.

Corollary 4.1 (Wilkinson convergence). If X0 ∈ Hn has real eigenvalues then ω(X0) is an
upper triangular equilibrium matrix.

Example 4.3. For a fixed prime number p, we consider the matrix A ∈Mn,n, n = p−1, defined

by ai,j =
(
i+j
p

)
, where

(
x
y

)
denotes the Legendre symbol. The eigenvalues are 1,−1,

√
p and

√
−p with multiplicities 1, 1, n/2 − 1, n/2 − 1 respectively, see [16]. Since A has multiple real

eigenvalues, the upper Hessenberg reductions of A are reduced. For p = 7 we consider

X0 =



1 4 −2 −1 1 −1
1 −1 −1 −1 0 1
0 −2 −1 −2 −2 2
0 0 0 2 3 −1
0 0 0 1 −2 1
0 0 0 0 0 1

 ∈ H6 \H?
6. (19)

The subspaces {x4,3 = 0} and {x6,5 = 0} are invariant by the flow. Each diagonal block of X0

contains simple eigenvalues with different real parts. Hence Lemma 4.1 guarantees exponential
convergence towards Y ∈ T6. For example, for t = 105 X(t) has trace O(10−15). The eigenvalues
within the diagonal blocks are sorted according to Theorem 4.1.

For p = 13, X0 ∈ H12 \ H∗12 and the subspaces {x4,3 = 0}, {x7,6 = 0}, {x9,8 = 0} and
{x11,10 = 0} are invariant by the QR-flow. The diagonal entries of X(t) for t = 105 are ordered as
follows: λ,−1,−λ, λ, 1,−λ, λ,−λ, λ,−λ, λ,−λ, and λ =

√
13 is computed with error O(10−14).

4.2 Convergence in Parlett’s sense

Before stating the results concerning Parlett convergence for the QR-flow, let us briefly describe
the Parlett’s results for the QR-iteration algorithm.

Definition 4.2. Given X0 ∈ Hn we denote by Xn =
(
x

(n)
i,j

)
the nth iterate of the QR-iteration

applied to X0. We say that the QR-iteration converges in the Parlett sense if x
(n)
j+1,jx

(n)
j,j−1 → 0

as n→∞.

Note that Parlett convergence is enough to numerically obtain an approximation of the
spectrum of X0. It was stated in [26] that the QR-iteration applied to X0 converges (in Parlett’s
sense) if, and only if, 1) the number of eigenvalues of X0 of equal modulus with even algebraic
multiplicity is less or equal than two and 2) the same holds for the number of eigenvalues of
X0 of equal modulus with odd algebraic multiplicity. For the QR-flow we have the following
analogous result.

Corollary 4.2 (Parlett convergence). Let X0 ∈ H?
n. Denote by Neven (resp. Nodd) the number

of eigenvalues of X0 of equal real part with even (resp. odd) algebraic multiplicity. The QR-flow
with initial condition X0 converges (in the Parlett sense) if, and only if, both Neven and Nodd

are less or equal than two.
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We want to emphasize that criteria for the QR-iteration and QR-flow are not equivalent. It
turns out that either the QR-iteration and/or the QR-flow applied to a matrix X0 ∈ Hn with
n ≤ 3 converges in the Parlett sense. The following is an example with n = 4 for which the two
algorithms fail in the convergence.

Example 4.4 (Non-convergence of QR-flow nor of QR-iteration). The matrix

X0 =


−251/214 448843/100259 −4447435/656338 459/214
−937/428 965997/200518 −6834801/1312676 519/428

0 1312676/877969 −9216351/2873779 1188/937
0 0 −3762055/9406489 1725/3067

 ,

has SpecDX0 = {0, 1, i,−i}. According to [26] the QR-iteration does not converge because
X0 has 3 eigenvalues of algebraic multiplicity 1 with modulus 1. On the other hand, from
Corollary 4.2, we conclude that the QR-flow does not converge because X0 has 3 eigenvalues of
multiplicity 1 with zero real part.

Denote by X(t) = (xi,j)i,j(t) the solution of the Cauchy problem with initial condition X0.
The numerical integration of the QR-flow shows that x2,1 tends to zero and the eigenvalue 1 (i.e.
the one with largest real part) is isolated in the diagonal. However, the subdiagonal elements
x3,2 and x4,3 do not tend to zero (they behave 2π periodically in t, remaining away from zero).
That is, ω(X0) has a 3× 3 block in the diagonal which, in particular, does not allow to obtain
the remaining eigenvalues. The elements x1,2, x1,3 and x1,4 are 2π-periodic functions of t. The
elements in the 3× 3 diagonal block describe a 2π-periodic orbit. See also example 5.1.

It follows from the previous results that the computation of the eigenvalues of any (up-
per Hessenberg) matrix can be performed by combination of the QR-iteration and QR-flow
strategies. For example, given A0 ∈ Mn,n and ε > 0 one can compute QR-iterates of A0 until
one obtains Ak such that the absolute value of some of the components of the subdiagonal are
below ε. Then, when no other decays of the subdiagonal elements size is observed, one fills
up with zeroes the subdiagonal components with size less than ε and switches to integrate the
QR-flow starting from Ak. The zero components of the subdiagonal define a block partition of
Ak. In each of the blocks the QR-flow converges (in Parlett sense).

Example 4.5. Consider X0 ∈ M7,7 with eigenvalues 1 ± i , e±i , e±i
√

2 and 1. Neither QR-
iteration nor the QR-flow converges. After some number of QR-iterates a 2×2 diagonal block
“separates” (for example, when x3,2 =O(10−8))). We integrate the QR-flow starting with the
5×5 remaining block up to large enough time to numerically observe (Parlett) convergence
towards T ∈ T5. Note also that one can proceed in the inverse order, that is, by first integrating
the QR-flow and then perfoming iterates of the QR-iteration. This will also converge (in Parlett
sense).

4.3 A characterization of the homo/heteroclinic connections

In this section we characterize the homo/heteroclinic orbits and we prove the non-existence of
homo/heteroclinic connections in the α, ω-limit sets. We will need the following proposition.
We use the notation in Prop. 4.1 and we also consider the matrices

Λ̌ij,k,1 = αj , Λ̌ij,k,` =

(
αj 0
0 αj

)
, ` = 2, . . . , (cij,k + 1)/2,
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if cij,k odd. For the case cij,k even we consider

Λ̌ij,k,` =

(
αj 0
0 αj

)
, ` = 1, . . . , cij,k/2.

Also we consider Λ̂ij,k,` = Λij,k,` − Λ̌ij,k,`.

Proposition 4.2. Let X0 = A+B ∈ H?
n such that A,B ∈Mn,n, A ∈ Skewn, all the eigenvalues

of B are real and AB = BA. Then, one can choose T ∈Mn,n in Prop. 4.1 such that T−1BT = Ď
where Ď ∈ BDn

n1,...,nm
is such that

Ďj,j =


Ď

(j)
1,1
...

. . .

Ď
(j)
dj ,1

· · · Ď
(j)
dj ,dj

 ∈ BLT
nj
r1,j ,...,rdj,j

,

being Ď
(j)
k,k ∈ BLT

rk,j
ν , where ν = ν(j, k) is equal to (2, 2, . . . , 2) if rk,j is even, and ν =

(1, 2, . . . , 2) otherwise. Moreover,

diag
(
Ď

(j)
sj±2k,sj±2k

)
=
(

Λ̌1
j,mj

, Λ̌1
j,mj−1

, . . . , Λ̌1
j,k+1

)
,

diag
(
Ď

(j)
sj±(2k+1),sj±(2k+1)

)
=
(

Λ̌0
j,mj

, Λ̌0
j,mj−1

, . . . , Λ̌0
j,k+1

)
,

and

Spec(Ď
(j)
sj−2k,sj−2k) = Spec(Ď

(j)
sj+2k,sj+2k) = {αj},

Spec(Ď
(j)
sj−2k−1,sj−2k−1) = Spec(Ď

(j)
sj+2k+1,sj+2k+1) = {αj}.

See Appendix B for a proof of this proposition.

Remark 4.5. The previous result holds if A has purely imaginary eigenvalues (including zero) even if
A /∈ Skewn.

From the previous result one can obtain a reordered Jordan normal form with the same
nilpotent part as in the case of Proposition 4.1. Denote by D̂ = D − Ď. Then D̂ and Ď are
block diagonal and commute. Since A ∈ Skewn, D̂ is semisimple. The change L̂ that reduces
D to the reordered Jordan normal form, see 7, indeed reduces Ď to the same form changing the
diagonal blocks Λk,` by Λ̌k,`. This is because Di,i = (D̂i,i +αiIni) + (Ďi,i−αiIni) is the Jordan-

Chevalley decomposition [20] of Di,i, and hence (L̂i,iD̂i,iL̂
−1
i,i +αiIni)+(L̂i,iĎi,iL̂

−1
i,i −αiIni) is the

Jordan-Chevalley decomposition of reordered Jordan normal form L̂i,iDi,iL̂
−1
i,i . By uniqueness of

such a decomposition, the nilpotent part of the Jordan-Chevalley decomposition of the reordered
Jordan normal form is L̂i,iĎi,iL̂

−1
i,i − αiIni .

The main result of this section is the following theorem that characterizes the homo/heteroclinic
matrices to equilibria.

Theorem 4.2. Let X0 ∈ H?
n. There exist matrices A,B ∈ Mn,n such that A ∈ Skewn,

Spec(B) ⊂ R, AB = BA and X0 = A + B if, and only if, there exist equilibrium matrices
X1, X2 ∈ Hn such that α(X0) = {X1} and ω(X0) = {X2}.
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Proof: Suppose that X0 = A + B, with A ∈ Skewn, Spec(B) ⊂ R, AB = BA. Then

etX0 = etAetB and, by Prop. 4.2, etX0 = etAT L̂−1etĎL̂T−1. If Q̌(t)Ř(t) is the QR factorization
of etB then

X(t) = Q(t)>(A+B)Q(t) = Q̌(t)>e−tA(A+B)etAQ̌(t) = Q̌(t)>(A+B)Q̌(t).

By Appendix C (see also the final remark), and proceeding again as in Theorem 4.1, we have
that

etB = Q2R2L̄(t)R̄(t)U,

where L̄(t) ∈ BLTn
n1,...,nm

is such that diag(L̄(t)) = (L̄1,1(t), . . . , L̄m,m(t)) where L̄j,j(t) ∈
BLT

nj
r1,j ,...,rdj,j

, limt→∞ L̄(t) = In, and Q2R2 is the QR-factorization of T L̂−1P . By equation

(18) and using the expressions in Lemma C.3 relating Rj,j(t) and Rj,j(t), we have that

(Ri,i(t))j,j = etαitsi−j(R0)j,jL̂j,j(Iri,j +O(t−1)), 1 ≤ j ≤ di.

Now, we have that the QR factorization R2L(t) = Q3(t)R3(t) satisfies that Q3(t) → In and
R3(t)→ R∞3 ∈ Tn, when t→∞. Then

etB = Q2Q3(t)R3(t)R̄(t)U.

Finally, the orthogonal matrix of the QR factorization ofR3(t)R̄(t)U is simply Diag(Q1(t), . . . , Qs(t)),
because R3(t)R̄(t)U is block upper triangular. If we write

diag(R3(t)) = ((R3)1,1(t), . . . , (R3)m,m(t)), and

diag(R3)i,i(t) = (((R3)i,i)1,1(t), . . . , ((R3)i,i)di,di ,

to get one of these orthogonal matrices we have to compute the QR factorization of

((R3)i,i)j,j(t)(R0)j,jL̂j,j(Iri,j +O(t−1))(Ui,i)j,j .

As this matrix has a limit when t → ∞, we have that Diag(Q1(t), . . . , Qs(t)) has a limit and,
therefore, Q̌(t) has a limit when t→∞. Hence, X(t) has limit when t→∞.

The other implication follows directly from Remark 4.1 item 2. �

Corollary 4.3. Let X0 ∈ Hn. Then, either both ω and α-limit sets of X0 are singletons (hence
formed by an equilibrium matrix) or they do not contain equilibrium matrices.

Proof: Suppose that there exists an equilibrium matrix Y such that Y ∈ ω(X0). Then, there
exists Q ∈ On such that X0 = QTY Q. By Remark 3.1 item 1, Y = A + R where A ∈ Skewn

and R ∈ Tn commute. Then, X0 = QTAQ+QTRQ.
If X0 ∈ H?

n, Theorem 4.2 implies that ω(X0) = {Y } and there exists an equilibrium matrix
Z such that α(X0) = Z.

If X0 ∈ Hn \H?
n, by Remark 4.2, one has Yj,j ∈ ω((X0)j,j) and Xi,j(t) = Q>i (t)(X0)i,jQj(t),

1 ≤ i ≤ j ≤ m. One has:

• By definition of ω-limit and because Qi(t) are bounded, there exists a sequence (tk)k≥0 →
∞ as k →∞ such that Xi,j(tk)→ Yi,j and Qi(tk)→ Q̃i. Hence, (X0)i,j = Q̃iYi,jQ̃

>
j .

• Since Y is an equilibrium matrix, so it is Yj,j . Hence, we write Yj,j = Aj,j + Rj,j , where
Yj,j = Aj,j +Rj,j , Aj,j ∈ Skewnj and Rj,j ∈ Tnj . Moreover, Yi,jAj,j = Ai,iYi,j for i 6= j.
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• Let Ãj,j = Q̃jAj,jQ̃
>
j . One can check that (X0)i,jÃj,j = Ãi,i(X0)i,j for i 6= j.

• From the proof of Theorem 4.2 one has Qj(t) = etÃj,j Q̌j(t) where Q̌(t) has limit when
t→∞.

Then, for i 6= j, Xi,j(t) = Q>i (t)Xi,j(0)Qj(t) = Q̌>i (t)(X0)i,jQ̌j(t) also has limit when t → ∞.
This proves the statement. �

4.3.1 The case of normal, orthogonal and symmetric matrices

If X0 ∈ Hn is a normal matrix then X0 = A+ S, where A ∈ Skewn, S ∈ Symn and AS = SA.
Hence, if X0 ∈ H?

n, by Theorem 4.2, both α(X0) and ω(X0) only contain a single equilibrium
matrix. Moreover, as X(t) = Q(t)>X0Q(t), then α(X0) and ω(X0) are normal matrices. In this
case, we can say more about the sets α(X0) and ω(X0).

Note that if X0 ∈ H?
n is a normal matrix, and we follow the notation of Section 4, then

SpecX0 =
⋃m
j=1Rj , where Rj = {λ ∈ Spec(X0),Reλ = αj}, and α1 > α2 > · · · > αm, and all

the eigenvalues of X0 are simple.

Theorem 4.3. Let X0 ∈ H?
n a normal matrix. Then ω(X0) = {Y }, where Y = Diag(Y1,1, . . . , Ym,m) ∈

BDn
n1,...,nm

, Yjj − αjInj ∈ Skewnj ∩H?
nj

, SpecYj,j = Rj and nj = #Rj .

Proof: We know that ω(X0) = {Y } where Y is an equilibrium matrix. By Theorems 3.1
and 4.1, we have that Y ∈ BUTn

n1,...,nm
and Yjj − αjInj ∈ Skewnj ∩H?

nj
. As Y is normal, then

Y ∈ BDn
n1,...,nm

, see [32] for example. �

Remark 4.6. If X0 ∈ Hn \H?
n is normal, then X0 ∈ BDn

n1,...,nm
and one can apply Theorem 4.3 to each

block. Then ω(X0) = {Y } where Y is also an equilibrium matrix.

In particular, from the previous theorem it follows that the QR-flow converges for orthogonal
matrices.

Corollary 4.4. Let X0 ∈ On ∩ H?
n (hence |αi| ≤ 1). Then ω(X0) = {Y }, where Y =

Diag(Y1,1, . . . , Ym,m) ∈ BDn
n1,...,nm

. Moreover, if α1 = 1 then n1 = 1 and Y1,1 = (1), if αm = −1
then nm = 1 and Ym,m = (−1), and if |αj | < 1 then nj = 2 and

Yj,j =

(
αj βj
−βj αj

)
, α2

j + β2
j = 1.

Also, from Theorem 4.3 we recover the well-known result concerning the convergence for
symmetric matrices.

Corollary 4.5. Let X0 ∈ Symn ∩Hn. Then ω(X0) = {Y }, where Y is a diagonal matrix.

Remark 4.7. The convergence of the QR-flow for normal matrices can be extended to the general
(not necessarily upper Hessenberg) case. Indeed, it can be seen as a gradient flow on suitable invariant
manifold of normal matrices with respect to some adapted Riemannian metric [31]. The convergence for
normal matrices also holds in the case of the QR iteration [12]. Note that in our setting, we have given
also explicit estimates on the speed of convergence.
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5 Low dimensional cases

In this section we consider the QR-flow restricted to Hk for k = 2, 3 and 4, and we illustrate the
previous results concerning the equilibria, their linear stability and the asymptotic behavior of
the QR-flow described in Sections 3 and 4.

5.1 The QR-flow restricted to H2

The equations X ′ = [X, k(X)] are simply

x′11 = x21 (x12 + x21) , x′12 = x21 (x22 − x11) , x′21 = x′12, x′22 = −x′11. (20)

As follows from Theorem 3.1, the set of equilibria is T2 ∪ {A + λI,A ∈ Skew2}. If X ∈ T2 is
an equilibrium matrix, the eigenvalues of DF(X) are 0 (multiplicity three) and x22 − x11. If
x11 = x22 then we have a unique eigenvalue 0 with geometric multiplicity equals to 3 if x12 6= 0
and equals to 4 if x12 = 0. Therefore, X has a one-dimensional stable invariant manifold if
x11 > x22. Concretely, the matrix of DF(X) is

x22 − x11 0 0 0
x12 0 0 0

2(x22 − x11) 0 0 0
−x12 0 0 0

 ,

if expressed in the basis {e1e
>
2 − e2e

>
1 , e1e

>
2 , e1e

>
1 , e2e

>
2 } of R4, where {e1, e2} is the canonical

basis of R2. On the other hand, if

X =

(
x11 −x21

x21 x11

)
, x21 6= 0,

the matrix of DF(X) is 
0 0 −2x21 0
0 0 0 0
0 0 0 x21

0 0 −4x21 0

 ,

if expressed in the basis {e1e
>
2 − e2e

>
1 , e1e

>
1 + e2e

>
2 , e1e

>
1 − e2e

>
2 , e1e

>
2 } of R4. In particular,

DF(X) has a two-dimensional kernel and eigenvalues ±2ix21.

The system (20) has three functionally independent first integrals

I1 = x11 + x22, I2 = x12 − x21, I3 = (x11 − x22)2 + (x12 + x21)2,

hence it is integrable. We can use these first integrals to reduce the dimension of the phase
space. If we fix I1 = d and I2 = c the reduced system is

x′ = (y − c)(2y − c), y′ = (y − c)(d− 2x), (21)

where x = x11 and y = x12. It has the line y = c of fixed points and the fixed point (d/2, c/2),
if c 6= 0. The restriction of I3 to I1 = d, I2 = c provides J3 = (x− d/2)2 + (y − c/2)2 as a
first integral of the reduced system. This was also obtained in [4]. The fixed points on y = c
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correspond to the triangular equilibrium matrices Ax and, if c 6= 0, the system has also the
equilibrium matrix C, where

Ax =

(
x c
0 d− x

)
, C =

(
d/2 c/2
−c/2 d/2

)
.

We note that Ad/2 has a double eigenvalue with geometric multiplicity 1, if c 6= 0 and multiplicity
two if c = 0. In Fig. 3 we sketch the phase portrait of the reduced system (21) for c 6= 0.

As follows from Corollary 4.1, if the matrix X has real eigenvalues then X(t) converges to
an upper triangular matrix. When the eigenvalues are not real then (X −λI)2 +µ2I = 0, being
µ 6= 0, and

etX = eλtet(X−λI) = eλt
[
cos(µt)I + sin(µt)

(
1

µ
X − λ

µ
I

)]
.

From Prop. 2.1 one has etX = Q(t)R(t) and X(t) = Q(t)>XQ(t). If we denote (X − λI)/µ =
(aij)1≤i,j≤2 then

Q(t) =
1√

v(t)>A1v(t)
(cos(µt)I2 + sin(µt)A2) ,

where v(t) = (sin(µt), cos(µt))>,

A1 =

(
1 a11

a11 a2
11 + a2

21

)
, and A2 =

(
a11 a12

−a12 a22

)
.

Hence,

X(t) = Q(t)>XQ(t) =
1

v(t)>A1v(t)
(cos(µt)I2 + sin(µt)A>2 )X(cos(µt)I2 + sin(µt)A2),

and we see that X(t) is a rational function of cos2(µt), sin2(µt) and cos(µt) sin(µt). In particular,
if X is not an equilibrium matrix, then X(t) is a periodic function of period π/µ.

Remark 5.1. A similar argument to obtain the period will be use for H3. However, for H2, the
period of X(t) can be obtained directly from (21) just introducing polar coordinates (r, θ) centered at
pC = (d/2, c/2). Trivially, r becomes a first integral and θ′ = −2r sin θ+ c gives period 2π/

√
c2 − 4r2. A

point at a distance r from pC corresponds to a matrix with eigenvalues d/2± iµ, µ =
√
c2 − 4r2/2, that

are complex for r < c/2.

5.2 The QR-flow restricted to H3

From the results in Section 3 it follows that there are four types of equilibrium matrices of
X ′ = [X, k(X)], X ∈ H3,

X1 =

 x11 x12 x13

0 x22 x23

0 0 x33

, X2 =

 x11 0 0
0 x22 −x32

0 x32 x22

, x32 6= 0,

X3 =

 x11 −x21 0
x21 x11 0
0 0 x33

, x21 6= 0, X4 =

 x11 −x21 0
x21 x11 −x32

0 x32 x11

, x21x32 6= 0.
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By Theorem 3.2 the eigenvalues of DF(X1) are 0 (multiplicity six), x22− x11 and x33− x22.
On the other hand, if {e1, e2, e3} denotes the canonical basis of R3, the matrix of DF(X2)
expressed in the basis

{e3e
>
2 − e2e

>
3 , e1e

>
1 , e2e

>
2 + e3e

>
3 , e2e

>
2 − e3e

>
3 , e2e

>
3 , e1e

>
2 , e1e

>
3 , e2e

>
1 − e1e

>
2 }

of R8 is 

0 0 0 −2x32 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 x32 0 0 0
0 0 0 −4x32 0 0 0 0
0 0 0 0 0 0 x32 2(x22 − x11)
0 0 0 0 0 −x32 0 0
0 0 0 0 0 0 0 x22 − x11


.

Therefore, it has a zero eigenvalue of multiplicity three, and the other five eigenvalues are ±2ix32,
±ix32 and x22 − x11. The linear stability properties of the equilibrium matrix X3 are similar
to those of X2. Finally, DF(X4) has non-zero double non-defective1 eigenvalues ±i

√
x2

21 + x2
32,

see Theorem 3.2, and the zero eigenvalue has multiplicity 4 while the kernel of DF(X4) is
three-dimensional, see Prop. 3.2.

Concerning the asymptotic behavior of X(t), Corollary 4.1 guarantees that it converges to
a matrix of T3 whenever X has real eigenvalues. If not, we have that X has one real eigenvalue
λ and two conjugate complex eigenvalues α ± iβ, with β 6= 0. By Corollary 4.2, if λ 6= α, the
matrix X(t) converges (in Parlett sense) to a reduced matrix when t → ∞. If ω(X) is not an
equilibrium matrix then X(t) tends to a matrix in BUT3

1,2 with diagonal blocks λ and a 2 × 2
block of period π/β.

Finally, we consider the case λ = α. We have that etX = eαtA1 + eαt[cos(βt)A2 + sin(βt)A3],
where

A1 =
1

β2
[X2 − 2αX + (α2 + β2)I], A2 = I −A1, and A3 =

1

β
[X − αI].

It is clear that A1, A2 and A3 are non-zero matrices. This implies, by a similar argument
to the one used in Section 5.1, that X(t) = Q(t)>XQ(t) and it is 2π/β periodic unless X is
an equilibrium matrix. In particular, this means that, if the matrix X is unreduced, all the
coeficients of the subdiagonal of X(t) do not converge to zero, because they are periodic.

Example 5.1. Fix ε0 > 0 and, for |ε| < ε0, let Aε and B be the matrices

Aε =

 2 + ε 0 0
0 −9 15.25
0 −8 13

 , B =

 6 5 9
8 8 9
5 1 0

 .

Denote by X0,ε the matrix obtained by the reduction to H3 of BAεB
−1 (using Householder’s

algorithm). The theoretical discussion of this section implies that:

• For ε = 0 one has Spec (X0,0) = {2, 2 + i , 2 − i } and the QR-flow does not converge, see
Corollary 4.2. Since λ = α = 2 and β = 1, the ω-limit of X0 is a 2π-periodic orbit (and
the α-limit of X0,0 coincides with the ω-limit of X0,0).

1The (algebraic) multiplicity of a defective eigenvalue is larger than its geometric multiplicity.
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• For ε 6= 0, since λ = 2 + ε 6= α = 2 and β = 1, the ω-limit of X0,ε is a periodic orbit
with period π (and so is the α-limit of X0,ε, ε 6= 0). In this case, one of the subdiagonal
elements decays to zero, see Lemma 4.1.

In Fig. 4 left we show the behavior of the coefficient x1,1 as a function of t for values of
ε = −10−2, 0 and 10−2. One clearly sees the period 2π of the ε = 0 in contrast with the period
π shown for ε < 0 (for ε > 0 this coefficient tends to 2). A 3-dimensional projections of the
periodic orbit obtained as ω-limit in each of the previous cases considered is shown in Fig. 4
right. The behavior of the coefficients xi,j as a function of t is the following:

1. For ε = 0, all the coefficients xi,j are 2π-periodic in t.

2. The coefficient x1,3 is 2π-periodic for all values of ε.

3. For ε > 0: x1,1 → ctant, x2,1 → 0, x1,2 asymptotically becomes 2π-periodic, and the
coefficients x2,2, x2,3, x3,2 and x3,3 asymptotically become π-periodic. Accordingly, the
periodic orbit obtained as ω-limit for ε > 0 (in green) is π-periodic.

4. For ε < 0: x3,2 → 0, x3,3 → ctant, x2,3 asymptotically becomes 2π-periodic, and the
coefficients x1,1, x1,2, x2,1 and x2,2 asymptotically become π-periodic. Accordingly, the
periodic orbit obtained as ω-limit for ε < 0 (in red) is π-periodic.

We remark that the description of the 8-dimensional phase space of the QR-flow on H3 is
far from trivial. We refer to Section 6 for an illustration.

5.3 The QR-flow restricted to H4

Theorem 3.1 implies that the structure of an equilibrium matrix X = (xij) ∈ H4 is one of the
following eight:

1. If X ∈ H?
4 then X = λI4 +A where λ ∈ R and A ∈ Skew4 ∩H4.

2. If x32 = 0 and x21x43 6= 0,

X =

(
λ1I2 +A B̃

0 λ2I2 + C

)
, A, C ∈ Skew2, A,C 6= 0, λi ∈ R, i = 1, 2, 3.

By Remark 3.1, item 4., if the eigenvalues of A and C are different then B̃ = 0. Otherwise,
we have two possibilities:

X =

(
λ1I2 +A µQ1

0 λ2I2 +A

)
, or X =

(
λ1I2 +A µQ2

0 λ2I2 −A

)
,

where Q1 ∈M2,2 is a rotation and Q2 ∈M2,2 is a reflection.

3. If x21 = 0 and x32x43 6= 0 then

X =

(
λ1 v>

0 λ2I3 +A

)
, A ∈ Skew3 ∩H3, λ1, λ2 ∈ R and Av = 0.

4. If x43 = 0 and x21x32 6= 0 then

X =

(
λ1I3 +A v

0 λ2

)
, A ∈ Skew3 ∩H3, λ1, λ2 ∈ R and Av = 0.
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5. If x43 6= 0 and x21 = x32 = 0 then

X =

(
R 0
0 λI2 +A

)
, R ∈ T2, λ ∈ R, A ∈ Skew2.

6. If x21 6= 0 and x32 = x43 = 0 then

X =

(
λI2 +A 0

0 R

)
, R ∈ T2, λ ∈ R, A ∈ Skew2.

7. If x32 6= 0 and x21 = x43 = 0 then

X =

 r11 0> r12

0 λI2 +A 0
0 0> r22

 , λ, rij ∈ R, 1 ≤ i ≤ j ≤ 2, A ∈ Skew2.

8. If x21 = x32 = x43 = 0 then X ∈ T4.

Now, we want to find the eigenvalues of the equilibrium matrices. We will consider the
previous cases. Note that the linear operator DF acts on H4 which has dimension 13.

The eigenvalues of DF(X) for an equilibrium matrix of the first case are obtained as
a consequence of Prop. 3.1, Prop. 3.2 and Prop. A.2. In particular, in this case, one has
dim(KerDF(X)) = 4 and multiplicity of the zero eigenvalue equals five. The other eigenvalues
are simple and given by ±(µ1 − µ2)i , ±(µ1 − µ2)i , ±2µ1i and ±2µ2i , where ±µii , i = 1, 2, are
the eigenvalues of A.

For an equilibrium matrix of the second case, denote by ±µAi and ±µC i the eigenvalues of
A and C, respectively. By Theorem 3.2 we have that

Spec (DF(X)) = {±2µAi ,±2µC i , 04} ∪ {(±µA ± µC)i } ∪ {λ2 − λ1}.

IfB = 0, then dim(KerDF(X)) ≥ 4. See Example 3.1 for a case where one has dim(KerDF(X)) =
5.

Consider X an equilibrium matrix of case 3. The matrix A has eigenvalues 0 and ±µAi .
Following the notation of Theorem 3.2 one has H1 = 0 and H2 = A. Hence,

Spec (DF(X)) = {±µAi ,±2µAi , 05} ∪ {0,±µAi } ∪ {λ2 − λ1}.

Note that the eigenvalue 0 has multiplicity at least six, and ±µAi has multiplicity two.

The eigenvalues for an equilibrium matrix of case 4 are the same of the previous case.
Consider now an equilibrium matrix X of case 5. According to Theorem 3.2 one has H1 = 0,
H2 = 0 and H3 = A. Let SpecR = {r11, r22}. Then,

Spec (DF(X)) = {±µAi , 04} ∪ {0,±µAi ,±µAi } ∪ {r22 − r11, λ− r22}. (22)

Cases 6 and 7 are similar to case 5. Concretely, for case 6, Spec (DF(X)) is the same as in (22)
but replacing λ− r22 by λ− r11. In case 7, just replace {r22 − r11, λ− r22} by {λ− r11, r22 − λ}
in (22). Note that in the cases 5,6 and 7, the multiplicity of the eigenvalue ±µAi is three, and
the multiplicity of 0 is larger or equal than five.
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Finally, for an equilibrium matrix X of case 8, one has k(Ai,i) = 0, λi = xii, 1 ≤ i ≤ 4.
Theorem 3.2 implies

Spec (DF(X)) = {04} ∪ {06} ∪ {λ2 − λ1, λ3 − λ2, λ4 − λ3},

and hence the multiplicity of the eigenvalue 0 is larger or equal than 10.

Concerning the ω-limit of an arbitrary X0 ∈ H?
4 new possibilities appear. First, the ω-

limit can be a non-normal equilibrium matrix which is not triangular. Second, ω(X0) can
be contained in a 2-dimensional torus with two different fundamental frequencies. Indeed, the
frequencies are integer multiples of the imaginary parts, β1 and β2, of the eigenvalues of X0. This
follows since etX0 = Q(t)R(t) where Q(t) is a function of cos(βit), sin(βit), i = 1, 2. Hence,
also X(t) = Q(t)>X0Q(t) is a function of cos(βit), sin(βit), i = 1, 2, and the fundamental
frequencies are multiples of β1 and β2. If β1/β2 ∈ Q then ω(X0) is a periodic orbit. On the
other hand, if β1/β2 ∈ R \ Q then ω(X0) is a 2-dimensional torus. We illustrate these facts in
the following example.

Example 5.2. Let Rϕ denote the rotation by angle ϕ ∈ [0, 2π) and

X0 =

(
Rα B
0 Rβ

)
∈ BUT4

2,2 ∩ (H4 \H?
4), B =

(
2 3
4 5

)
.

We consider three cases, the values of the angles α and β determining X0 in each case are: (i)
α = π/2, β = π/4, (ii) α = π/2, β = π/2 and (iii) α = π/4, β such that sin(β) = sin(π/4)/2
(i.e. β ≈ 0.361367). The ω-limit sets are embedded in a 4D ambient space because diag(X0) =
(Rα, Rβ) is fixed by the flow. In case (i) the ratio of the imaginary part of the eigenvalues is√

2 ∈ R \Q, hence the orbit lies on a 2D torus. In cases (ii) and (iii) the ratio of the imaginary
part of the eigenvalues is 1 and 1/2, respectively, and the orbit is periodic (therefore coincides
with its ω-limit). The three cases are illustrated in Fig. 5.

For X0 ∈ H?
4 the situation is similar (but geometrically more involved). For example,

consider the matrices

XQ
0 =


2409
214

−4538113
761091

16512245
421794

3575
214

7113
428

−14282597
1522182

643711321
10966644

9949
428

0 −1218516
5621641

−49518619
20250711

−1704
2371

0 0 1131595315
218846043

4879
8541

, XR\Q
0 =


1497
214

−1593017
465771

39100385
2394018

2359
214

4353
428

−5047117
931542

121304017
4788036

6269
428

0 −532004
2105401

−9676375
5410779

−1104
1451

0 0 141421715
41716323

787
3729


One has SpecXQ

0 = {±i ,±2i } and SpecX
R\Q
0 = {±i ,±

√
2i }. Accordingly, the orbit of XQ

0 is a

periodic orbit on a 2-dimensional torus, while the orbit of X
R\Q
0 densely fills up a 2-dimensional

torus. In both cases the 2-dimensional torus is embedded in a 13-dimensional phase space. See
Fig. 6 for some projections of the corresponding orbits.

6 On the phase space complexity: an illustration

The description of the phase space of the QR-flow is, in general, quite involved. Consider the
QR-flow on H3, which is the lowest dimension with non-trivial dynamics. Even in this case a
global description of the phase space seems to be difficult. Below, we numerically investigate
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semi-global aspects of the phase space around some concrete equilibrium matrices and their
homo/heteroclinic connections. Concretely, we consider the four equilibrium matrices

X±,± =

 0 ±1 0
0 0 ±1
0 0 0

 ,

which are orthogonally similar. We want to compute the homoclinic and heteroclinic orbits to
them. To this end, we consider the orthogonal matrices

Q1 =

 1 0 0
0 0 1
0 1 0

, Q2 =

 0 1 0
1 0 0
0 0 1

, Q3 =

 1 0 0
0 0 1
0 −1 0

, Q4 =

 0 1 0
−1 0 0

0 0 −1

,
Q5 =

 0 0 1
0 1 0
−1 0 0

, Q6 =

 0 0 1
0 1 0
1 0 0

, Q7 =

 0 0 −1
0 1 0
1 0 0

, Q8 =

 0 0 1
0 −1 0
1 0 0

,
and the initial matrices Xi = Q>i X+,+Qi ∈ Hn, 1 ≤ i ≤ 8. Note that since the eigenvalues of Xi

are real then ω(X0) ∈ T3. One can check that {R ∈ T3, ∃Q ∈ O3, R = Q>X+,+Q} = {X±,±}
and hence the orbits of Xi tend to one of the matrices X±,±. Indeed, each of the initial matrices
Xi give a different homoclinic or heteroclinic orbit to X±,±. See Fig. 7.

The matrices Xi ∈, 1 ≤ i ≤ 4, are reduced. Their orbits are heteroclinic between different
equilibrium matrices. On the other hand, the homoclinic orbits correspond to the orbits of the
unreduced matrices Xi, 5 ≤ i ≤ 8.

We remark that the points X±,± are complete parabolic points with 8-dimensional center
manifold carrying on a non-trivial dynamics only within a 2-dimensional subspace. On the other
hand, one has dim(Ker (DF(X+,+))) = 3 and

K1 =

 −1 0 −1
0 1 0
0 0 0

 , K2 =

 −1 0 0
0 0 0
0 0 1

 , K3 =

 0 0 0
−1 0 0
0 1 0

 ,

form a basis of Ker (DF(X+,+)). We consider an unfolding of the form X = X+,++η1K1+η2K2,
η1, η2 ≥ 0. For η1, η2 > 0, the eigenvalues λ1, λ2 and λ3 of X are different and real. Assume
λ1 > λ2 > λ3. Near each one of the equilibrium matrices X±,± there are, for η1, η2 > 0,
six equilibrium upper triangular matrices according to the possible orders of the eigenvalues
displayed in the diagonal. Let us introduce the following notation. We denote by X±,±ijk , where
i, j, k ∈ {1, 2, 3} are distinc indices, the equilibrium matrix with diagonal equal to (λi, λj , λk)
located near X±,±.

From Theorem 3.2 we conclude that, beyond having a 6-dimensional center manifold, the
linear behavior at the 24 equilibria restricted to the hyperbolic directions is the following:

• the matrices X±,±123 are stable node equilibrium matrices,

• the matrices X±,±321 are unstable node equilibrium matrices, and

• the other 16 equilibrium matrices are of saddle type (with one dimensional stable and
unstable manifolds).
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For the illustrations we consider η1 = 0.05 and η2 = 0.01. For these values λ1 = 0.05,
λ2 = 0.01 and λ3 = −0.06. In Fig. 8 we see the equilibrium matrices X+,+

ijk that are close to the
equilibrium matrix X+,+. We also display the heteroclinic orbits between them.

In the top right plot of the figure we sketch the local heteroclinic structure. We note that the
1-dimensional stable and unstable invariant manifolds of the saddle points as well as the weakly
and strong 1-stable invariant manifolds of the nodes correspond to orbits X(t) associated to
reduced upper Hessenberg matrices. Hence, the reduced orbits define the skeleton of the phase
space and organize the dynamics.

We remark that all the branches of the invariant manifolds in Fig. 8 which have not been
continued correspond to heteroclinic orbits to equilibrium matrices that are located in a neigh-
bourhood of either X+,− or X−,+. They play a role in the global structure of the phase space.

7 Conclusions and outlook

We have studied the QR-flow for upper Hessenberg matrices. The linear behavior at equilibria,
including the central components, has been determined. We have also provided a complete
description of the elements of the α- and ω-limit of any initial matrix. This has been used
for characterize the set of matrices for which there is convergence of the QR-flow towards an
equilibrium matrix. Also properties of the velocity of convergence towards the limit behavior of
the orbit were explicitly derived.

There are many related questions to be investigated, including theoretical aspects but also
concrete applications. As a theoretical developments we mention the use of isospectral flows in
other settings like, for example, the symplectic setting (where one looks for symplectic isospectral
deformations of the matrix) or the most important setting of infinite dimensional linear operators
where a dynamical approach description seems much more involved.

Concerning potential applications, we would like to point out that the integration of the
variational equations of the QR-flow could be useful for a systematic analysis of bifurcations.
Also, a description of semi-global phase space properties seems to be plausible in simple cases,
see Section 6. This could be useful for designing block reduction strategies in the computation
of the eigenvalues/eigenvectors of matrices using the QR-flow.

Certainly, from a numerical point of view, the QR-flow does not currently present an effective
alternative to the discrete analogous algorithms for the computation of the spectra of finite
linear operators. However, it has been noticed that, in general, the infinite-dimensional QR-
algorithm (IQR) cannot be sped up using shift strategies [31, 18, 8]. One might expect that in
the continuous infinite-dimensional QR-flow the step-size adaptation of the numerical integration
could be an efficient alternative. Also the results presented here on the finite dimensional case
can be useful in a section-like approach to the infinite-dimensional computational problem. The
ultimate goal could be to obtain numerical methods for high order approximation (or even
validation) of eigenvalues/eigenvectors of finite/infinite dimensional linear operators.

A Properties of the operators BX,Y and LX

In this appendix we summarize some properties of the operators BX,Y and LX = BX,X intro-
duced in Section 3, see (4). We denote by Mn,m(C) the set of complex matrices of dimension
n×m. Concerning the operator BX,Y we have the following result.
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Proposition A.1. 1. If A ∈Mn,n(C) and B ∈Mm,m(C) are non-singular then

Spec(BX,Y ) = Spec(BA−1XA,B−1Y B).

2. Let A = (Aij)1≤i≤n,1≤j≤m ∈ Mn,m(C) such that Aij ∈ Mni,mj (C), for all 1 ≤ i ≤ n,
1 ≤ j ≤ m. Consider the set Eij ⊂ Mn,m(C) of matrices such that A ∈ Eij iff Ak` = 0
for all (k, `) 6= (i, j). One has Mn,m(C) =

⊕n
i=1

⊕m
j=1Eij. Let X = Diag(J1, . . . , Jr) and

Y = Diag(Ĵ1, . . . , Ĵs) where Ji ∈Mni,ni(C), i = 1, . . . r, and Ĵi ∈Mmi,mi(C), i = 1, . . . , s.
Then, one has

BX,Y (Eij) ⊂ Eij and BX,Y |Eij = B
Ji,Ĵj

.

3. Let I : Mn,m(C) →Mn,m(C) be the identity. Then BX,Y − (λ − µ)I = BX−λI,Y−µI and

BkX,Y (H) =
∑k

i=0(−1)i
(
k
i

)
Xk−iHY i.

4. Let X ∈ Mn,n(C) and Y ∈ Mm,m(C). Then Spec(BX,Y ) = {γ ∈ C, γ = λ − µ, λ, µ ∈
C, λ ∈ Spec(X), µ ∈ Spec(Y )},

5. If X ∈Mn,n(C) and Y ∈Mm,m(C) are diagonalizable then the operator BX,Y is diagon-
alizable. Concretely, if {vi, 1 ≤ i ≤ n} is a basis of eigenvectors of X and {wj , 1 ≤ j ≤ m}
is a basis of left eigenvectors of Y , then {viw>j , 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis of
eigenvectors of BX,Y .

Proof: Properties 2. and 3. can be checked by a direct computation. To prove 1. we
note that if γ ∈ C is an eigenvalue of BX,Y then there exists a non-zero matrix H ∈ Mn,m(C)

such that XH − HY = γH. If we define Ĥ = A−1HB 6= 0 then A−1XAĤ − ĤB−1Y B =
A−1XHB − A−1HY B = A−1(XH −HY )B = γĤ. Items 4. and 5. follow from the previous
ones. �

Concerning the operator LX the following properties hold.

Proposition A.2. 1. If X ∈ Skewn, then one has LX(Skewn) ⊂ Skewn and LX(Symn) ⊂
Symn.

2. Let X ∈ H?
n ∩ Skewn. Consider r = n/2 if n is even, and r = (n − 1)/2 otherwise. The

(simple) eigenvalues of X are of the form ±λj i , 1 ≤ j ≤ r, with 0 ≤ λ1 < λ2 < . . . < λr
and where λ1 = 0 only if n is odd.

By the previous item, one can consider the restriction of the linear operator LX to Symn.
Then,

(a) if n is even, LX has an eigenvalue 0 of multiplicity n/2, and n2/2 non-zero simple
eigenvalues ±i (λj − λk), 1 ≤ j < k ≤ n/2, ±i (λj + λk), 1 ≤ j ≤ k ≤ n/2.

(b) if n is odd, LX has an eigenvalue 0 of multiplicity (n+ 1)/2 and (n2− 1)/2 non-zero
simple eigenvalues ±i (λj − λk), 1 ≤ j < k ≤ (n − 1)/2, ±i (λj + λk), 1 ≤ j ≤ k ≤
(n− 1)/2, j + k ≥ 2.

Moreover, we have in both cases a basis of eigenvectors.
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Proof: The first item follows immediately from the definition of LX . To prove the second
item we prove first that if v is an eigenvector of eigenvalue λ of X then v is a left eigenvector of
eigenvalue −λ. Indeed, v>X = (X>v)> = −(Xv)> = −λv>.

Now, suppose first that n is odd. Then λ = 0 is a simple eigenvalue of X. Denote by
w ∈ KerX, w 6= 0, an eigenvector of eigenvalue λ = 0. Let vj be an eigenvector of eigenvalue
λj i , 2 ≤ j ≤ (n− 1)/2 of X.

Then, applying Prop. A.1, we have that ww> ∈ Symn and vj v̄
>
j + v̄jv

>
j ∈ Symn, 2 ≤ j ≤

(n− 1)/2, are linearly independent eigenvectors of eigenvalue zero.

On the other hand, vjw
> + wv>j ∈ Symn ⊕ i Symn are eigenvectors of eigenvalue λj i ,

2 ≤ j ≤ (n− 1)/2, and vj v̄
>
k + v̄kv

>
j ∈ Symn⊕ i Symn, 1 ≤ j, k ≤ (n− 1)/2, are eigenvectors of

eigenvalue (λj−λk)i , j 6= k, vjv
>
k +vkv

>
j ∈ Symn⊕i Symn, 1 ≤ j, k ≤ (n−1)/2, are eigenvectors

of eigenvalue (λj + λk)i , j ≤ k, and v̄j v̄
>
k + v̄kv̄

>
j ∈ Symn ⊕ i Symn, 1 ≤ j, k ≤ (n − 1)/2 are

eigenvectors of eigenvalue −(λj +λk)i , j ≤ k. Computing the number of symmetric eigenvectors
we obtain the dimension of the space Symn.

If n is even then KerX = {0} and adapting the previous reasoning the result follows. �

B Proof of Propositions 4.1 and 4.2

In this appendix we prove Prop. 4.1 needed in Theorem 4.1 and Proposition 4.2 needed in
Theorem 4.2, to get the structure of the ω-limit set. We start with some preliminary results.

Proposition B.1. Let H ∈ H? such that H = A+B, where the eigenvalues of A have zero real
part, Spec (B) ⊂ R and AB = BA. If λ + iµ ∈ Spec (H) then, there exists a non-zero vector
v ∈ Cn such that Av = (iµ)v and Bv = λv.

Proof: As A and B commute, then also H and B commute. This implies that there exists a
non-zero vector v ∈ Cn such that Hv = (λ+ iµ)v and Bv = λ1v, for some λ1 ∈ Spec (B). Then
Av = (H − B)v = [(λ − λ1) + iµ]v. As the eigenvalues of A have zero real part, then λ = λ1,
and we obtain the desired result. �

Lemma B.1. If A ∈ Mn,n, B ∈ Mp,p and X ∈ Mn,p satisfy AX = XB, rank (X) = p and
X = X1X2 where X1 ∈Mn,n is non-singular and X2 is a Mn,p matrix such that

X2 =

(
0
X22

)
,

being X22 ∈Mp,p a non-singular matrix, then

X−1
1 AX1 = T =

(
T11 0
T21 T22

)
n− p
p

n− p p
.

Moreover, T22 and B have the same spectrum.

Proof: We have (
T11 T12

T21 T22

)(
0
X22

)
=

(
0
X22

)
B.

Then T12X22 = 0, T22X22 = X22B. As X22 is non-singular, T12 = 0 and SpecB = SpecT22. �
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Proposition B.2. If H ∈ H?
n with SpecH = {λ1, . . . , λn}, λi ∈ R, 1 ≤ i ≤ n, then there exists

R ∈ Tn such that

R−1HR = D +N,

where N is strictly lower triangular, D = diag (λ1, . . . , λn).

Proof: The proposition holds for n = 1. Suppose it holds for matrices in H?
m, 1 ≤ m ≤ n−1.

Let x = (x̃, xn) ∈ Rn−1×R be an eigenvector of eigenvalue λ of H. We have that x = UL, where

U =

(
I x̃
0 xn

)
, L =

(
0
1

)
.

Moreover, if we write H = (hij)1≤i,j≤n, then hi+1,i 6= 0, i = 1, . . . , n − 1, and this implies that
xn 6= 0. Applying Lemma B.1 (with B = (λ)), we have that

T = U−1HU =

(
T11 0
T21 λ

)
, and T11 = H11 −

1

xn
x̃w>,

where H11 = (hi,j)1≤i,j≤n−1 and w> = (0, . . . , 0, hn,n−1). This implies that T11 ∈ H?
n−1. By

induction, there is Ũ ∈ Tn−1 such that (Ũ−1T11Ũ)> ∈ Tn−1. Thus, if R = UDiag(Ũ , 1) then
R ∈ Tn and (R−1HR)> ∈ Tn. �

Corollary B.1. Suppose that H = A+B ∈ H?
n, where AB = BA and SpecA = {0}, SpecB =

{µ1, . . . , µn} ⊂ R. Then there exists R ∈ Tn such that

R−1AR = N1, R−1BR = D +N2,

where N1, N2 are strictly lower triangular and D = Diag(µ1, . . . , µn).

Proof: The result is trivial for n = 1. Suppose that it holds for matrices in H?
m, 1 ≤ m ≤

n − 1. Let λ ∈ C an eigenvalue of H. By Proposition B.1, λ is an eigenvalue of B and there
exists a non-zero vector x = (x̃, xn) ∈ Rn−1 × R such that Hx = λx, Ax = 0 and Bx = λx.
Then, if we define, as in Proposition B.2,

U =

(
I x̃
0 xn

)
, L =

(
0
1

)
,

we have that

U−1HU =

(
T11 0
T21 λ

)
, U−1AU =

(
T

(1)
11 0

T
(1)
21 0

)
, U−1BU =

(
T

(2)
11 0

T
(2)
21 λ

)
,

where T11 = T
(1)
11 + T

(2)
11 ∈ H?

n−1, T
(1)
11 T

(2)
11 = T

(2)
11 T

(1)
11 . By the induction hypothesis, there is

Ũ ∈ Tn−1 such that (Ũ−1T
(i)
11 Ũ)> ∈ Tn−1. As before, if we take R = UDiag(Ũ , 1) then R ∈ Tn

and (R−1AR)>, (R−1BR)> ∈ Tn. �

Lemma B.2. Let λ 6= µ be two real or complex eigenvalues of H ∈ H?
n and let v (resp. w) be

an eigenvector of eigenvalue λ (resp. µ). If v = (v1, v2) and w = (w1, w2), where v1, w1 ∈ Cn−2,
v2, w2 ∈ C2, then the vectors v2, w2, are linearly independent.
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Proof: Suppose that α1v + α2w = (ṽ1, 0)>, where ṽ1 ∈ Cn−2. Multiplying the last equality
by (H − λI) ∈ Hn we obtain α2(µ − λ)w = (w̃1, 0)>, where w̃1 ∈ Cn−1. As w has the last
component different from zero (since H is unreduced) and λ 6= µ, we have that α2 = 0. Finally,
α1 = 0 because the last component of v is different from zero. �

Corollary B.2. Let H ∈ H?
n and let v and w = v be (complex) eigenvectors of eigenvalues λ

and λ, λ ∈ C \ R, respectively, If we write v = (v1, v2), where v1 ∈ Cn−2 and v2 ∈ C2 then the
vectors Re v2, Im v2, are linearly independent.

Proof: By Lemma B.2, v2 and w2 are linearly independent. The corollary follows because
2Re v2 = v2 + v2 and 2i Im v2 = v2 − v2. �

Proposition B.3. Let H ∈ H?
n. There exists R ∈ BUTn

n1,...,nm
with either ni = 1 or ni = 2

for 1 ≤ i ≤ m, such that R−1HR = D + N , being N ∈ BLTn
n1,...,nm

with Ni,i = 0, and
D ∈ BDn

n1,...,nm
. Moreover, if diag(D) = (D1, . . . Dm) then either Di ∈ Spec (H) or

Di =

(
λ µ
−µ λ

)
, with λ+ iµ ∈ SpecH.

Proof: Suppose that H ∈ H?
n has k ≥ 0 pairs of non-real eigenvalues. We will proceed by

induction on k. If k = 0 the result follows from Prop. B.2. Suppose that it holds for matrices
in H?

n with k − 1 pairs of non-real eigenvalues. Let λ = γ + iδ ∈ SpecH, δ 6= 0. By the
Corollary B.2, there exists a matrix

W =

(
W1

W2

)
, with W1 ∈Mn−2,2, W2 ∈M2,2 non-singular,

such that HW = WB where

B =

(
γ δ
−δ γ

)
.

Then, we can procceed as in the real case. We write W = UL where

U =

(
In−2 W1

0 W2

)
, L =

(
0
I2

)
.

By using Lemma B.1, we see that

T = U−1HU =

(
T11 0
T21 B

)
, and T11 = H11 −W1W

−1
2 H21 ∈ H?

n−2.

By the induction hypothesis there exists Ũ ∈ BUTn−2
n1,...,nm−1

such that Ũ−1T11Ũ ∈ BLTn−2
n1,...,nm−1

with diagonal blocks of the required form. Defining R = UDiag(Ũ , I2), it follows that R−1HR
has the required properties. �

The precise statement of Prop. 4.1 follows from the previous results because, since D+N ∈
BLTn

n1,...,nm
and SpecDi,i∩SpecDj,j = ∅, there exists L ∈ BLTn

n1,...,nm
with Li,i = Ini such that

L(D +N)L−1 = D (this follows, for example, from Lemma 7.1.5 in [15]).

Corollary B.3. Suppose that H = A+B ∈ H?
n, where the eigenvalues of A have zero real part,

AB = BA and Spec (B) ⊂ R. Then there exists R ∈ BUTn
n1,...,nm

with either ni = 1 or ni = 2

for 1 ≤ i ≤ m, such that R−1AR = D(1) +N (1), R−1BR = D(2) +N (2) being N (j) ∈ BLTn
n1,...,nm
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with N
(j)
i,i = 0, D(j) ∈ BDn

n1,...,nm
, j = 1, 2. Moreover, if diag(D(j)) = (D

(j)
1 , . . . D

(j)
m ) then either

D
(1)
i = 0 and D

(2)
i ∈ Spec (B) or

D
(1)
i =

(
0 µ
−µ 0

)
, and D

(2)
i =

(
λ 0
0 λ

)
, with λ+ iµ ∈ Spec (H).

Proof: Suppose that H ∈ H?
n has k ≥ 0 pairs of non-real eigenvalues. We will proceed

by induction on k. If k = 0 then the result follows by Proposition B.1. Suppose that it is true
if H has k − 1 pairs of non-real eigenvalues. Suppose that H has k pairs and let λ + iµ an
eigenvalue of H with µ 6= 0. By Proposition B.1, there exists a no zero vector v ∈ Cn such that
Hv = (λ+ iµ)v, Bv = λv and Av = iµv.

Note that if we write v = x + i y, being x, y ∈ Rn then y 6= 0, and x and y are linearly
independent eigenvectors of B of eigenvalue λ.

As v is an eigenvector of H of eigenvalue λ+ iµ, by Corollary B.2, there exists a matrix

W =

(
W1

W2

)
, with W1 ∈Mn−2,2, W2 ∈M2,2 non-singular,

such that AW = WC1 and BW = WC2, where

C1 =

(
0 µ
−µ 0

)
, C2 =

(
λ 0
0 λ

)
.

Then, we can procceed as in the Proposition B.3. We write W = UL where

U =

(
In−2 W1

0 W2

)
, L =

(
0
I2

)
.

By using Lemma B.1, we know that

U−1HU =

(
T11 0
T21 B

)
, and T11 ∈ H?

n−2.

Moreover,

U−1AU =

(
T

(1)
11 0

T
(1)
21 B1

)
, U−1BU =

(
T

(2)
11 0

T
(2)
21 B2

)
,

where T
(1)
11 T

(2)
11 = T

(2)
11 T

(1)
11 . As B1 and B2 commute, we can perform a block diagonal similarity

that allows us to replace B1 and B2 by(
0 µ
−µ 0

)
and

(
λ 0
0 λ

)
, respectively.

Then we apply the induction hypothesis to T11 and obtain R with the required properties. �

The precise result of Prop. 4.2 follows from the following considerations. As the eigenvalues of
A have real part equal to zero, we can apply Corollary B.3. This means that there exists a matrix
U ∈ BUTn1,...,nm such that UX0U

−1 = D+N, where D = D(1) +D(2) and N = N (1) +N (2). We
note that since UBU−1 = D(2)+N (2) the matrix Ď in the previous statement of this Proposition
denotes indeed the matrix D(2). As in the proof of Prop. 4.1, as D + N ∈ BLTn

n1,...,nm
and

SpecDi,i∩SpecDj,j = ∅, there exists L ∈ BLTn
n1,...,nm

with Li,i = Ini such that L(D+N)L−1 =
D ∈ BDn

n1,...,nm
.

Now, we know that L(D + N)L−1 = D and L(Ď + Ň)L−1 commute (here Ň = N (2)).
Equivalently, one has that L(Ď + Ň)L−1 commutes with D. As Spec (Di,i) ∩ Spec (Dj,j) = ∅
then 0 /∈ Spec (BDi,i,Dj,j ), see first item of Prop. A.1. Then, L(Ď + Ň)L−1 = Ď.
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C A technical lemma

In this appendix we show how (13) in Theorem 4.1 can be derived from (12). The existence
of a permutation P such that M(t) has block LU-factorization with the block lower triangular
matrix tending to the identity is the key to understand the block structure of the ω-limit set.

Lemma C.1. There exists a symmetric permutation matrix P ∈ BDn
n1,...,nm

(therefore P 2 = In)
such that

M(t) = PetD̃L̂L,

has block LU-factorization M(t) = L̄(t)R̄(t) where L̄(t) ∈ BLTn
n1,...,nm

being

L̄j,j(t) =


L̄

(j)
1,1(t)

...
. . .

L̄
(j)
dj ,1

(t) · · · L̄
(j)
dj ,dj

(t)

 ∈ BLT
nj
r1,j ,...,rdj,j

,

and satisfying

1. L̄
(j)
k,k(t) = Irk,j , and

2. L̄(t)→ In as t→∞.

The proof will be divided into different steps. First, we proof that we can restrict to blocks
having eigenvalues with the same real part.

Lemma C.2. Let P = Diag(P1,1, . . . , Pm,m), where Pi,i, 1 ≤ i ≤ m, is a symmetric permutation.
Assume that

Pj,je
tD̃j,j L̂j,j = L̄j,j(t)R̄j,j(t), (23)

where R̄i,i(t) ∈ BUT
nj
r1,j ,...,rdj,j

, L̄i,i(t) ∈ BLT
nj
r1,j ,...,rdj,j

, and

1. L̄
(j)
k,k = Irk , and

2. L̄k,k(t)→ Inj as t→∞.

Then, there exists L̄(t) and R̄(t) such that diag(L̄(t)) = (L̄1,1(t), . . . , L̄m,m(t)), and R̄(t) =
Diag(R̄1,1(t), . . . , R̄m,m(t)), and they satisfy the thesis of Lemma C.1.

Proof: One has M(t) = (Mi,j(t))i,j ∈ BLTn
n1,...,nm

where Mj,j(t) = L̄j,j(t)R̄j,j(t), 1 ≤ j ≤ m,
and Mi,j(t) = L̄i,i(t)R̄i,i(t)Li,j , 1 ≤ j < i ≤ m. Then, we define

L̄i,j(t) := L̄i,i(t)R̄i,i(t)Li,jR̄j,j(t)
−1, 1 ≤ j < i ≤ m.

It just remains to check that L̄i,j(t)→ 0 whenever i > j. One has L̄i,j(t) = Pi,ie
tD̃i,iL̂i,iLi,jR̄j,j(t)

−1.
Using (23) it follows

L̄i,j(t) = et(αi−αj)Pi,ie
t(D̃i,i−αiIni )L̂i,iLi,jL̂

−1
j,j e
−t(D̃j,j−αjInj )Pj,jL̄j,j(t)

−1.

The eigenvalues of D̃i,i have real part αi, then ‖e±t(D̃`,`−α`In`
)‖ have a polynomial bound in t.

On the other hand, L̄j,j(t)
−1 → Inj . Since αi < αj because i > j then L̄i,j(t)→ 0. �
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As a consequence of the previous Lemma C.2 it is enough to restrict the proof to blocks with
eigenvalues with the same real part. We consider the jth-block which has eigenvalues with real
part equal to αj .

From the structure of D̃j,j described in (7) note that we can write D̃j,j = Aj + αjInj + L∗j ,

where Aj ∈ Skewnj and (L∗j )
> ∈ Tnj with L∗k,k = 0.

Lemma C.3. With the previous notation, assume that

Pj,je
tL∗j L̂j,j = Lj(t)Rj(t),

where Rj(t) ∈ BUT
nj
r1,j ,...,rdj,j

, Lj(t) ∈ BLT
nj
r1,j ,...,rdj,j

, and

1. Lj(t)k,k = Irk,j , and

2. Lj(t)→ In as t→∞.

If L̄j,j(t) :=Pj,je
tAjPj,jLj(t)Pj,je

−tAjPj,j and R̄j,j(t) :=etαjPj,je
tAjPj,jRj(t) then (23) holds.

Proof: First, from (7) one checks that

D̃
(j)
sj±2k,sj±2kD̃

(j)
sj±2k,sj±2k−2 = D̃

(j)
sj±2k,sj±2k−2D̃

(j)
sj±2k−2,sj±2k−2,

D̃
(j)
sj±(2k+1),sj±(2k+1)D̃

(j)
sj±(2k+1),sj±(2k−1)=D̃

(j)
sj±(2k+1),sj±(2k−1)D̃

(j)
sj±(2k−1),sj±(2k−1),

and hence it follows that L∗jAj = AjL
∗
j . Then,

Pj,je
tD̃j,j L̂j,j = etαjPj,je

tAjetL
∗
j L̂j,j = etαjPj,je

tAjPj,jLj(t)Rj(t) = L̄j,j(t)R̄j,j(t).

Note that the diagonal blocks of L̄j,j(t) are identity matrices and that L̄j,j(t) → 0 (because
etAj ∈ Onj and, hence, has bounded norm). �

It remains to prove the assumptions of the previous lemma concerning the LU factorizations
of Pj,je

tL∗j L̂j,j . For simplicity, we shall remove the subindex j in the notation. We note that the
matrix etL

∗ ∈ BLTn
r1,...,rd

has a block structure that satisfies r(d+1)/2+k = r(d+1)/2−k, 1 ≤ k ≤
(d− 1)/2 (recall that d is odd). This allows to consider P the block anti-diagonal permutation
matrix with identity matrices and perform the product PetL

∗
by blocks of size r1, . . . , rd.

Lemma C.4. Let P denote the block anti-diagonal permutation matrix with identity blocks of
sizes r1, . . . , rd.

1. Consider the matrices W (t) and Ŵ (t) where W (t)=Diag(W1,1(t), . . . ,Wd,d(t)), Wi,i(t) ∈
Dri,

Wi,i(t)= t−b
d+1
4
c+b d−1−2i

4
c+1Iri , Ŵi,i(t)= t(d+1)/2−i[Wi,i(t)]

−1, 1 ≤ i ≤ d.

They satisfy
PetL

∗
= W (t)FŴ (t),

where F ∈Mn,n is a constant matrix.

2. The matrix F has block LU factorization which will be denoted by F = L0R0.
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3. The matrix R0Ŵ (t)L̂Ŵ−1(t), for |t| large enough, has block LU factorization, that will be
denoted by L1(t)R1(t).

4. Finally, PetL
∗
L̂ = L(t)R(t) where L(t) = W (t)L0L1(t)W (t)−1, and R(t) = W (t)R1(t)Ŵ (t).

Moreover, L(t)→ In as |t| → ∞.

Proof: The block structure of L∗ is the same as the structure of a block of D (see Fig. 1
right) but with zero blocks in the diagonal. Let us denote B = etL∗. Then, all blocks are 0
except Bi,i = Iri , and, for 0 ≤ j ≤ (d− 1)/2 = s− 1,

Bs+k+2+j,s+k−j =
tj+1

(j + 1)!
E(rs+k+2+j , rs+k−j)

>, 0 ≤ k ≤ s− j − 3,

Bs−k+1+j,s−k−1−j =
tj+1

(j + 1)!
E(rs−k+1+j , rs−k−1−j), 0 ≤ k ≤ s− j − 2.

To prove 1. we note that the elements of F = W (t)−1PBŴ (t)−1 are given by

Fi,l = Wi,i(t)
−1Bd−i+1,lŴl,l(t)

−1.

If l − i is odd, then Fi,l = 0. Hence we consider l − i even. If l − i > 0 then

Bd−i+1,l =
tj+1

(j + 1)!
E(rs+k+2+j , rs+k−j)

>,

where k = d+l−i−1−2s
2 and j = d−l−i−1

2 . From the expression of Wi,i(t) and Ŵl,l(t), one gets
that Fi,l has a factor tq where

q =
l − i

2
+ bd− 1− 2l

4
c − bd− 1− 2i

4
c,

and, since l − i is even, q = 0. If l − i ≤ 0 then

Bd−i+1,l =
tj+1

(j + 1)!
E(rs−k+1+j , rs−k−1−j),

where k = d+l−i+1−2s
2 and j = d−l−i−1

2 . The same computation of the power q gives q = 0 as
before. This proves, in particular, that F is a constant matrix. Moreover, by construction, F is
such that Fi,l = 0 if i+ l > d+ 1.

To prove 2. we first consider a particular case. Assume that d = 1(mod 4). The case
d = 3(mod 4) can be handled similarly. Denote by d+ (resp. by d−) the number of blocks
having eigenvalues of odd (resp. even) multiplicity. Since d = 1(mod 4) one has d+ = (d+ 1)/2
and d− = (d − 1)/2. Moreover, we assume that all the blocks of odd multiplicity have size r1

and all the blocks with even multiplicity have size r2. The general case will follow from this
particular situation.

Below we use the following notation. For a fixed j > 0, we denote by 0l the null matrix of
dimension l × j and E(i, j, k) = (0i, Ij , 0k)

>.
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For the considered case, L∗ is of the form

L∗ =



0
0 0
Ir1 0 0

Ir2 0 0
Ir1 0 0

. . .
. . .

. . .

Ir1 0 0


,

then F = (W (t))−1PetL
∗
(Ŵ (t))−1 has block LU-factorization. This follows since F = X1(Sd+⊗

Ir1)X>1 +X2(Sd− ⊗ Ir2)X>2 , where ⊗ denotes the Kronecker product, the matrix X1 ∈Mn,r1d+

is
X1 =(E(0, r1, n−r1), E(r, r1, n−2r1−r2), E(2r, r1, n−3r1−2r2), . . . , E(rd−, r1, 0)),

where r = r1 + r2; the matrix X2 ∈Mn,r2d− is

X2 =(E(r1, r2, n−r), E(2r1+r2, r2, n−2r), E(3r1+2r2, r2, n−3r),. . ., E(rd−−r2, r2, r1)),

and, for a positive integer σ, the matrix

Sσ =



1
(σ−1)!

1
(σ−2)! · · ·

1
1!

1
0!

1
(σ−2)!

1
(σ−3)! · · ·

1
0! 0

...
...

...
...

1
1!

1
0! · · · 0 0

1
0! 0 · · · 0 0


,

has LU-factorization Sσ = LσRσ, Lσ = (mij)1≤i,j≤σ, Rσ = (rij)1≤i,j≤σ, with non-zero elements
given by

mij =
(σ − j)!
(σ − i)!

(
i− 1
j − 1

)
, i ≥ j, and rij = (−1)i+1 (i− 1)!

(σ − j)!

(
j − 1
i− 1

)
, i ≤ j.

To obtain the previous explicit LU-factorization of Sσ we have used the expressions in Lemma 1
of [1] for the determinants that generate the coefficients of L and U .

Hence, the matrix F has block LU-factorization F = LR, where

L = X1(Ld+ ⊗ Ir1)X>1 +X2(Ld− ⊗ Ir2)X>2 ∈ BLTn
r1,r2,r1,r2,...,r1 , and

R = X1(Rd+ ⊗ Ir1)X>1 +X2(Rd− ⊗ Ir2)X>2 ∈ BUTn
r1,r2,r1,r2,...,r1 .

The general case follows by induction over s = (d + 1)/2. If s = 1, then d = d+ = 1,
d− = 0 and, since F has only one block, trivially admits a block LU-factorization. By induction
hypothesis, we assume that if the number of diagonal blocks of F is less or equal than d = 2s−3
then it admits block LU-factorization. Let us prove that if F has d = 2s− 1 diagonal blocks it
also admits block LU-factorization. We write

F = X1(Sd+ ⊗ Ir1)X>1 +X2(Sd− ⊗ Ir2)X>2 +X3F̃X
>
3 ,
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where X1 = (X
(1)
1 , . . . , X

(d+)
1 ) ∈Mn,r1d+ and X2 = (X

(1)
2 , . . . , X

(d−)
2 ) ∈Mn,r2d− are given by

X
(k)
1 = E

2(k−1)∑
j=1

rj , r1, n−
2(k−1)∑
j=1

rj

 , X
(k)
2 = E

2k−1∑
j=1

rj , r2, n−
2k−1∑
j=1

rj

 ,

and X3 = (X
(1)
3 , . . . , X

(d−)
2 ) ∈Mn,n−r1d+−r2d−

X
(k)
3 =

 E
(
r1 +

∑k+1
j=1 rj , rk+2 − r1, n− rk+2 −

∑k+1
j=1 rj

)
if k odd,

E
(
r2 +

∑k+1
j=1 rj , rk+2 − r2, n− rk+2 −

∑k+1
j=1 rj

)
if k even,

and F̃ has d̂ = d̂+ + d̂− = 2s− 5 blocks, being d̂± = d± − 2.

By induction hypothesis, the matrix Sd+⊗ Ir1 and Sd−⊗ Ir2 admits LU block decomposition
(with squared blocks of size r1 and r2, respectively). We denote Sd+ ⊗ Ir1 = Ld+Rd+ , where

Ld+ ∈ BLT
r1d+
r1,...,r1 , Rd+ ∈ BUT

r1d+
r1,...,r1 . Similarly, Sd− ⊗ Ir2 = Ld−Rd− , where Ld− ∈ BLT

r2d−
r2,...,r2 ,

Rd+ ∈ BUT
r2d−
r2,...,r2 .

Moreover, the matrix F̃ admits LU decomposition, say F̃ = L̃R̃, where

L̃ ∈ BLT
n−d̂+r1
r2,r3−r1,r4−r2,...,rd̂+−r1

, R̃ ∈ BUT
n−d̂+r1
r2,r3−r1,r4−r2,...,rd̂+−r1

.

Since X>1 X1 = Ir1d+ , X>2 X2 = Ir2d− , X>3 X3 = In−r1d+−r2d− , X>i Xj = 0 for i 6= j, i, j ∈
{1, 2, 3}, then F admits a LU block decomposition, F = L̂R̂, where

L̂ = X1Ld+X
>
1 +X2Ld−X

>
2 +X3L̃X

>
3 ∈ BLTn

r1,r2,r1,r3−r1,r2,r4−r2,...,r2d−4
, and

R̂ = X1Rd+X
>
1 +X2Rd−X

>
2 +X3R̃X

>
3 ∈ BUTn

r1,r2,r1,r3−r1,r2,r4−r2,...,r2d−4
.

Finally, we note that some of the 2d− 4 obtained diagonal blocks in the LU decomposition
above are smaller than the original diagonal blocks of F , being the block partition of the de-
composition finer than the block partition of F . Therefore, there exists a block LU factorization
with the original partition of F , which is the required decomposition F = L0R0 of item 2.

Note that, by construction, R0 has blocks (R0)i,i+1 = 0, 1 ≤ i ≤ d − 1. Moreover, the
diagonal blocks (R0)i,i are invertible. This follows since det(F ) 6= 0 (note that PF ∈ BLTn

r1,...,rd

with identity blocks in the diagonal). Denote by N(t) = Ŵ (t)L̂Ŵ−1(t) ∈ BLTn
r1,...,rd

, then

(N(t))i,j = tp(i,j)L̂i,j , 1 ≤ i ≤ d, 1 ≤ j ≤ i, (24)

where

p(i, j) = j − i+ bd− 1− 2j

4
c − bd− 1− 2i

4
c.

If d = 1(mod 4), one has p(i, i) = 0 and, for i odd, p(i, i − 1) = 0. If, on the other hand,
d = 3(mod 4), one has p(i, i) = 0 and, for i even, p(i, i − 1) = 0. In all the other cases
p(i, j) ≤ −1 in both cases. Hence, when t→∞, only the diagonal blocks and some blocks of the
subdiagonal remain. The properties of the blocks of R0 stated previously imply the existence of
block LU factorization of R0N(t) when t =∞ and, hence, when |t| is large enough. We denote
it L1(t)R1(t). This proves item 3.
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One checks the indentity PetL
∗
L̂ = L(t)R(t) directly. Finally, since N(t) has limit when

|t| → ∞ and the limit is invertible, it follows that L1(t) also has limit when |t| → ∞. Then

L(t)i,j = tq(i,j)(L0L1(t))i,j ,

where

q(i, j) = bd− 1− 2i

4
c − bd− 1− 2j

4
c.

One checks that q(i, j) ≤ −1 if i > j, which implies that L(t) tends to In when |t| → ∞. �

Remark C.1. If in the proof of Lemma C.1, we put Aj = 0, for all j, that is, D̃j,j = αjInj
+ L∗j , the

thesis is also true and, moreover, R̄(t) = Diag(etα1R1,1, . . . , e
tαmRm,m).
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2π-periodic. For ε > 0, x11 tends to 2. Right: Projection onto the coordinates (x2,1, x2,2, x3,2)
of the ω-limit for X0,10−2 (red), X0,−10−2 (green), and the periodic orbit of X0,0 (blue). The
π-periodic orbit obtained as ω-limit for ε > 0 (resp. for ε < 0) are observed in the coordinates
plane x2,1 = 0 (resp. x3,2 = 0). For ε = 0 the ω-limit is the 2π-periodic orbit of X0,0.
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Figure 5: From left to right, we show the orbit of X0 in cases (i) α = π/2, β = π/4, (ii)
α = π/2, β = π/2 and (iii) α = π/4, β ≈ 0.361367. In the first case the orbit is dens in a 2D
torus. In the cases (ii) and (iii) the orbit is a periodic orbit.
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Figure 6: We display the evolution of x2,1 with respect the time integration (top) and the

projection onto the (x1,1, x2,1)-plane. Left: Orbit of XQ
0 . Right: Orbit of X

R\Q
0 .



FIGURES 53

-1

 0

 1

-1  0  1

x1,1

x
2
,3

-1

 0

 1

-1  0  1

x1,2

x
2
,3

Figure 7: Homoclinic and heteroclinic orbits to X±,±. We represent some components of the
solution X(t) of the QR-flow starting at Xi, 1 ≤ i ≤ 8. In both plots we display the coefficient
x2,3 in the y-axis. Left: In the x-axis we display the coefficient x1,1. The four equilibrium
matrices are projected onto the points (0, 1) and (0,−1). The homoclinic orbits appear as
ellipses tangent to the origin. Each curve corresponds to two homoclinic or heteroclinic orbits
(they are superimposed in this projection). Right: In the x-axis we display the coefficient x1,2.
The four equilibrium matrices are at the vertices of the square. The four homoclinic orbits start
in one of the vertices, go to the center of the square and return. The four heteroclinic orbits are
clearly observed.
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Figure 8: Homoclinic and heteroclinic orbits to X+,+
i,j,k (labelled by ijk in the top plots). In the

bottom plots the points represent projections of more than one equilibrium matrix. Top left:
Heteroclinic orbits to these equilibria. The two pieces of orbits which go to the bottom left
vertex of the window correspond to the same heteroclinic orbit from X+,+

321 to X+,+
123 . Top right:

a scheme of the local homo/heteroclinic structure. Bottom left: The same of top plot, but in
a larger window, to see the full heteroclinic orbit from X+,+

321 to X+,+
123 . Bottom right: In the

displayed projection each pair of points on the same horizontal coordinate in the top left plot
project onto the same point.


