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Abstract

Saddle-node (s-n) bifurcations can be responsible for abrupt changes between
alternative states in nonlinear dynamical systems. It is known that once a s-n bi-
furcation takes place, a s-n remnant (also named ghost or delayed transition) can
continue attracting the flows in the phase space before they achieve another at-
tractor. The time needed to pass through the saddle-remnant, which causes an
extremely long transient after the bifurcation, is known to follow an inverse square-
root law. In this manuscript we investigate the effect of time lags in the transient
dynamics near a s-n bifurcation by means of delay differential equartions. To do so
we use a one-variable dynamical system describing the dynamics of an autocatalytic
replicator, introducing a time lag, τ , in the process of hyperbolic replication, be-
coming an ∞-dimensional dynamical system. We show that the delayed transitions
found in the lagged system become much longer than the ones found in the system
without time lags, although the inverse square-root law is preserved. The time the
flows spend crossing the ghost is shown to increase linearly with τ . The implications
of this transients’ enlargement are discussed in the framework of prebiotic evolution.
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1 Introduction

Bifurcations produce transitions separating different dynamical scenarios and can occur
when one or more systems’ parameters cross bifurcation values. The nature of the bi-
furcations can differ depending on the underlying nonlinear interactions found in a given
dynamical system. Transitions between alternative states can be continuous or discontin-
uous (catastrophic) [1, 2]. For instance, smooth transitions such as second order phase
transitions are typically given by transcritical bifurcations. This bifurcation involves the
collision of fixed points and an exchange of stability between them [3].

A typical bifurcation giving place to catastrophic transitions (e.g. first-order phase
transitions) is the saddle-node (hereafter s-n) bifurcation, studied in this article. This bi-
furcation involves the collision and annihilation of invariant objects such as fixed points [3]
or periodic orbits [4, 5] (see [6] for evidences of a s-n of periodic orbits in experiments with
a semiconductor laser with optical injection). S-n bifurcations arise in many biological
dynamical systems with strong feedbacks such as cooperation [7] or facilitation processes
in semiarid ecosystems [8], and factors such as mating or predation causing the so-called
Allee effects [9], where the population size becomes crucial in the fate of the species.
Also, catastrophic transitions have been discussed within the framework of ecosystems’
dynamics under global change and anthropogenic pressure [1, 2, 8]. Interestingly, Dai et
al. provided a detailed characterization of a s-n bifurcation obtained in experiments with
yeast [10].

The dynamical behavior investigated in this article appears just after a s-n bifurcations
and is given by the so-called s-n remnant, bottleneck, or ghost [3, 11]. This phenomenon
involves a delayed transition required to pass through a bottleneck region where a s-n
remnant continues influencing the flows after the collision of the saddle and the node [3].
Delayed transitions are also found in s-n bifurcations of periodic orbits [4, 5]. Indeed, ex-
perimental evidences in an electronic circuit suggests the presence of these long transients
in oscillatory systems [12]. Also, slowing down phenomena due to a s-n bifurcation has
been recently reported in asymmetric elastic ‘snap-through’ instabilities [13].

It is known that the slowing time, T , tied to s-n bifurcations typically follows an
inverse square-root law, given by:

T ∝ 1/
√
α− αc, (1)

α being the bifurcation parameter and αc the bifurcation value at which the s-n bifurcation
occurs. According to the normal form of s-n bifurcations in time continuous systems
(flows), given by ẋ = r + x2, we can consider that r is proportional to the distance from
the bifurcation (occurring at r = 0), with 0 < r � 1. To estimate the time spent in
the bottleneck, Td, the time taken for x to go from −∞ to +∞ can be computed by
integrating x [3]: ∫ ∞

−∞

dx

r + x2
=

π√
r

= Td.

The previous expression displays the generality of the inverse square-root law.
As mentioned, this power law has been characterized in an experiment with an elec-

tronic circuit modelling Duffing’s equation [12]. Moreover, the inverse square-root law
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has also been described in a mathematical model for charge density waves [11] as well
as in catalytic networks with hypercycle architecture [14]. The ghost for hypercycles
[7, 15, 16, 17] appears after a s-n bifurcation, as a result of the jump of the stable fixed
point responsible of coexistence and the saddle to the complex phase space.

An important feature of many dynamical systems, especially those modeling physical
or biological processes, is the presence of time lags. Time lags arise when the processes
at a given time t depend on the processes that occurred in the past (t − τ), τ being the
time lag. The impact of time lags in the dynamics of ordinary differential equations can
be drastic since dimensionality becomes infinite once time lags are introduced, and even
single variable, time-continuous systems can behave chaotically [18], a behavior restricted
to n ≥ 3-dimensional time-continuous dynamical systems without time delays [3].

Despite the impact of time lags in dynamics has been studied with diligence in biologi-
cal [18, 19, 20], chemical [21, 22] and physical systems such as lasers (see [23] and references
therein), their effects on transients near bifurcation thresholds remain unexplored. In this
manuscript we investigate how the dynamics near a s-n remnant change due to time lags.
To do so we use a simple dynamical model describing replicators’ autocatalysis that suffer
a s-n bifurcation. By autocatalysis we mean a species that reproduces hyperbolically at
low population values, instead of exponentially. This type of reproduction, which involves
the presence of s-n bifurcations under the processes of exponential decay and competition,
has been used to study the population dynamics of cooperation [5, 7, 17, 24].

The paper is organized as follows. In Section 2 we introduce the autocatalytic repli-
cator model. Subsection 2.1 provides a summary of the dynamics and the s-n bifurcation
for this system given by a one-dimensional differential equation without time lags. Sub-
section 2.2 explores the impact of time lags after the s-n bifurcation by using a delay
differential equation version of the autocatalytic replicator model. Finally, Section 3 is
devoted to some conclusions.

2 Cooperative time-continuous model

In order to analyse the impact of the time lags in the transients tied to the saddle-
node (s-n) remnant we analyze a simple one-dimensional continuous model suffering a
s-n bifurcation. We focus on a model describing the dynamics of a single autocatalytic
replicator [24, 16]. In Section A below we summarize the dynamics of the model with no
time lags. Then, in Section 2.2 we will investigate how the dynamics near a s-n remnant
vary by adding time lags.

2.1 Differential equation model without time lags

The model that we will here analyze describes the time dynamics of an autocatalytic
replicator with intra-specific competition and density-independent degradation [24, 7].
The state variable x(t) is the population of a replicator species that catalyzes its own
replication. The dynamical system describing these process can be written as:

dx

dt
(t) = f(x) = kx2(t)

(
1− x(t)

K

)
− εx(t). (2)
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Figure 1: (Upper) Bifurcation diagram increasing the degradation rate, ε, for the auto-
catalytic replicator Eq. (2), using k = 1 (x∗+ stable equilibrium (solid line); x∗−: unstable
(dashed line)). The arrows display the direction of the flows in the one-dimensional phase
space, plotting x∗+ (black circle) and x∗− (gray circle). Notice that as ε→ εc both equilib-
ria collide in a saddle-node bifurcation (vertical red line). Just after the bifurcation the
system experiences an extremely long transient towards the attracting fixed point x∗ = 0
(small blue rectangle). Such a delayed transition follows the inverse square-root law as a
function of the distance to the bifurcation value from above, Φ = ε− εc, displayed at the
panel below.

Parameters k > 0 and ε > 0 are the catalytic amplification rate and the degradation rate,
respectively. The growth of the population is limited with a logistic function that intro-
duced intra-specific competition, K being the carrying capacity (hereafter we consider
K = 1). As previously mentioned, the replication term is non-linear (i.e., of the form
kx2) since there exists a density-dependent effect in the growth rate due to autocatalysis.
An autocatalytic replicator, as a difference from a Malthusian one (which is amplified
exponentially at low population numbers) follows the so-called hyperbolic growth. This
growth involves that, for low population sizes (i.e., assuming x(t)/K ≈ 0 and ε = 0), the
population grows following ẋ = kx2, with solution

x(t) =
x(0)

1− x(0)kt
.

Note this type of replicators undergo explosive growth that can reach infinite populations
at finite times. In our model we also consider density-independent degradation rate, given
by constant ε, which is a necessary parameter to have a saddle-node (s-n) bifurcation.

Equation (2) has three equilibrium points x∗ ∈ {x0, x±}, given by

x0 = 0, x± =
1

2

(
1±

√
1− 4ε/k

)
. (3)

Note that the pair x± will be biologically meaningful whenever ε/k ≤ 1/4. Indeed, when
1−4ε/k = 0 both fixed points x+ and x− have the same value, meaning that they collide.
Such a collision leads to a s-n bifurcation occurring at the bifurcation value εc = k/4.
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The stability of the fixed points can be obtained from the sign of λ(x∗), with:

λ(x∗) =
df

dx
(x∗) = kx∗(2− 3x∗)− ε.

From the previous expression we obtain that the fixed point x0 = 0 is asymptotically
locally stable since λ(x0) = −ε, with ε > 0. We note that after the s-n bifurcation
this fixed point becomes asymptotically globally stable. Further calculations allow us to
obtain the following values for λ(x±):

λ(x±) = 2ε− kx±.
In particular, if 0 < ε/k < 1/4, then x+ is stable and x− is unstable. As mentioned, for
ε > εc the fixed points x+, x− ∈ C, being the point x0 = 0 the only equilibrium in phase
space, which is asymptotically globally stable.

The previous results on stability and existence of fixed points are displayed in Fig. 1,
where the bifurcation diagram increasing ε is shown. Note that the two fixed points x±
approach each other as ε increases, colliding at the bifurcation value (vertical red line).
Just after the s-n bifurcation takes place, a s-n remnant appears and continues influencing
the flows, and the transient times towards the global attractor x0 become extremely long.
The times of these transients have been computed numerically, and are displayed in the
blue-framed panel of Fig. 1 at increasing ε above its bifurcation value. Note that this
time follows the inverse square-root law, as mentioned in the Introduction. In the next
Section we explore how time lags affect to the dynamics of the s-n remnant.
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Figure 2: Extinction times near the saddle-node remnant for different time lags, τ , using
x(0) = 1 as initial condition. The transients towards extinction have been computed
for three different parameter distances to the bifurcation value εc for Eq. (4), with: ε =
εc + 10−8 (left panel); ε = εc + 10−6 (middle); and ε = εc + 10−4 (right panel). The
violet trajectory in each panel corresponds to the case with no time lags. Notice that the
increase of τ involves much longer transients.

2.2 Delay differential equation model

To investigate the impact of time lags in delayed transitions due to a saddle-node (s-n)
remnant we here extend the model given by Eq. (2) to a delay differential equation (DDE)
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including a time lag τ > 0. The lagged model is given by:

dx

dt
(t) = kx2(t− τ)

(
1− x(t)

K

)
− εx(t), (4)

also setting K = 1. This model describes, in its simplest form, density-dependent repro-
duction of a single species with time lags. For instance, this model could be applied to
autocatalytic molecules that spend some time in adopting the three-dimensional config-
uration necessary for providing catalysis, which could be delayed due to environmental
conditions such as pH or temperature [25]. Other interpretations could consider the
dynamics of a single species in which simultaneous hermaphroditism occurs and the in-
dividuals undergo a maturation time before reproduction. Hermaphroditism enables a
form of sexual reproduction in which each partner can act as the “female” or the “male”.
Examples of simultaneous hermaphroditism, in which both male and female sexual organs
are found in individuals at the same time, are found in gastropods, slugs, earthworms,
nematodes, among others [26]. Indeed, a rough estimate of hermaphroditic animal species
is 65,000 [27].

The main properties of the new model are summarized in the following statement:

Proposition 1 The constant functions x0 and x± defined in Eq. (3) are the only equilib-
rium points of Eq. (4) whose stabilities are independent of the delay τ . For 0 < ε/k < 1/4,
x0 is exponentially stable, x+ is stable and x− is unstable, due to a real eigenvalue. At
ε/k = 1/4 the equilibria x− and x+ merge at x = 1/2 in a s-n bifurcation and become
complex for ε/k > 1/4.

Proof. The equilibrium points are the constants functions that are roots of the right
hand side of Eq. (4). That is, the same points x∗ discussed in the previous Section, but
its stability must be analyzed studying the transcendental eigenvalue problem for λ [28],

−kx2∗ − ε+ 2k(1− x∗)x∗e−λτ − λ = 0,

which is equivalent to

(−kx2∗ − ε)τeλτ + 2k(1− x∗)x∗τ − λτeλτ = 0. (5)

Defining the values p = (−kx2∗− ε)τ , q = 2k(1−x∗)x∗τ , and z = λτ , then the Theorem 1
in [29] says that if 0 < ε/k < 1/4 the stability of x0 is subjected to the conditions
−ε < min{1/τ, 0} and 0 < ((tan a1)

2 + 1)1/2 while the stability of x± is subjected to
−kx± < min{1/τ,−2ε} and −2ε < ((a1/τ)2 + (kx±)2)1/2 where in these conditions a1
denotes the root of a = p tan a such that 0 < a < π.

In particular, the stability of the real point x∗ does not depend on the delay τ > 0
and the conditions of being stable or unstable are the same as for the model without time
lags. That is, x0 = 0 is exponentially stable if and only if −ε < 0, and x± is exponentially
stable if and only if 2ε− kx± < 0.

We have only shown whether the equilibrium points x0, x± are stable or not but we
did not quantify their stability. However, we can apply Lemma 1 in [29] to transform
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Figure 3: Dependence of extinction times (Te) on the distance to bifurcation threshold,
ψ = ε − εc. (a) Time to extinction, Te at increasing parameter ε above the bifurcation
value εc. Notice that this extinction time diverges near the bifurcation value (results
shown in a linear-linear plot). (b) Inverse square-root law also found in the system with
no time lags (violet curve). Notice that the same power-law is found by including time
lags. Here for all of the values of τ analyzed the time to extinction scales accordingly to
Te ∼ ψ−1/2.

equation (5) into s = ces, where s = −(λ + kx±)τ and c = −2ετekx±τ , whenever 0 <
ε/k < 1/4. Since c < 0 we conclude that the stability of x± is governed by a real eigenvalue
such that x+ is stable and x− is unstable. In other words, the bifurcation at ε/k = 1/4
is also a saddle–node (s-n) bifurcation for the delayed model. The difference arises in
how strong is the (un)stability at (x−)x+ depending on τ . When 0 < ε/k < 1/4, it is
quantified by the real number λ = −kx±−s/τ being s the real solution of c2e2s = s2, s < 0.
After the bifurcation, i.e. ε/k > 1/4, the stability of x± is determined by the eigenvalue
with maximum real part of Eq. (5). According to Theorem 1.2 in [30] x± are unstable
regardless of the value of τ > 0. �

The dynamics near x = 1/2 after the s-n is slow, and it can be seen as a passage near
a saddle equilibrium point (with complex coordinates). Hence, the time needed to “go
through” x = 1/2 depends on the size of the real part of the eigenvalue of this saddle.
To study the behaviour of the dominant eigenvalue when the points x± are complex, i.e.
ε/k > 1/4, let us study Eq. (5) in a neighbourhood of (x, τ) = (1/2, 0). To this end, let
us fix a small value δ > 0 and let us write ε/k = (1 + δ)/4. Then x± = (1± i

√
δ)/2 are

complex numbers and Eq. (5) becomes

1± i
√
δ − (1 + δ)e−λτ + 2λ/k = 0. (6)

As (τ, λ) = (0, 2ε−kx±) verifies this equation and the derivative with respect to λ at this
point is 2/k (which is always different from zero), the Implicit Function Theorem implies
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Figure 4: Linear dependence between the time that trajectories spend in the slow passage
near the saddle-node remnant and the time lag τ . The points indicate the difference
between the delayed transition for the system with no time lag and with different time
lags, computed as Te(τ) − Te(τ = 0), while the solid line is the linear regression. We
display these results for three different values of the bifurcation parameter ε beyond the
bifurcation value εc, plotting this difference between times at increasing lag times, τ .

the existence of a unique analytic mapping τ 7→ λ(τ) which verifies Eq. (6). It is tedious
but not difficult to obtain that

Re λ(δ, τ) = k
δ

2
− k2

(
δ2

4
+
δ

4

)
τ + k3

(
3δ3

2
+
δ2

2
+
δ

8

)
τ 2

2!

−k4
(
δ4 +

25δ3

16
+

3δ2

8
− 3δ

16

)
τ 3

3!

+k5
(

125δ5

32
+

207δ4

32
− δ3

32
− 131δ2

32
− 3δ

2

)
τ 4

4!
+O(τ 5).

Proposition 2 Re λ(δ, τ) = kδg(δ, τ) for some analytic mapping g with g(0, 0) 6= 0.

Proof. It is enough to prove it in a neighborhood of δ = 0. As the mapping λ(δ, τ) is
analytic, let us proceed by induction on the order of the derivative. Indeed, Re λ(δ, 0) =

kδ/2 and if now we assume that Re ∂iλ
∂τ i

(δ, τ) can be factorized by kδ for all i < j, then

Re ∂jλ
∂τ j

(δ, τ) is the sum of a combination of Re ∂iλ
∂τ i

(δ, τ) with i < j and the jth partial
derivative of (6) with respect τ that always has kδ as a factor. �

Table 1 shows the values of Re λ(δ, τ) for different values of δ and τ , computed by
solving numerically Eq. (6). Note the similarity between columns of this table, this is due
to the form of Re λ(δ, τ) (see Prop. 2). Moreover, as the derivative of Re λ(δ, τ) at τ = 0
is negative, we have that the real part of the eigenvalue becomes smaller as τ increases.
Hence, we expect a longer transition time when a small delay is added.

By means of a numerical integration, we quantify the time that a trajectory is close
to x = 1/2 for several values of τ . More concretely, we compute the time needed to go
through x = 1/2 as the difference between the first time t that verifies |dx

dt
(t)| < 10−4 and

|x(t)− 1/2| < 0.005 and the first one that does not verify it. Fig. 5 displays, in log scale,
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τ εc + 10−4 εc + 10−6 εc + 10−8

0 2.000000e−04 2.000000e−06 2.000000e−08
0.05 1.950620e−04 1.950639e−06 1.950642e−08
0.1 1.902566e−04 1.902602e−06 1.902602e−08

1 1.259111e−04 1.259258e−06 1.259259e−08
1.5 1.037753e−04 1.037899e−06 1.037901e−08

2 8.748623e−05 8.749986e−07 8.750000e−09
5 4.255738e−05 4.256552e−07 4.256559e−09

10 2.175476e−05 2.175921e−07 2.175926e−09

Table 1: The greatest real part of eigenvalues of x± when εc = 1/4 and k = 1.

the relation between the values Re λ(δ, τ) and the time taken to go through x = 1/2.
Note that the plot shows the expected result for a linear system, in which the passage
time near a saddle is proportional to the inverse of the largest real part of the eigenvalues
of the saddle. As we are close to an equilibrium point, it is clear that the linear part
dominates the dynamics and this implies a longer transition through x = 1/2.

Hence, this justifies the results displayed in Fig. 2 in the sense that τ involves a longer
delayed transition near to the s-n remnant. In this figure three different values of ε are
studied beyond, but close to the bifurcation. Specifically, we plot, for each case, a time
series for the model given by Eq. (2) (violet trajectory τ = 0), and six other trajectories
applying increased time lags. For example, using ε = εc + 10−8 the time delay with τ = 0
is t ≈ 6×103, while for τ = 10 this time becomes t ≈ 3.75×105. The dependence between
the time delays and the distance to the bifurcation value for different time lags (including
τ = 0) is displayed in Fig. 3. Panel (a) displays the results in a linear-linear scale while
(b) shows the same results in a log-log plot. Note that the time lag does not modify the
inverse square-root law. Indeed, the increase of τ > 0 in delaying times with respect to
the model without time lags is linear. This relation is represented in Fig. 4, where the
time differences for the model with τ = 0 is plotted as a function of τ .

3 Discussion

Saddle-node (s-n) bifurcations arise in many nonlinear systems and can govern catas-
trophic transitions [1, 2, 8]. These bifurcations are typically found in systems with bista-
bility, for which two different stable fixed points exist, and are separated by an unstable
point in one dimension or by a separatrix in more than one dimension. Depending on the
initial conditions, one of these two stable points will be achieved. Catastrophic transi-
tions due to s-n bifurcations have been identified in mathematical models describing the
dynamics of cooperation in biological systems [5, 16].

It is known that once the s-n bifurcation takes place, a s-n remnant (also called ghost)
continues influencing the flows [11, 3]. That is, although the system becomes monostable
after the s-n bifurcation, for extremely close values of the bifurcation parameter to the
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bifurcation value, the flows experience a very long transient before reaching the single,
asymptotically globally stable equilibrium. The times the system spends in this saddle
remnant follow a power-law dependence that decays with exponent −1/2 as the bifurca-
tion parameter increases near the bifurcation threshold. This exponent has been found
in models with s-n bifurcations for charge density waves [11], electronic circuits (both
theoretically and experimentally [12]), and nonlinear replicators [24, 7].

Despite the ubiquity of this phenomenon tied to s-n bifurcations, several questions
still remain open. For instance, what is the impact of time lags in the dynamics near a
s-n remnant. In this article we explore this question by using the simplest autocatalytic
replicator model, which considers a single species or macromolecule that is able to catalyze
itself. Our model assumes a logistic-like constraint in the growth of the population as well
as density-independent decay. The dynamics of this model without time lags has been
previously studied [7, 24].

We have found that the time lags, τ , further increase the length of the transients
near the s-n remnant. Indeed, we have identified a linear increase of transients times at
increasing time lags. Interestingly, the time lags do not modify the inverse square-root
power law found in the s-n bifurcation [3, 7]. The model investigated here is the simplest
one for models on autocatalysis of the form: ẋ = kx(t− τ1)x(t− τ2)(1− x(t)/K)− εx(t),
where the interacting replicators experience different delays before being able to cooperate
between each other. In this article we have considered the case τ1 = τ2 = τ . More realistic
models considering different lagged times (with τ1 6= τ2) could be explored in the future.
Indeed, the model investigated here can be extended to so-called hypercycle model [14].
Hypercycles are catalytic networks with cyclic architecture. This system, considering
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delay differential equations, can be represented by the general model:

dxi
dt

(t) = kijxi(t− τi)xj(t− τj)θ(x(t))− εixi(t),

with x(t) =
(
x1(t), . . . , xn(t)

)
, xi(t) being the population of the ith replicator at time t and

n being the number of species forming the hypercycle (the hypercycle architecture involves
j = i− 1, with j = n if i = 1). This model also considers a function θ(x(t)) introducing
competition (e.g., a logistic function) and replicators’ degradation proportional to εi.

Ghosts have been identified in symmetric and asymmetric two-member hypercycles
[7, 15], in three- and four-member ones [17], as well as in high-dimensional hypercycles
governed by periodic orbits [4, 5]. In [15] it was argued that delayed transitions in hyper-
cycles might provide a selective advantage in fluctuating environments around bifurcation
values, since a kind of memory could allow the recovery of hypercycles near bifurcation
threshold [16]. The results of this manuscript reveal that lagging processes might actually
enhance this memory effect.
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[7] J. Sardanyés and R. Solé. Bifurcations and phase transitions in spatially extended
two-member hypercycles. J. theor. Biol., 243:468–482, 2006.
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4 Appendix

Numerical tools

Numerical integration of the system with no time delays have been carried out using a
7th−8th order Runge-Kutta-Fehlberg method, with automatic step size control and local
relative tolerance 10−15.

In order to have an idea of how the numerical solution has been approximated nu-
merically for the delay differential equation (DDE) model, let us explain some differences
with respect to a standard ODE solver. The DDE in Eq. (4) can be expressed as

dx

dt
(t) = f(x(t), x(t− τ)),
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with f being a suitable function. If the initial condition, which is necessary a continuous

function, u is defined on the interval [−τ, 0]. The Initial Value Problem can be shown as
a chain of ODEs in each of the intervals (lτ, (l + 1)τ) where l denotes a positive integer.
Therefore a natural integrator of these kind of DDE is just to consider a standard ODE
solver and integrate in each of the different intervals. For instance, Let us consider a
Runge-Kutta-Fehlberg (RKF) method. In order to approximate the next value it is needed
to evaluate several times the function f , which involves to know values in the previous
lag interval because of x(t − τ) term. Therefore the unknown previous values must be
interpolated according to the previous information that one has been storing.
There are a lot of interpolation methods that allows us to approximate a value which
is between the abscissae of a table of values. Let us formalize the one that was used in
this paper. It is called barycentric rational interpolation [31]. Let (si, ϕi)

n
i=0 be a table of

values of a scalar function ϕ defined in [−1, 1]. Let us assume that the abscissae take the
values

si = cos

(
iπ

n

)
, i = 0, . . . , n.

Then the function

Rn[ϕ](s) =

ϕ0

2(s− s0)
+

n−1∑
i=1

(−1)iϕi
s− si

+
(−1)nϕn
2(s− sn)

1

2(s− s0)
+

n−1∑
i=1

(−1)i

s− si
+

(−1)n

2(s− sn)

,

is an interpolant of ϕ that does not have any pole in the interval [−1, 1] and for analytic

functions it converges exponentially. As a final comment, notice that one can consider
the affinity φ : [−1, 1]→ [a, b] defined by φ(s) = 1

2
((a− b)s+ a+ b) and the interpolation

does not depend on the interval [−1, 1].
In our numerical results we have used a RK78F with barycentric rational interpolation.
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