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SOLAR SAILING AT THE L4/L5 LIBRATION POINTS

Ariadna Farrés∗, Narcı́s Miguel†

In this paper we focus on the dynamics of a solar sail in the vicinity of the La-
grangian points L4/L5. These points are linearly stable and so are the families of
quasi-periodic orbits around them. Moreover, there is a region of effective sta-
bility around them, where the trajectory of a satellite will remain there for more
than 1000 years. We will describe these regions and see how they are affected by
the solar radiation pressure. A good understanding of these regions and of how to
reach them would enable a novel space weather mission

INTRODUCTION

Solar sails are a low-thrust propulsion system that takes advantage of the Solar Radiation Pressure
(SRP) to accelerate a small probe by means of a highly reflecting surface. This technology enables
new and challenging mission concepts such as the SunJammer mission, GeoSail, PoleSitter or even
low-cost multi-rendezvous NEO mission. Up to the date there have been three successful solar sail
demonstration missions: IKAROS by JAXA (May 2010), NanoSail-D by NASA (December 2010)
and LightSail-1 by The Planetary Society (June 2016). In the next two years two more demonstra-
tion missions have been planned, LightSail-2 and NEO-Scout, which will prove the capabilities of
solar sails.

The Earth - Sun Restricted Three Body Problem (RTBP) is a well known reference model in
astrodynamics and has been extensively studied in the past. It is well known that the system has
five equilibrium points. Three of them (L1, L2 and L3) lie on the line joining the two primaries
and are linearly unstable; the other two (L4 and L5) lie on the ecliptic plane forming an equilateral
triangle with the two primaries and are linearly stable. Due to their location close to the Earth and
their dynamical properties, periodic orbits around L1 and L2 are used as reference orbits for several
mission applications such as SOHO, GAIA, Hershel-Plank, James Webb Space Telescope, among
others. On the other hand, despite the orbits around L4 and L5 are stable and no station keeping
is required, these equilibria have been forgotten for mission applications as they are hard to reach.
Recent studies1, 2 have shown that using a solar sail enables to reach the vicinity of L4 and L5 in a
reasonable time without increasing the total cost.

An interesting mission concept taking advantage of the L4/L5 regions would be to place simulta-
neously two satellites, one atL4 and the other atL5, monitoring the Sun’s activity from two different
points of view. This would allow to track the evolution of Sun spots and geomagnetic storms. The
final goal of this project is to study in more detail the feasibility of this mission concept using so-
lar sails or low-thrust propulsion systems. However, in this paper we will focus on describing the
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dynamics of a solar sail in the vicinity of L4 and L5 and explore the capabilities to remain in these
regions and navigate around them.

As a model we consider the classical RTBP including the SRP due to the solar sail. The sail
acceleration will depend on 3 parameters: the sail lightness number β (accounting for the sail effi-
ciency), and two angles α, δ (accounting for the sail orientation). We will show how the different
sail parameters affect the non-linear dynamics of the system around L4 and L5.

First we will describe how the solar sail acceleration affects the equilibrium points of the system
and the dynamics around them. We will see how, for a fixed value of β, changes on the sail orienta-
tion (α, δ) “artificially” displace the location of these points. The same happens for the families of
periodic orbits around them.3 Second, we will focus on the stability regions around L4/L5. These
are two regions in the vicinity of L4/L5 where the trajectory of a probe does not escape for more
than 1000 years.4 In order to compute these regions we have performed a brute force exploration by
considering a set of initial conditions close to L4 and L5, integrating them for more than 1000 years
and keeping those initial conditions that remain within the vicinity of L4 and L5, respectively. We
will show how the extra effect of the solar sail affects these regions as we change the sail orientation.
We will also classify the types of motion inside these regions. As we have already mentioned the
goal of this study is to have a good understanding of the dynamics around L4 and L5 with a solar
sail in order to provide target orbits for future space weather missions.

This paper is structured as follows: the first section is devoted to the description of the dynamical
model that we have used (RTBPS) and its main parameters. We also summarize some of the most
relevant properties of the system. The second section is devoted to the description of the families
of equilibrium points and their stability as a function of the sail parameters. Section three focuses
on the practical stability regions. There we outline how to compute these regions and discuss the
results one obtains for different sail parameters. We end up with some conclusions and future work.

EQUATIONS OF MOTION

To describe the motion of a solar sail in the Earth - Sun system we consider as a model the
Circular Restricted Three Body Problem (RTBP) adding the Solar Radiation Pressure (SRP) due to
the solar sail (RTBPS). We assume that the Earth and Sun are both point masses moving around
their common center of mass in a circular way due to their mutual gravitational attraction. The solar
sail, on the other hand, is assumed to be a mass-less particle that does not affect the motion of the
two primaries, but is affected by their gravitational attraction as well as by the SRP.

We use normalized units of mass, distance and time, so that the total mass of the system is 1, the
Earth - Sun distance is 1 and the period of its orbit is 2π. In these units the universal gravitational
constant is G = 1, the Earth’s mass is µ = 3.0034806 × 10−6, and 1 − µ is the mass of the Sun.
We consider a synodical reference system, where the origin is at the center of mass of the Earth -
Sun system and both Earth and Sun are fixed on the x-axis (with its positive side pointing towards
the Sun). The z-axis is perpendicular to the ecliptic plane and the y-axis completes an orthogonal
positive oriented reference system5 (Figure 1 left).
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With these assumptions, the equations of motion in the synodical reference frame are:

ẍ− 2ẏ = x+ (1− µ)
x− µ
r3ps

+ µ
x− µ+ 1

r3pe
+ ax,

ÿ + 2ẋ = y +

(
1− µ
r3ps

+
µ

r3pe

)
y + ay,

z̈ =

(
1− µ
r3ps

+
µ

r3pe

)
z + az,

(1)

where a = (ax, ay, az) is the acceleration due to the solar sail, and rps =
√

(x− µ)2 + y2 + z2,
rpe =

√
(x− µ+ 1)2 + y2 + z2 are the Sun-sail and Earth-sail distances, respectively.

Figure 1. Left: Schematic representation of the RTBPS model. Right: Schematic
representation of the reference frame used to define the sail orientation α, δ.

Solar Sail acceleration

The acceleration due to the solar sail depends on three parameters: two angles α, δ that define
the solar sail’s orientation, and the sail lightness number β that represents the sail’s efficiency. In
this paper we assume the solar sail to be flat and perfectly reflecting, so the acceleration due to SRP
is in the normal direction to the surface of the solar sail (n). For a more realistic approach one
must also include the effect due to absorption and specluar reflection on the sail’s surface. These
two effects essentially affect the efficiency of the sail and slightly change the direction in which the
sail’s acceleration acts.6 Hence, for a preliminary study, assuming a perfectly reflecting solar sail is
good enough.

The sail orientation is given by the normal direction to the surface of the sail (n) and is param-
eterised by two angles α and δ that measure the displacement between n and the Sun-sail direc-
tion rs = (x − µ, y, z)/rps. Following McInnes,7 we consider the orthonormal reference frame,
{rs,p,q}, centered at the sailcraft center of mass, with p = rs×z

|rs×z| and q = (rs×z)×rs
|(rs×z)×rs| , and define

n = cosα rs+ sinα cos δ p+ sinα sin δ q, where α corresponds to the pitch angle (angle between
n and rs) and δ is the clock angle (angle between q and the projection of n in a plane orthogonal to
rs). Figure 1 right shows a schematic representation of the definition of the two sail angles. Notice
that n cannot point towards the Sun, hence 〈n, rs〉 = cosα ≥ 0. This implies that α ∈ [−π/2, π/2]
and δ ∈ [0, π].
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Following the definitions given above, the explicit expressions for the solar sail normal direction,
n = (nx, ny, nz), are given by:

nx =
x− µ
rps

cosα− (x− µ)z

r2rps
sinα cos δ +

y

r2
sinα sin δ,

ny =
y

rps
cosα− yz

r2rps
sinα cos δ − x− µ

r2
sinα sin δ,

nz =
z

rps
cosα+

r2
rps

sinα cos δ,

(2)

where r2 =
√

(x− µ)2 + y2.

The force exerted by the photons that are reflected on the surface of the sail on a perfectly reflect-
ing solar sail of area A is given by Fr = 2PA〈n, rs〉2n, where P = P0(R0/R)2 is the SRP at a
distance R from the Sun (being P0 = 4.563 N/m2 the SRP at R0 = 1 AU). Recall that rs is the
Sun-sail direction and n is the normal direction to the surface of the sail (both unit vectors). Notice
that the SRP acceleration is proportional to the inverse square of the distance to the Sun. So it is
commonly rewritten as a correction of the Sun’s gravitational attraction:

a = β
(1− µ)

r2ps
〈rs,n〉2n, (3)

where β corresponds to the sail lightness number, that accounts for the sail’s efficiency. One can
also interpret β as the ratio between the Sun’s gravitational attraction and the solar sail acceleration.
It is easy to see that,8

β = σ∗/σ, σ∗ =
2P0R

2
0

Gms
= 1.53 g/m2, (4)

where σ = m/A is the solar sail’s mass-to-area ratio. Another way to describe the sail efficiency
is by means of the characteristic acceleration (a0), the acceleration experienced by the sailcraft at
1 AU when face-on to the Sun. The characteristic acceleration and the sail lightness number can
easily be related by: a0 = βGmsun/R

2
0.

Table 1 shows, for different values of the sail lightness number (β), the corresponding area-
to-mass ratio (σ), the characteristic acceleration (a0) and the required solar sail size for 10 kg of
total sailcraft mass. For instance, a sail lightness number β = 0.03 would provide a characteristic
acceleration of 0.179804 mm/s2, and requires a 14× 14 m2 solar sail for a 10 kg spacecraft.

Table 1. Relation between the sail lightness number β and: the satellite’s area-to-mass ratio (σ), the
characteristic acceleration (a0), and the sail area required for a satellite with 10 kg of total mass.

β σ (g/m2) a0 (mm/s2) Area (m2)

0.01 153.0 0.059935 ≈ 8× 8
0.02 76.5 0.119869 ≈ 12× 12
0.03 51.0 0.179804 ≈ 14× 14
0.04 38.25 0.239739 ≈ 16× 16
0.05 30.6 0.359608 ≈ 20× 20
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Properties of the RTBPS

From a mathematical perspective the Earth-Sun-sail RTBPS is as a perturbation of the Earth - Sun
RTBP, where the perturbation depends on three parameters (β, α, δ). Taking Eqs. (2) and (3) we
can rewrite Eq. (1) as:

ẍ− 2ẏ =
∂Ω

∂x
+ β

1− µ
r2ps

cos2 α

(−(x− µ)z

r2rps
sinα cos δ +

y

r2
sinα sin δ

)
,

ÿ + 2ẋ =
∂Ω

∂y
+ β

1− µ
r2ps

cos2 α

( −yz
r2rps

sinα cos δ − x− µ
r2

sinα sin δ

)
,

z̈ =
∂Ω

∂z
+ β

1− µ
r2ps

cos2 α

(
r2
rps

sinα cos δ

)
,

(5)

where Ω(x, y, z) =
1

2
(x2 + y2) + (1− β cos3 α)

1− µ
rps

+
µ

rpe
.

As we know, the classical RTBP (no solar sail) is Hamiltonian, but when we include the the
perturbation due the solar sail the Hamiltonian structure of the system breaks down. The system is
Hamiltonian only for α = 0 (i.e., the solar sail perpendicular to the Sun-sail line) and α = ±π/2
(i.e., no sail effect) and for α 6= 0, δ = 0 (i.e., the orientation of the solar sail varies vertically with
respect to the Sun-sail line) the system is reversible.3 In these two particular cases, for a fixed sail
orientation, we have periodic and quasi-periodic motion around an equilibrium point.9, 10

One of the interesting properties of Hamiltonian systems is that they possess at least one first
integral, i.e., a function that is conserved through time. For the RTBP, the well-known Jacobi
constant is a first integral, and it is related to the energy level of the system. This function is usually
used to classify regions of possible motion.5 In the case of the RTBPS, for a fixed sail orientation
α 6= 0, there is neither a Jacobi constant nor preserved energy level. However, we would like to
define a function that allows us to classify the different types of motion.

As in the RTBP, we define the Jacobi function as:

Jc = ẋ2 + ẏ2 + ż2 − 2Ω(x, y, z). (6)

Notice that if β = 0 (i.e., no sail) or if α = 0 (a sail perpendicular to the Sun-sail line), this function
corresponds to the Jacobi constant of the RTBP or RTBPS (Hamiltonian case). For this last case,
effectively, the gravitational parameter µ has been changed. If α 6= 0 this function will not be
constant but it can still be used to classify types of motion,3, 11 or one can try to select a periodic
motion for the sail orientation that keeps this function constant.

The variation of this function over time is computed by substituting Eq. (5) into the time derivative
of Eq. (6), having:

dJc
dt

= β
1− µ
r2ps

cos2 α sinα

(
ẋy − ẏ(x− µ)

r2
sin δ +

r22 ż − ((x− µ)ẋ+ yẏ)z

rpsr2
cos δ

)
. (7)

This equation gives an idea on how the energy of the system varies. Notice that, as expected, Jc
is constant for α = 0 or β = 0, and for α ≈ 0 this variation will be small. Moreover we can
use Eq. (6) to decide if a transfer trajectory between two regions in the phase space is feasible by
checking if its drift in energy is consistent with the predicted rates of variation using Eq. (7). But
this is beyond the scope of this paper and is left for future work.
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As a final remark, let us mention that the RTBPS satisfies the following symmetries:

S1 : (t, X, Y, Z, α, δ) 7→ (−t, X, −Y, −Z, −α, δ),
S2 : (t, X, Y, Z, α, δ) 7→ (−t, X, −Y, Z, α, −δ). (8)

We can take advantage of these symmetries to compute equilibrium points and to describe the
dynamics. For instance, if (x0, y0, z0) is an equilibrium point for the sail orientation (α0, δ0),
then (x0,−y0,−z0,−α0, δ0), (x0,−y0, z0, α0,−δ0) and (x0, y0,−z0,−α0,−δ0) are also an equi-
librium point.

FAMILIES OF EQUILIBRIUM POINTS

It is well known that when we discard SRP (β = 0) the Earth-Sun RTBP has five equilibrium
points,5 and that all of them lie on the ecliptic plane (Z = 0). Three of them, known as the collinear
points L1,2,3, lie on the line joining the two primaries (Y = 0). The other two, known as the
triangular pointsL4,5, lie on the ecliptic plane forming an equilateral triangle with the two primaries
(i.e. their distance to both Earth and Sun is 1 AU). The tree collinear points are all linearly unstable
(saddle×center×center), and the two triangular points are linearly stable (center×center×center).

If the sail is perpendicular to the Sun-sail line (α = 0) the system presents a similar phase
space portrait as for β = 0. There are also have five equilibrium points SL1,...,5 on the ecliptic
plate, siblings to the classical L1,...,5 but displaced towards the Sun.7 This is because the extra
acceleration of the solar sail counteracts a part of the Sun’s gravitational attraction. Three of them
are collinear points (SL1,2,3), since they still lie on the Earth-Sun line; and are still linearly unstable
(saddle×center×center). The other two triangular points (SL4,5) no longer form an equilateral
triangle. Their distance to the Earth is 1 for all β > 0, but the distance to the Sun behaves as
(1−β)1/3. Both, SL4,5 remain linearly stable for all β. We recall that, there is no explicit expression
for the collinear equilibrium points, but their distance to the closest primary can be found by solving
a quintic equation.5, 7 On the other hand, there is an explicit expression for the triangular points:

SL4,5 = (x4,5, y4,5, 0) :=

µ− (1− β)2/3

2
,±(1− β)1/3

[
1− (1− β)2/3

4

]1/2
, 0

. (9)

When we change the sail orientation (α 6= 0 or/and δ 6= 0) we artificially displace the position
of the equilibrium points. If we take δ = ±π/2 and vary α we displace the equilibrium points to
one side or the other of the Sun-sail line inside the ecliptic plane; while if we take δ = 0, π and
vary α we displace the equilibrium points above or below the ecliptic plane, keeping y = 0 for each
point. Taking any other fixed value of δ = δ∗ and varying α we displace the equilibrium points on
an inclined plane with respect to the ecliptic containing Li and SLi.3, 12, 13

For small β (< 10−6) we have five disconnected families of equilibrium points, each family
being parametrized by the two angles defining the sail orientation. As β grows (≈ 5.5 × 10−6)
the equilibria surfaces related to SL3, SL4 and SL5 merge into each other, giving rise to three
disconnected families of equilibria (2 spheres one containing SL1 and the other SL2, and a banana-
like shape surface containing SL3,4,5). Between β = 0.02 and 0.03 the surface related to SL1

merges with the large surface containing SL3,4,5, and after this there are only two remaining families
of equilibria (a sphere containing SL2, and a torus containing the other 4 points). The two remaining
surfaces will never merge into each other: the fact that 〈~n, ~rs〉 > 0 delimits the regions where there
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can be equilibria, separating the SL1 and SL2 families.7, 12 Figure 2 shows slices of these surfaces
on the Z = 0 plane for β = 2 · 10−6, 5 · 10−6, 6 · 10−6, 10−3, 0.01 and 0.05. Figure 3 shows the
behavior of these families for β = 0.01, 0.02 and 0.03 close to the libration points L1 and L2.
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Figure 2. Family of artificial equilibrium points on the xy-plane (δ = −π/2) for
β = 2 · 10−6, 5 · 10−6, 6 · 10−6, 10−3, 0.01 and 0.05.
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Figure 3. Family of artificial equilibrium points on the xy-plane (δ = −π/2) for
β = 0.01, 0.02 and 0.03. Zoomed area close to L1 and L2

These families of equilibrium points have been computed using a continuation method using the
sail orientation (α) as a continuation parameter. For a fixed of β = β∗ we have started from either:
Li with α = ±π/2 or SLi with α = 0, i = 1, . . . , 5. In this study we focus on the dynamics on
the ecliptic plane. Hence, in all our computations we have considered δ = −π/2, since doing so
ensures that the continuation procedure gives equilibria on the xy-plane. Recall that other values of
δ would give equilibria outside the ecliptic plane.

For each computed equilibrium point in each family we computed the required sail orientation
(α) and its stability. This allows to study what happens before, at and after a collision between two
different families of equilibria, as is the case of SL3 merging into SL4 and SL5 for β ≈ 5.5×10−6,
and SL1 merging into SL4 and SL5 for β ≈ 0.0236. In terms of the stability we have a family
of equilibrium points with two pairs of complex and a pair of real eigenvalues (SL1 and SL3) that
merge into a family with three pairs of complex eigenvalues (SL4 and SL5). In terms of the sail
orientation, when two families merge there are sail orientations that are lost. This is illustrated in
Figure 4. By this we mean that the equilibria can disappear for certain values of α.
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Let us explain this in more detail. First consider β small enough so that the SL3 family has not
yet merged with SL4 and SL5 families (e.g. β < 5.5× 10−6). In this case, starting a continuation
procedure from α = 0 (where all three equilibria SL3,4,5 exist) gives rise to three distinct curves,
defined for all α ∈ [−π/2, π/2]. Hence, for each α ∈ [−π/2, π/2] all three equilibria exist at the
same time. This can be seen in Figure 4, left: the blue curves correspond to the value β = 5×10−6.
Notice that there are three of these curves, where the top, middle, bottom curves correspond to the
SL4, SL3 and SL5 families of equilibria, respectively.

When β increases, the amplitude of the corresponding curves also increases, and for β ≈ 5.5 ×
10−6 these three curves collide. After the collision, the three curves have turning points and are not
defined in some ranges of α. This situation is that portrayed by the pink lines also in left hand side
of Figure 4, that correspond to β = 6 × 10−6. Notice that, for this value of β, as α changes from
−π/2 to π/2, there are situations where there are three, two or even one single equilibrium point
(among SL3,4,5) in contrast with smaller values of β, where all SL3,4,5 exist for all values of α at
the same time.

A similar phenomenon happens when the SL1 family merges with the SL4 and SL5 families for
β between 0.02 and 0.03 as can be seen on the right plot of Figure 4.
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Figure 4. For different values of β, relationship between the y coordinate of the
equilibrium point and the sail orientation α.

A general idea of the relation between the position of the equilibrium points and the sail orien-
tation is portrayed in Figure 5. The two plots on the left hand side of Figure 5 show the different
families of equilibrium points for β = 0.01, 0.02, 0.03, 0.04 and 0.05 near to Earth (top) and close
to L4 (bottom), and different colors represent different values of β. The two plots on the right hand
side of Figure 5 show the same equilibrium points but now the color coding (right palette) repre-
sents the required sail orientation α to have equilibria. As we can see the, equilibria in the family
L2 have the full range of sail orientation (α ∈ [−π/2, π/2]) while the equilibria close to L1 and L4

are restricted to sail orientations α ≈ ±π/2 or α ≈ 0.

Let us now briefly discuss the stability of the different families of equilibrium points, which is
given by the eigenvalues of the linearized flow around the equilibrium points. As we have men-
tioned in the previous section, the system is only Hamiltonian for three distinctive values of the sail
parameters, α = 0 (i.e. sail perpendicular to Sun-satellite line) and α = ±π/2 (i.e. sail aligned
with Sun-satellite line, hence no sail effect). For the rest of the sail’s parameters the system is only
divergence free, which means that the trace of the monodromy matrix is zero and so is the sum of
the eigenvalues.
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Figure 5. Families of equilibrium points for β = 0.01, 0.02, 0.03, 0.04 and 0.05 in
the vicinity of L1 and L2 (top) and the vicinity of L4 (bottom). Left: the families are
grouped by colors depending on the value of β. Right: the families are grouped by
colors depending on the sail orientation α.

We recall that in Hamiltonian systems, the eigenvalues of the linearized flow come in pairs, i.e., if
λ is an eigenvalue, then −λ and λ̄ must also be eigenvalues. But this is not true when the system is
no longer Hamiltonian. In the RTBPS the we distinguish between two classes of equilibrium points.
The first class, T1, of unstable equilibria, whose eigenvalues are λ1 > 0, λ2 < 0, ν1 ± iω1 and
ν2 ± iω2. Here |ν1,2| � |λ1,2| and hence, the main instability is given by the saddle. The second
class, T2, are equilibria whose all eigenvalues are complex ν1,2,3±iω1,2,3. Concerning the equilibria
close to L4 and L5, we can see that |ν1,2,3| < 0.001 and we can refer to these equilibrium points
as practically stable in the sense that the required time to leave the vicinity of the equilibrium point
is large (i.e., it would take more that 110 years to double the initial distance from the equilibrium
point). Figure 6 shows the relation between the position of the equilibrium point and the class they
belong to for different values of β. We can see that the equilibria close to L1, L2 and L3 are unstable
change to practical stable points as they get close to L4 and L5.

We note that for the equilibrium points that lie on the xy-plane (i.e. δ = −π/2) of any of the two
classes T1 and T2, one of the complex eigenvalues is related to the vertical oscillation and the real
part of this pair of eigenvalues is always zero. As mentioned above, the equilibria close to L1 and L2

are of class T1, and on the xy-plane their eigenvalues are such that λ1 > 0, λ2 < 0, ν1±iω1,±iω2.
For α > 0 we have that ν1 > 0 and for α < 0, ν1 < 0. Moreover, λ1 + λ2 + 2ν1 = 0. This can
be seen in Figure 7 where we plot the relation between the equilibria location and the sign of α and
the values of the pair of real and complex eigenvalues (top: β = 0.01 and bottom: β = 0.03). Note
that we do not plot the complex eigenvalue related to the vertical oscillation (ν2).

If we focus on the equilibria close to L4 and L5 on the plane, we have that the eigenvalues are
ν1 ± iν1, ν2 ± iν2 and ±iν3. Since the sum of the eigenvalues has to be zero, we have that
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of the equilibria. Middle: real eigenvalues λ1, λ2. Right: complex eigenvalue ν1±iω1.

ν1 + ν2 = 0, hence ν1 · ν2 < 0. This means that there is a plane in the phase space where the
system is dissipative and another plane where the dynamics is attracting, and these two phenomena
occur at a very small rate as |νi| < 5 × 10−6. This can be seen in Figure 8 for the L4 (top) and L5

(bottom) and β = 0.01. As in the previous case, on the left of Figure 8 we have the relation between
the equilibria location of sign of α, where we can appreciate the symmetries of the system between
L4 and L5. On the middle and right hand side of the Figure we show the two pair of complex
eigenvalues ν1 ± iν1, ν2 ± iν2 and we can see how for both (α > 0 and α < 0) if ν1 > 0 then
ν2 < 0 and vice versa. We must mention that these equilibrium points are not a true complex saddle
as the frequencies related to each of the eigenvalues is different (ω1 6= ω2).

These equilibrium points have been proposed as target positions for several mission applica-
tions,12 the most relevant ones are the SunJammer and the Polar Observer missions. But they
require to remain close to an equilibrium point from the L1 and L2 families which are unstable and
require station keeping maneuvers to remain close to them. We propose the focus on the regions
close to L4 and L5 for potential destinations of our sailcraft and use the invariant manifolds related
to L1 and L2 to reach this regions. Preliminary studies in this direction can be found in the literature
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the equilibria. Middle: first pair of complex eigenvalues ν1±iω1. Right: second pair
of complex eigenvalues ν2 ± iω2.

and show promising results. One interesting mission application would be to place two sailcrafts,
one at SL4 and the other at SL5 in order to monitor the Sun’s activity free of inferences. Using any
of the existing Sun observers at L1 with the two satellites at SL4 and SL5 we could monitor the
activity of the Sun from three distinct vantage points. A constellation of this nature could track the
evolution of sunspots or geomagnetic storms, helping to develop a better understanding of the Sun’s
activity.

In this paper we want to focus on describing the natural dynamics of a solar sail around L4 and
L5. In the next section we describe the regions of practical stability that appear around both points
and how they vary when we change some of the sail parameters. We also discuss the type of motions
that appear there. The study on how to reach these regions from the collinear points is left for future
work.

REGION OF PRACTICAL STABILITY AROUND L4/L5

As explained above, it is well known that if we neglect the SRP (i.e., β = 0), the triangular
Lagrangian points L4 and L5 of the RTBP are linearly stable. When the effect of the sail is added
(i.e., β > 0), if the orientation of the sail is perpendicular to the Sun-sail line (i.e., α = 0) the
RTBPS is still Hamiltonian and the L4,5 siblings (SL4,5) are still linearly stable. Hence, when
α = 0 we expect to find a region of practical stability in a vicinity of these points.

By region of practical stability we refer to a set of initial conditions with zero synodical velocity
ẋ = ẏ = ż = 0 close to SL4,5 that remain close this point after T > 0 years. This requires to
establish an escaping criterion. From the mathematics perspective, such a region is defined as the
set of initial conditions inside a compact vicinity K of SL4,5 that do not leave a larger set K ′ ⊃ K
in less than T > 0 years. In particular, crossing the boundary of the set K ′ is precisely the escaping
criterion. The way we choose K and K ′ in the present problem is stated in the next subsection,
devoted to explain the method used to find this region.

Referring to this region as of practical (or effective) stability comes from the theory of Hamil-
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tonian dynamical systems in three or more degrees of freedom, as the spatial RTBP is. In such
systems, around linearly stable points, one always expects Arnol’d diffusion to take place. In our
setting for β = 0 and β > 0, α = 0 we expect an exponentially slow drift of initial conditions around
L4,5 or SL4,5, so it may happen that orbits that are confined for thousands of years in a vicinity of
these points will eventually escape but after an exponentially long time span. For instance, if we
consider the spatial RTBP for the system Sun-Jupiter, there is an stability region around L4 of the
order of magnitude of kilometers where initial conditions remain close to L4 over a time interval of
about 2 · 1010 years.14 This region is, in fact, where the Trojan asteroids are found and this phe-
nomenon explains why these asteroids remain in that position. Such slow drift will not be noticeable
in the time span of the missions to SL4,5 we are interested in.

As explained above, for α 6= 0, the equilibria SL4,5 have some attracting/dissipative directions.
Hence, one expects that the initial conditions that remained close to SL4,5 for α = 0 will escape
after a short time. Yet when α is small enough, the attraction/dissipation is weak and some remnant
of this region is still detectable. For our purposes, we are interested in the set of initial conditions
that subsist close to SL4,5 for more than T = 1000 years.

The region of practical stability we are dealing with is a actually 3D set (recall that we consider
zero synodical velocity), but we are going to restrict ourselves in the dynamics on the ecliptic plane
z = 0. Hence, we are only going to study a slice of the complete set. In Simó15 the author shows
some examples of this 3D region for the spatial RTBP. From now on, we will refer to the intersection
of the set of practical stability surrounding SL4,5 with {z = 0} as ATα,β .

The goal of this section is to characterize ATα,β for values β = 0.01, 0.02, 0.03, 0.04 and 0.05,
α = 0 and α small and T > 0.

A method to approximate ATα,β
We have used the method proposed by Simó et. al16 to approximate ATα,β . In this subsection we

briefly outline this method. To fix ideas, we restrict ourselves to the region that surrounds SL4. The
corresponding region around SL5 can be obtained by means of the symmetries of Eq. (8). Recall
that one can give an explicit expression of the coordinates of SL4 as a function of β, see Eq. (9).
Recall also that its distance to the Sun is (1 − β)1/3, so it approaches the position of the Sun as
β → 1. The dotted blue line in Figure 9 shows the position of SL4 for different values of β ∈ [0, 1].

To obtain a good approximation of the region of practical stability we should change to a suitable
system of coordinates. Due to the shape the set ATα,β has in synodical coordinates, it is convenient
to choose polar coordinates centered at the Sun,4 see Figure 9 top left. A translation allows to put
SL4 in the origin of these polar coordinates. We consider the variables (r, θ) ∈ (−(1−β)1/3,∞)×
[−0.5, 0.5) (measured in AU and rad/(2π), respectively) defined as the distance to SL4 and the
angle with respect to the SL4-Sun line, respectively. Hence,

x = µ+ (r + r4) cos(2πθ + θ4), y = (r + r4) sin(2πθ + θ4) (10)

where r4 =
√

(x4 − µ)2 + y24 and θ4 = arctan(y4/(x4 − µ)) the polar coordinates of SL4, see
Eq. (9).

In the following we will study ATα,β in the coordinates (r, θ). The method consists of two steps.
The first step consists in performing a brute-force integration of initial conditions chosen close to
SL4. The second step consists in refining the previous approximation by means of integrating the
initial conditions in the boundary for larger times.
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Step 1: First approximation Consider a box K = [θ0, θ1] × [r0, r1] and a Nθ ×Nr equispaced
grid on it. First fix a number of years, say T0 > 0. Each point in the grid (θi, rj) (or pixel), where

θi = θ0 + i(θ1 − θ0)/(Nθ − 1), i = 0, . . . , Nθ − 1,

rj = r0 + j(r1 − r0)/(Nr − 1), j = 0, . . . , Nr − 1,

corresponds to an initial condition for the integration of Eq. (1) where x, y are obtained via Eq. (10),
z = 0 and ẋ = ẏ = ż = 0. Each initial condition is integrated until at most t = 2πT0. We
distinguish between escaping and subsisting initial conditions.

The escaping criterion is that for some t < 2πT0, y < −0.5. Hence K ′ = {y ≥ 0.5}. Escaping
orbits are labeled in the grid by −1, and all initial conditions that do not leave K ′ after T0 years are
labeled with a +1 in the grid. The latter constitute the first approximation of the region of practical
stability, AT0α,β .

Step 2: Refinement The refinement consists in re-iterating the boundary of the previously ap-
proximated region for a larger number of revolutions. We call the boundary of depth d, d =
1, 2, 3, . . . to the set of all pixels (rj , θi) previously labeled with a 1 such that at least one pixel
(rj+m, θi+n), n,m = −d,−d+ 1, . . . , d− 1, d is labeled with a -1.

After setting T1 > T0, all the pixels in the boundary of depth d are re-integrated until t = 2πT1
and classified (and labeled) as either escaping or non-escaping according to the previous criterion.
After this, the boundary may have changed, and it is re-checked using the same procedure until
none of the pixels of the boundary escape before T1 years. The refinement process can be repeated
as many times as desired.

The value of the depth d has to be chosen accordingly to the rate of escape of orbits and the
maximal number of years we integrate. Here, for the Hamiltonian cases we have used d = 2 and
for the non-Hamiltonian cases d = 5. This avoids having to re-check the boundary many times in
case one knows a priori that orbits escape fast.

Other observables There are some measurable quantities that are of interest for our purposes.
We denote

ATα,β = Area
(
ATα,β

)
,

the size of the region of practical stability in polar coordinates (r, θ).

Apart from describing and measuringATα,β , we are also interested in the kinds of motion the orbits
in this set experience. To have a first idea of the type of trajectories we are dealing with, we are
going to measure, along trajectories that start at points in ATα,β how much do the polar coordinates
(r, θ) vary. To do so, we integrate each initial condition in ATα,β for T0 ≤ T1 years keeping track on
its position in the polar coordinates r and θ. In the course of integration, we save the maximal and
minimal values they attain, denote them by rmax, rmin, θmax and θmin. To study the kinds of motion
inside ATα,β we compute, for each trajectory, the quantities

∆r = rmax − rmin,

∆θ = θmax − θmin.

Note that this gives a measure of the maximal distance of the trajectories to SL4,5 that start close
to these equilibria.
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A numerical study of the regions of practical stability

Here we describe the numerical results concerning the region ATα,β , mainly concerning its shape
and area and how they vary as a function of the parameters α and β. The results shown can be
separated in two distinct parts. First, we will deal with the Hamiltonian case α = 0, by studying the
shape and area of ATα,β , and how do these sets vary as β increases. Second, we will study the case
α 6= 0. Namely if the structures observed for α = 0 are preserved for α 6= 0. Special emphasis will
be made in the previous description of the evolution of the families of equilibria SL1,2,3,4,5.

The Hamiltonian case α = 0. Evolution of ATα,β as a function of β The first results concern
the case when the sail is perpendicular to the Sun-sail line (α = 0). For all the computations
performed for this case the maximal number of revolutions is T1 = 104, and the size of the grid
was Nθ = Nr = 1000. It is worth noting that the differences with the results obtained by taking
T0 = 103 are negligible.

The main features of AT10,β we want to highlight are summarized in Figure 9. In the top left plot
we display AT10,β for β = 0.01, 0.02, 0.03, 0.04 and 0.05 in synodical coordinates x and y. As we
can see, the displayed regions are very narrow. Also, since SL4 approaches the Sun as β increases,
so do the regions AT10,β .
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Figure 9. Evolution of the practical stability region for T1 = 104 revolutions. Top
left: AT1

0,β for β = 0.01, · · · , 0.05 in the xy variables. The dotted blue line shows the
position of SL4 for β ∈ [0, 1]. Top right: Same as top left in the (r, θ) variables, see
Eq. (10). Bottom left: Magnification of the square in the top right picture. Bottom
right: Evolution of the area AT1

0,β as a function of β ∈ [0, 0.07].

In Figure 9 top right, we see the same regions as in the top left plot, but in the polar coordinates
(r, θ), see Eq. (10). Recall that in these variables, the origin corresponds to SL4. These coordinates
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are suitable to compare the regions with each other. The shape of AT10,β is characteristic of its
analogue of the spatial RTBP for small values of µ.15, 16 It seems that as β increases, the area AT10,β
ofAT10,β decreases. In Figure 9, bottom left we show a magnification of the squared region of the top
right plot. This magnification shows how does AT10,β change for the different values of β. Namely,
the region becomes narrower in the r variable. In the θ variable, it seems that the region slightly
moves towards positive values of θ. This can be seen in extended computations. In the bottom right
plot we show how the area AT10,β varies as a function of β ∈ [0, 0.07]: in this range it seems that
the region decreases linearly. Extended computations for larger values of β show that the global
behavior is not linear.

The Hamiltonian case α = 0. Oscillations of orbits: the observables ∆r and ∆θ of orbits
starting in AT10,β In synodical coordinates x, y some trajectories that start at AT1α,β elongate on an
annulus centered in the position of the Sun and covers a wide range of angles θ ∈ [−0.1, 0.35]
rad/(2π) measured from SL4(β). This ranges most of the upper half-plane. One expects that the
closer we start from SL4, less would the magnitude of ∆r and ∆θ be. From the point of view of
applications it may be of interest to put a probe in some subset of this region where the oscillations
are bounded in some prescribed interval.

We have computed ∆r and ∆θ for all the initial conditions in AT10,β integrating them for T =

T0 = 103 years. At the used resolution level, in all five cases β = 0.01, 0.02, 0.03, 0.04 and 0.05
the oscillations ranged ∆r ∈ [0, 0.01] and ∆θ ∈ [0, 0.45] and distribution of ∆r and ∆θ in the
domains AT10,β looked all qualitatively the same. As an example, we display the case β = 0.03 in
Figure 10. On the left, we show the distribution of ∆r and on the right we show the distribution
of ∆θ. Each shade of gray corresponds of an interval of ∆r or ∆θ: The subsets labeled with
i = 1, . . . , 6 correspond to initial conditions for which ∆r ∈ [(i − 1) · 0.0017, i · 0.0017) and
∆θ ∈ [(i− 1) · 0.075, i · 0.075).
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Figure 10. Region AT1
0,0.03 for T1 = 104 in polar coordinates. Left: ∆r. Right: ∆θ.

For both observables, the initial conditions that have smaller values of ∆r and ∆θ are those closer
to SL4. These are the lightest regions in both plots, labeled with a 1. Concerning ∆r, the initial
conditions that have larger values are those that are farther from SL4 in the r variable. See the
region labeled with a 6 in the left plot of Figure 10. On the other hand, the largest values of ∆θ
are attained at the boundary of the region AT10,β , see the region labeled with a 6 in the right plot of
Figure 10.

In Figure 10 we have shown qualitatively how the oscillations vary in the regions AT10,β , but it is
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Figure 11. For β = 0.03. Left (resp. right): Variation of ∆r (resp. ∆θ) along the line
{θ = 0} (top) and {r = 0} (bottom) (resp. {r = 0} (top) and {θ = 0} (bottom)).

important to notice that the magnitudes ∆r and ∆θ vary continuously along any line that crosses
the region of practical stability. In Figure 11 left (resp. right) we show how does ∆r (resp. ∆θ)
vary along the lines {θ = 0} (top left and bottom right) and {r = 0} (top right and bottom left). As
expected, these quantities vary continuously and have an absolute minimum at the position of SL4.
In the top left plot we cannot distinguish between the 5 lines that are shown due to the resolution
used. But in the other 3 figures, the magnifications show that the oscillations become smaller as β
increases.

The non-Hamiltonian case α 6= 0. Ranges of α where SL4 exists The most important feature of
the RTBPS for α 6= 0, β > 0 to be taken into account here is that, as explained in previous sections,
for some ranges of α the RTBPS has less than 5 equilibria. In some cases both SL4,5 disappear, and
so does any region of practical stability in its vicinity.

The SL4 family has been determined by means of a continuation method in previous sections. In
Figure 12 we show continuation curves of the y component of SL4 with respect to α. This Figure
is a magnification close to α = 0 of the right plot in Figure 4. The dotted vertical line in the left
plot indicates α = 0. Its intersection with the five displayed curves are, from top to bottom, SL4,
SL3 and SL5. If we restrict ourselves to SL4, extended computations show that the family can
be continued for α < 0 for values that exceed α = O(10−2), which is enough for the purposes
of this work. But for the displayed values of β, the continuation for α > 0 encounters a turning
point. These are indicated in the magnification shown in the right plot as αi, i = 1, 2, 3, 4, 5.
Approximations of these values are given in Table 2.

These turning points indicate, for each value of β, the precise value of α at which the equilibrium
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Figure 12. Continuation curves of displaced SL4 equilibria, y vs α, for β =
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Table 2. Value of α for which the continuation of SL4 increasing α undergoes a turning point.

β 0.01 0.02 0.03 0.04 0.05

α (rad) 2.1908·10−4 1.0863·10−4 7.1816·10−5 5.3404·10−5 4.2359·10−5

SL4 ceases to exist. Hence to study the regions ATα,β we should only restrict ourselves to values of
α that are to the left of the corresponding turning point. Note that the same analysis applies for SL5

up to a change of sign in α, see Eq. (8).

The non-Hamiltonian case α 6= 0. The area of ATα,β . Here we restrict ourselves to a maximal
number of revolutions T = T0 = 103, a grid size Nθ = Nr = 500, and proceed as before for the
Hamiltonian case α = 0. We are mainly interested in detecting for which values of α we can find a
non-negligible region of practical stability. This is a remnant of the one that appears for α = 0.
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Figure 13. Evolution of the area AT0

α,β for β = 0.01, 0.02, 0.03, 0.04 and 0.05. Left
plot: the full range where AT0

α,β > 0. Middle and right plots are magnifications of the
left plot. In the right plot, the values α1,2,3,4,5 from Table 2 are indicated.

The main features we highlight about this case are those extracted from the results shown in
Figure 13. In the left plot we display the area AT0α,β as a function of α for the 5 values of β indi-
cated in the full range around α = 0 where we detected this area. The middle and right plots are
magnifications of the left one. In these three plot we observe the following:

1. As β increases, the range of α where AT0α,β is non-negligible shrinks around α = 0, see
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Figure 13 left and middle.

2. For all displayed values of β, starting at α = 0, the areaAT0α,β decreases to zero for α > 0 (see
Figure 13 right) and increases to be more than 4 times larger for α < 0 and then decreases
back to 0, see Figure 13 middle and left.

3. The disappearance of the region AT0α,β occurs at the value of α > 0 where the continuation of
SL4 for the corresponding value of β has the turning point shown in Figure 12, right.

REACHING THE L4 AND L5 STABILITY REGIONS

As mentioned earlier, an interesting mission concept that could take advantage of the L4/L5

practical stability regions would be to place simultaneously two satellites (one at L4 and the other at
L5) to observe the Sun’s activity from two different points of view. The final goal of our project is
to study the feasibility of such mission concept using a solar sail or a low-thrust propulsion systems.

In the previous section we have discussed the effect of SRP on the practical stability regions
around L4/L5. As we have seen, when the sail is perpendicular to the Sun-satellite line (α = 0)
these regions are shifted towards the Sun and their size varies slightly as the sail lightness number
(β) increases. When we change the sail orientation, as Figure 13 shows, the total area of the stability
region drastically decreases. Note that there is almost no stability region for |α| > 0.01 rad.

We have also described the motion inside the stability region in the case α = 0. We know that
orbits inside this region region experience two kinds of oscillations, one related to the distance
to the Sun (∆r), and the other related to the angular variation relative to the L4-Sun line (∆θ).
As Figure 10 shows, the sizes of these oscillations become smaller as one gets closer to L4/L5.
Hence, depending on the mission requirements, one can target a specific location inside the practical
stability region. Ideally, in the case of a Sun observer, we want these variations to be small in order
to avoid communication problems and to be able to observe at all time the same Sun area.

The access to these regions has always been hard, not only due to the large distance, as they are
approximately at 1 AU, but also in terms of the ∆v budget. The orbits inside this region can either
be trapped or leave a vicinity of it after a long time, which means that it is also hard to get inside
without a large ∆v maneuver. Recent studies1, 2 show that using a solar sail, we can continuously
accelerate the probe in order to reduce the time of flight and final ∆v. The main idea is to use the
invariant manifolds related to the equilibrium points and periodic orbits related to L1 and L2 as
transfer orbits to this region. By tilting the sail orientation we can slowly increase the energy of the
system (Eq. 7) and reach the orbits in this region. When reaching the region, resetting the sail to
α = 0 should be enough to get trapped in this region.

To illustrate this we have computed the stable and unstable manifolds related to SL1 and SL2 for
different values of β. In this way we have an idea of the general trend the invariant manifolds have,
and how the size of the solar sail affects them. Figure 14 shows the stable and unstable manifolds for
β = 0 (left), 0.01 (middle) and 0.02 (right). A general view and their relative position with respect
to the practical stability region (AT10,β) appears on the top plots. The bottom plots are a zoom close
to the Earth. We note that all these invariant manifolds have been computed up to tf = 10 years.
Hence, the longer the unstable manifold path is, the faster the transfer to L4 can be.

It is interesting to note that, for β = 0 (i.e. no sail), we can only reach L4 from L2 and L5 from
L1. But the extra effect due to the solar sail allows us to reach L4 and L5 from L1. This is very
convenient for the mission scenario where we consider two satellites, one aiming to L4 and the other
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Figure 14. Stable (blue) and Unstable (red) manifolds of SL1 and SL2 for β = 0, 0.01
and 0.02. Top, general view and relation with the practical stability (black). Bottom,
zoom of these manifolds close to the Earth.

to L5, as we could use a same launch vehicle to reach the L1 invariant manifolds. In the near future
we will focus in the design of a transfer strategy and the optimization of the transfer orbits from
L1,2 towards the practical stability regions around L4 and L5.

CONCLUSIONS AND FUTURE WORK

In this paper we have performed a preliminary study of the dynamics of a solar sail in a vicinity
the triangular libration points L4,5. These fixed points exist for all values of the lightness number
(β) if the sail is oriented towards the Sun-sail line (α = 0). Moreover, for these values of the
parameters, they are linearly stable and exhibit some region of practical stability around them.

We have reviewed the most important properties of the Sun-Earth RTBPS: when β = 0 or α = 0
the system is Hamiltonian, and we have briefly discussed the symmetries and first integrals of the
system. When β 6= 0 and α 6= 0, the RTBPS is no longer Hamiltonian and it has a huge impact
concerning the existence, position and stability of the equilibria of the system. We have performed a
study of the families of equilibria, with special emphasis on determining the ranges of the parameters
where L4,5 exist, and which is their stability. This study has been crucial to study the regions of
practical stability.

We have performed a study of the regions of practical stability: this is a set of initial conditions
close to L4,5 with zero synodical velocity whose corresponding trajectory remains close to L4,5 for
at least 1000 years. For α = 0 we have described the motion of the trajectories inside this region,
by characterizing how further from L4,5 they arrived. After that, we have set α 6= 0 for the values
suggested by the previous study of families of equilibria, and we have determined ranges of α 6= 0
where the region of practical stability was non-negligible. This gives an idea of which orientations
of the sail are feasible to reach the practical stability region.

We have finished this contribution by suggesting a mission to observe the Sun, that consists on
parking two probes, one at L4 and the other at L5 practical stability region. To transfer there we
propose to use the invariant manifolds related to L1,2. The feasibility and cost of such transfer
trajectories is going to be studied soon.
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