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Abstract

This work explores the tensor and combinatorial constructs underlying the linearised
higher-order variational equations LVEkφ of a generic autonomous system along a particular
solution φ. The main result of this paper is a compact yet explicit and computationally
amenable form for said variational systems and their monodromy matrices. Alternatively,
the same methods are useful to retrieve, and sometimes simplify, systems satisfied by the
coefficients of the Taylor expansion of a formal first integral for a given dynamical system.
This is done in preparation for further results within Ziglin-Morales-Ramis theory, specifically
those of a constructive nature.

Contents

1 Motivation and first definitions 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Dynamical systems and variational equations . . . . . . . . . . . . . . . . . . . . 2
1.3 Morales-Ramis-Ziglin theory and extensions . . . . . . . . . . . . . . . . . . . . . 3

2 Symmetric products and powers of finite matrices 5
2.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 More properties of � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Symmetric products and exponentials of infinite matrices 13
3.1 Products and exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Application to power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Higher-order variational equations 21
4.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Explicit solution and monodromy matrices for LVEkφ . . . . . . . . . . . . . . . . 25

5 First integrals and higher-order variational equations 28
5.1 Work in progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



2 Linearised Higher Variational Equations

1 Motivation and first definitions

1.1 Introduction

Integrability, an informal word for reasonably simple solvability, is an important problem in
Dynamical Systems. Its opposite phenomenon, and specifically low predictability with respect
to time, is usually summarised under the term chaos. If the system is Hamiltonian, as are
most problems in Mechanics, the “chaos vs solvability” disjunctive is doubly advantageous. On
one hand, it is amenable to the techniques of Symplectic Geometry. On the other, theory and
empirics yield a specific, thus observable integrability condition: the existence of a precise amount
of conserved quantities.

The introduction of the algebraic approach by Ziglin, Morales-Ruiz and Ramis produced
hallmark contributions to the study of the integrability of Hamiltonian systems [6, 22, 23, 27],
essentially couched on a study of the invariants of a given matrix group, associated to a linear
system: the first-order variational equations introduced in 1.2.

A second step forward was carried out by Morales-Ruiz, Ramis and Simó ([24]) in order to
extend the preceding theoretical framework to the Galois groups of the (linearised) higher-order
variational equations along a particular solution.

The second step described in the previous paragraph is the driving force behind this paper.
A constructive version of the Morales-Ramis-Simó theorem was already started by Aparicio-
Monforte and Weil in [2] and tangentially tackled from another viewpoint in [5] (see Section 5)
and the present work aims at expanding this effort by offering a closed-form expression for the
linearised higher variationals. May the reader bear in mind that at no stage in the results of this
paper from Section 2 onwards is the system required to be Hamiltonian.

1.2 Dynamical systems and variational equations

In accordance with results succinctly described in 1.3 and thereafter, we need to observe the
following convention outside of Sections 2 and 3: dependent and independent variables for all
dynamical systems will be allowed to be complex. Any open set T ⊆ P1C is an admissible domain
for the time variable, embedded into the Riemann sphere to include t =∞ as a valid singularity.

Consider an autonomous dynamical system:

ż = X (z) , where X : U ⊆ Cn → Cn. (DS)

Assume X is holomorphic. Basic mathematical objects are defined analogously to their real-
valued counterparts: conserved quantities and foliations of solution curves.

Definition 1.1. (DS) given, assume

a) A first integral of (DS) is a function F : V ⊃ U → C constant along every solution of
(DS). Equivalently, such that DXF = 0, where DX :=

∑n
i=1Xi

∂
∂xi
.

b) For every z ∈ U , let ϕ (t, z) be the unique solution of (DS) such that ϕ (0, z) = z,
defined on a maximal open set I (z). Function ϕ : I (z) × U → Cn thus defined is C1
and whenever y = ϕ (τ,x) for some τ ∈ I (z), translation I (y) = I (z) − τ holds and
ϕ (t,y) = ϕ (τ + t, z), for every t ∈ I (y). ϕ is called the flow of (DS).

Clarifying preliminary comments are in order whenever a particular solution φ (t) is considered:

a) trivially, the partial derivatives ∂k

∂zkϕ (t,φ) of the flow are multilinear forms of increasing
order (or, alternatively, multidimensional matrices, see e.g. [17]) and may also be charac-
terised as the blocks appearing in the Taylor expression of the flow along φ, minus the
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factorial denominators:

ϕ (t, z) = ϕ (t,φ) +
∂ϕ (t,φ)
∂z

{z − φ}+
1
2!
∂2ϕ (t,φ)
∂z2

{z − φ}2 +
1
3!
∂3ϕ (t,φ)
∂z3

{z − φ}3 + . . . , (1)

bracket notation summarising multilinear forms.

b) each of these partial derivatives ∂k

∂zkϕ (t,φ), inverse factorial unaccounted for, may also be
characterised as satisfying an echeloned set of differential systems, depending on the previ-
ous k− 1 partial derivatives and customarily called variational equations or systems.
They are explicitly called higher-order whenever k  2.

c) the variational system corresponding to k = 1 is linear:

Ẏ1 = A1Y1, A1 (t) :=
∂X

∂z

∣∣∣∣
z=φ(t)

∈ Matn (K) (VEφ)

its principal fundamental matrix being the linear part of the flow along φ, and K = C (φ)
being the smallest differential field containing C (t) and the solution.

d) For k  2, however, the system is not linear, yet a linearised version may be found. The
aim of the present paper is to do so with explicit formulae.

1.3 Morales-Ramis-Ziglin theory and extensions

Heuristics of all non-integrability results within the Ziglin-Morales-Ramis-Simó theoretical frame-
work are firmly rooted in the following principle, expected to affect a widespread class of systems:

If we assume general system (DS) “integrable” in some reasonable sense, then for
every particular solution φ (t) of (DS) the differential system satisfied by each of
the partial derivatives of the flow at φ (t) must be also integrable in an accordingly
reasonable sense.

Any attempt at ad-hoc formulations of this heuristic principle for (DS) has an asset and a
drawback:

• there is a valid integrability axiom for linear systems (and thus, for (VEφ)): that the
identity component of an algebraic group attached to them, named the differential Galois
group [22, 26], be solvable;

• still, in order to transform this principle into a true conjecture it is necessary to clarify a
notion of “integrability ” for (DS).

The latter item is cleared in the Hamiltonian case by the Liouville-Arnold Theorem establishing
a sufficient condition for a system to admit, at least locally, a new set of variables rendering it
integrable by quadratures. Said condition is the hypothesis on H in the following:

Theorem 1.2 (Morales-Ruiz, Ramis, 2001). Let XH be an n-degree-of-freedom Hamiltonian
system having n independent first integrals in pairwise involution, defined on a neighborhood of
an integral curve φ. Then, the identity component of the Galois group of the variational equations
of H along φ is an abelian group. �

See [23, Cor. 8] or [22, Th. 4.1] for a precise statement and a proof.

Theorem 1.3 (Morales-Ruiz, Ramis, Simó, 2005, [24, Th. 5]). Let H be as in the previous
theorem. Let Gk be the differential Galois group of the k-th variational equations, k  1, and
G := lim←−Gk the formal differential Galois group (inverse limit of the groups) of XH along φ.
Then, the identity components of the Galois groups Gk and G are abelian. �
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Theorem 1.3 makes use of variational equations defined as in Section 1.2 and the language
of jets, after proving said non-linear equations equivalent, in practicality, to any consistent
linearised completion. Efforts towards a constructive version of this main Theorem, as well as
the line of study described in Section 5, are hampered by a lack of consensus on the explicit
block structure of said linearised completion. The present work, summarised in its main result
(Proposition 4.5) aims at contributing to fill in this gap. Hence, outcomes will be purely restricted
to symbolic calculus and do not constitute new results in the theoretical framework summarised
above.

Notation 1.4 (Multi-indices and lexicographic order). Part of the conventions listed below were
already introduced in [5].

1. The modulus i = |i| of a multi-index i = (i1, . . . , in) ∈ Zn is the sum of its entries.
Multi-index addition and subtraction are defined entrywise as usual.

2. We use the standard lexicographic order : (i1, . . . , in) < (j1, . . . , jn) means i1 = j1, . . . , ik−1 =
jk−1 and ik < jk for some k  1.

3. Let F : U ⊂ Cn → C be a complex analytic function over the open set U . We define the
lexicographically sifted differential of F of order m as the row vector

F (m) (x) := lex

(
∂mF

∂xi11 . . . ∂x
in
n

(x)

)
,

where i1 + . . .+ in = m and entries are ordered as per <lex on multi-indices.

4. We define

dn,k :=

(
n+ k − 1
n− 1

)
, Dn,k := dn,1 + dn,2 + · · ·+ dn,k. (2)

It is easy to check that the set of possible k-ples of integers in {1, . . . , n}, or alternatively
the number of homogeneous monomials of total degree n in k variables, has dn,k elements.
Quantity Dn,k will become useful in Section 4.1 when LVEkφ is introduced.

Notation 1.5 (Multi-index binomials and multinomials). Given integers k1, . . . , kn  0, we
define the usual multinomial coefficient as(

k1 + · · ·+ kn
k1, . . . , kn

)
:=

(
k1 + · · ·+ kn

k

)
:=

(k1 + · · ·+ kn)!
k1!k2! · · · kn!

. (3)

For a multi-index k ∈ Zn0, define k! := k1! · · · kn!. For any two such k, j, we define

(
k
p

)
:=

k1!k2! · · · kn!
p1!p2! · · · pn! (k1 − p1)! (k2 − p2)! · · · (kn − pn)!

=

(
k1
p1

)(
k2
p2

)
· · ·
(
kn
pn

)
, (4)

and the multi-index counterpart to (3),

(
k1 + · · ·+ km

k1, . . . ,km

)
:=

(k1 + · · ·+ kn)!
k1!k2! · · ·kn!

. (5)
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2 Symmetric products and powers of finite matrices

2.1 Definition and properties

Let K be a field and V a K-vector space. Let us first recount the definition and the requisite
existence and uniqueness results for the symmetric power of V . See [13, 14, 18] for details.

Definition 2.1. An rth symmetric tensor power of V is a vector space S, together with
a symmetric multilinear map ϕ : V r := V× r. . . ×V → S satisfying the following universal
property: for every vector space W and every symmetric multilinear map f : V r → W there is
a unique induced linear map f� : S →W such that the following diagram commutes:

V × V× r. . . ×V
ϕ

��

f // W

S

f�

77ooooooo

In other words, isomorphism Hom (S,W ) ∼= S (V n,W ) holds between the vector space of linear
maps S →W and the vector space of symmetric multilinear maps V n →W .

Lemma 2.2. For any two symmetric rth powers (S1, ϕ1) and (S2, ϕ2) of V , an isomorphism
ψ : S1 → S2 exists such that ϕ2 = ψ ◦ ϕ1.

Proposition 2.3. Given any vector space V and any r ∈ N,

a) a symmetric rth power (S, ϕ) exists for V . We denote:

• v1 � · · · � vr := ϕ (v1, . . . ,vr) for every v1, . . . ,vr ∈ V ,

• SymrV , V� r. . . �V or
⊙r V in place of S,

• v�k := v� k· · · �v for any vector v ∈ V , and

• v�p := v�p11 � · · · � v�pnn , for any set of vectors v1, . . . ,vn and multi-index p ∈ Zn0.

Conventions Sym1V = V and Sym0V = K arise naturally.

b) Furthermore, {v1 � · · · � vr : v1, · · · ,vr ∈ V } is a system of generators of SymrV .

c) For any vector space W and multilinear map f : V r → W , the linear map f� induced by
the universal property is defined on the set of generators of SymrV as

f� (v1 � · · · � vr) = f (v1, · · · ,vr) .

d) If dimV = n <∞ then every basis {e1, . . . , en} of V induces a basis for SymrV :

{(e1� r1. . . � e1)� (e2� r2. . . � e2) � · · · � (en� rn. . . � en) : ri  0, |r| = r} ; (6)

hence, dim SymrV = dn,r.

in particular, symmetric products of vectors operate exactly like products of homogeneous poly-
nomials, with commutative, associative properties etcetera.

Remark 2.4. Symr may also be defined explicitly in terms of the tensor power
⊗r, delegating

observation of a universal property on the latter and then taking quotients SymrV =
⊗r V/ ∼

modulo the equivalence relation v1⊗· · ·⊗vr ∼ vσ(1)⊗· · ·⊗vσ(r) for every σ ∈ Sr, thus equating,
via isomorphism, SymrV to the subspace 〈{ei1 ⊗ ei2 ⊗ · · · ⊗ eir : 1 ¬ i1 ¬ i2 ¬ · · · ¬ ir ¬ n}〉 of
V ⊗r for any basis {e1, . . . , en} of V .
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Given any K-vector space W and two linear maps f, g : V →W , define

h : V × V → Sym2W, h (v1,v2) :=
1
2

[f (v1)� g (v2) + f (v2)� g (v1)] . (7)

Immediately bilinear and symmetric, it is granted a unique linear h� : Sym2V → Sym2W ,
obviously defined h� (v1 � v2) := h (v1,v2), by the universal property. Let us write f�g := h�.
It is easy to check that f � g = g � f and, given linear maps f1, g1 : W →W1,

(f1 ◦ f)� (g1 ◦ g) = (f1 � g1) ◦ (f � g) .

A similar construction applies to the symmetric product of m  3 linear maps fi : V →W :

f1 � · · · � fm : SymmV → SymmW, v1 � · · · � vm 7→
1
m!

∑
σ∈Sm

f1
(
vσ(1)

)
� · · · � fm

(
vσ(m)

)
. (8)

Let us generalise the above symmetric product into one involving any two linear maps

f : Symj1V → Symi1W, g : Symj2V → Symi2W, j1, j2, i1, i2  0.

Assume V and W finite-dimensional, V having basis {e1, . . . , en}. We will use notation in
Proposition 2.3. Defining the bilinear map

ϕ (u1,u2) := u1 � u2, ui ∈ SymjiV, i = 1, 2, (9)

we look forward to building a new symmetric bilinear function h in terms of f and g generalising
(7), and proving there is a unique linear h� completing the diagram

Symj1V × Symj2V

ϕ

��

h // Symi1+i2W

Symj1+j2V
h�

66lllllll
(10)

We want h to be a symmetric, bilinear map depending on f and g and yielding coefficient 1 for
all-round repeated vectors as in (7). Symmetric, multilinear h̃ : V ×j1+j2 → Symi1+i2W is easier
to define, generalising (7): for any u1, . . . ,uj1+j2 ∈ V ,

h̃ (u1, . . . ,uj1+j2) :=
1(

j1+j2
j1

) ∑
σ∈Sj1,j2

f
(
uσ(1) � · · · � uσ(j1)

)
� g
(
uσ(j1+1) � · · · � uσ(j1+j2)

)
, (11)

where

Sj1,j2 := {σ ∈ Sj1+j2 : σ (1) < · · · < σ (j1) and σ (j1 + 1) < · · · < σ (j1 + j2)} . (12)

Define
(ϕ1 × ϕ2) (u1, . . . ,uj1+j2) = (ϕ1 (u1, . . . ,uj1) , ϕ2 (uj1+1, . . . ,uj1+j2)) ,

ϕi being the universal map of SymjiV ; we intend the diagram involving the cartesian product

V ×j1+j2

ϕ1×ϕ2
��

h̃

))RRRRRRRRRRRRR

Symj1V × Symj2V
h // Symi1+i2W

(13)
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to commute. Let ui1 , . . . ,uij1+j2 be j1 + j2 vectors in V , each an element of base {e1, . . . , en}.
We have

(ϕ1 × ϕ2)
(
ui1 , . . . ,uij1+j2

)
=
(
ui1 � · · · � uij1 ,uij1+1 � · · · � uij1+j2

)
and we may also split each set of vectors into copies of separate basis vectors:{
ui1 , . . . ,uij1

}
= {e1 p1. . ., e1, . . . , en, pn. . ., en} ,

{
uij1+1 , . . . ,uij1+j2

}
= {e1 q1. . ., e1, . . . , en, qn. . ., en} ,

with |p| = j1 and |q| = j2, and define k = p + q. The expression of (11) in these basis elements
is now an immediate consequence of basic combinatorics:

h̃
(
e1 k1. . ., e1, . . . , en, kn. . ., en

)
=

1(j1+j2
j1

) ∑
|P|=j1

(
k1
P1

)(
k2
P2

)
· · ·
(
kn
Pn

)
f
(
e�P

)
� g

(
e�k−P

)
,

leaving no option for (13) to commute but

h
(
e�p, e�q

)
=

1(j1+j2
j1

) ∑
|P|=j1

(
p1 + q1
P1

)(
p2 + q2
P2

)
· · ·
(
pn + qn
Pn

)
f
(
e�P

)
� g

(
e�p+q−P

)
. (14)

On the other hand, the universal property on the total symmetric product
(
Symj1+j2V, ϕ̃

)
yields a unique h� such that h� ◦ ϕ̃ ≡ h̃,

V ×j1+j2

ϕ1×ϕ2
��

h̃

))RRRRRRRRRRRRR

ϕ̃

))

Symj1V × Symj2V
h //

ϕ

��

Symi1+i2W

Symj1+j2V

h�
66lllllll

(15)

The fact ϕ ◦ (ϕ1 × ϕ2) ≡ ϕ̃ is immediate. And fixing ϕ (and h) the uniqueness of h� follows
from construction: any other h• rendering (10) commutative would require the commutativity
of the perimeter of (15), hence h• ≡ h�.

Hence all we need to do is express f � g := h� in terms of its action on base elements (6) to
obtain a simple, explicit form.

Notation 2.5. When dealing with matrix sets, we will use super-indices and subindices in the
following manner.

1. The space of (i, j)-matrices Mati,jm,n (K) can either be defined by its underlying set, i.e.
all dm,i × dn,j matrices having entries in K, or as the vector space of linear maps between
symmetric powers HomK

(
SymjV ; SymiW

)
whenever V ∼= Km and W ∼= Kn.

2. It is clear from the above that Mat0,0n (K) is the set of all scalars α ∈ K and Mat0,kn (K)
(resp. Matk,0n (K)) is made up of all row (resp. column) vectors whose entries are indexed
by dn,k lexicographically ordered k-tuples.

2. Reference to K may be dropped and notation may be abridged if dimensions are repeated
or trivial, e.g. Mati,jn := Mati,jn,n, Matim,n := Mati,im,n, Matn := Mat1n, etcetera.

Checking product � defined below renders diagrams (10) and (15) commutative is now
immediate.
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Definition 2.6 (Symmetric product of finite matrices). Let A ∈ Mati1,j1m,n (K), B ∈ Mati2,j2m,n (K),
i.e. linear maps A : Symj1Kn → Symi1Km and B : Symj2Kn → Symi2Km.

Given any multi-index k = (k1, . . . , kn) ∈ Zn0 and |k| = k1 + · · ·+ kn = j1 + j2,

(A�B)
(
ek11 · · · e

kn
n

)
=

1(j1+j2
j1

) ∑
p

(
k
p

)
(Aep11 · · · e

pn
n )�

(
Bek1−p11 · · · ekn−pnn

)
, (16)

notation abused by removing � to reduce space within basis elements (6), binomials as in (4)
and summation taking place for specific multi-indices p, namely those such that

|p| = j1 and 0 ¬ pi ¬ ki, i = 1, . . . , n.

The following is a mere exercise in induction:

Lemma 2.7. The product of A1, . . . , Ar, recursively defined by

A1 � · · · �Ar := (A1 � · · · �Ar−1)�Ar,

where Ai ∈ Matki,jim,n , i = 1, . . . , r, is expressed in terms of multinomials by

(A1 � · · · �Ar) e�k =
1(

j1+···+jr
j1,j2,...,jr

) ∑
p1,...,pr

(
k

p1, . . . ,pr

) r⊙
i=1

Aie
�pi , if |k| = j1 + · · ·+ jr, (17)

sums obviously taken for p1 + · · ·+ pr = k and |pi| = ji, for every i = 1, . . . , r. �

Remarks 2.8.

1. For an equivalent “non-monic” formulation of (16) (i.e. one for which entry 1,1 need not
have coefficient 1 in its formal expression) using multi-indices in both columns and rows,
see e.g. [8, 9, 10, 11].

2. Notation in Proposition 2.3 extends to matrices: SymrA := A�r := A
r

� · · ·� A.

3. In the case of a square (1, 1)-matrix A ∈ Matn (K), powers �r according to (16) are
obviously consistent with multiple product (8), hence equal to established definitions for
group morphism Symr : GLn (V )→ GLn (Symr (V )) in multilinear algebra textbooks such
as the expression in terms of the permanent of A (e.g. [13, Th. 9.2]), or 1r!As

r· · · sA in
multiple references such as [2, 5, 7].

Example 2.9. Given matrices A ∈ Mat1,12 (K) and B ∈ Mat3,22 (K), we may write them as

A =
(
Ae1 Ae2

)
=
(

a1,1 a1,2
a2,1 a2,2

)
, B =

(
Be�21 Be1 � e2 Be�22

)
=


b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3
b4,1 b4,2 b4,3


and it is immediate to check that the (4, 3) (hence four-column, five-row) matrix product

A�B =
(

(A�B)
(
e�31

)
(A�B)

(
e�21 � e2

)
(A�B)

(
e1 � e�22

)
(A�B)

(
e�32

) )
is equal to

a1,1b1,1
1
3 (a1,2b1,1 + 2a1,1b1,2) 1

3 (2a1,2b1,2 + a1,1b1,3) a1,2b1,3
a2,1b1,1 + a1,1b2,1

a2,2b1,1+2a2,1b1,2+a1,2b2,1+2a1,1b2,2
3

2a2,2b1,2+a2,1b1,3+2a1,2b2,2+a1,1b2,3
3 a2,2b1,3 + a1,2b2,3

a2,1b2,1 + a1,1b3,1
a2,2b2,1+2a2,1b2,2+a1,2b3,1+2a1,1b3,2

3
2a2,2b2,2+a2,1b2,3+2a1,2b3,2+a1,1b3,3

3 a2,2b2,3 + a1,2b3,3
a2,1b3,1 + a1,1b4,1

a2,2b3,1+2a2,1b3,2+a1,2b4,1+2a1,1b4,2
3

2a2,2b3,2+a2,1b3,3+2a1,2b4,2+a1,1b4,3
3 a2,2b3,3 + a1,2b4,3

a2,1b4,1
1
3 (a2,2b4,1 + 2a2,1b4,2) 1

3 (2a2,2b4,2 + a2,1b4,3) a2,2b4,3

 .
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The following is straightforward to prove from either direct application of the universal
property or the analogous techniques used in [8, 10], and will not be delved into here:

Proposition 2.10. For any matrices A, B, C, whenever products make sense, the following
properties hold:

a) A�B = B �A.

b) (A+B)� C = A� C +B � C.

c) (A�B)� C = A� (B � C).

d) (αA)�B = α (A�B) for every α ∈ K.

e) If A is square and invertible, then
(
A−1

)�k =
(
A�k

)−1
.

f) A�B = 0 if and only if A = 0 or B = 0.

g) If A is a square (1, 1)-matrix, then Av1 �Av2 � · · · �Avm = A�mv1 � · · · � vm.

h) If v is a column vector, then (A�B)v�(p+q) = (Av�p)� (Bv�q), for every p, q ∈ Z0.

i) If rank (A) = r then rank (A�m) = dr,m and detA�m = (detA)(
m+n−1

n ). �

The next two results are immediate as well:

Lemma 2.11. For any two matrices A ∈ Mati,jn and B ∈ Matp,qn and vectors v1, . . . ,vj+q ∈ V ,
the following holds, Sj,q defined as in (12):

(A�B) (v1 � · · · � vj+q) =
1(
j+q
q

) ∑
σ∈Sj,q

A
(
vσ(1) � · · · � vσ(j)

)
�B

(
vσ(j+1) � · · · � vσ(j+q)

)
. (18)

Proof. Nothing but the universal property on (11) and diagram (15) with different notation.

Lemma 2.12. Let k  1 and {e1, . . . , en} be a basis of Kn.

a) (see also [8, 10]) For any A ∈ Matp,qn and B ∈ Matq,rn , and every vector v ∈ SymkKn,

(v �A)B = v � (AB) . (19)

b) If {e1, . . . , en} is the canonical basis formed by columns in Idn, then
n∑

m=1

(
em � Id�k−1n

) (
eTm � Id�k−1n

)
= Id�k+1n .

Proof. a) It suffices to prove it for basis elements of Symq: for any k such that |k| = p,

(v �A)Be�k = v � (AB) e�k. (20)

But this is immediate from equation (18) or the definition (16) of � itself.

b) Using the previous item and the associative property in Proposition 2.10,(
em � Id�k−1n

) (
eTm � Id�k−1n

)
= em �

(
eTm � Id�k−1n

)
=
(
em � eTm

)
� Id�k−1n ;

it is immediate to check that em�eTm is a square (2, 2)-matrix whose only non-zero element
is 1 in position m,m, hence

n∑
m=1

(
em � Id�k−1n

)(
eTm � Id�k−1n

)
=

[
n∑

m=1

(
em � eTm

)]
� Id�k−1n = Id�2n � Id�k−1n = Id�k+1n .
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2.2 More properties of �

We need to generalise some of the above properties in Proposition 2.10 for later purposes.
Matrices will not be necessarily square unless specifically defined as such throughout this Section.

Lemma 2.13. Given square matrices A,B ∈ Matk,kn and matrices Xi ∈ Matk,jin , i = 1, 2,

(A�B) (X1 �X2) =
1
2

(AX1 �BX2 +BX1 �AX2) , (21)

and in general for any square A1, . . . , Am ∈ Matk,kn (K) and any Xi ∈ Matk,jin (K), i = 1, . . . ,m,(
m⊙
i=1

Ai

)(
m⊙
i=1

Xi

)
=

1
m!

∑
σ∈Sk

m⊙
i=1

Aσ(i)Xi. (22)

Proof. All it takes for m = 2 is applying the universal property on either (7) (replacing V with
SymkKn) or (14) (replacing j1 and j2 by k) on the product of A � B by each of the columns
of X1 �X2: indeed, for every i such that |i| = j1 + j2, X1e�p and X2e

�i−p are both vectors of
SymkKn whenever |i| = j1, hence

(A�B)
[(
X1e

�p)� (X2e�i−p)] =
1
2

[
A
(
X1e

�p)�B (X2e�i−p)+B
(
X1e

�p)�A (X2e�i−p)] ,
and attachment of 1

(j1+j2j1
)
∑
|p|=j1

( i
p

)
to both sides of the equation, along with (16), yields (21).

Equally true for arbitrary m, using the universal property on the multiple product (8), now
expressed on v1, . . . ,vm as (

⊙
iAi) (

⊙
i vi) = 1

m!
∑
σ∈Sm

⊙
iAivσ(i), replacing each vi by the

corresponding product
⊙m

i=1Aie
�pi and attaching

(
j1+···+jm
j1,j2,...,jm

)−1∑
p1,...,pm

( k
p1,...,pm

)
as in (17).

Lemma 2.14. Given A ∈ Mat1,jn and X1, . . . , Xm such that Xi ∈ Mat1,qin , assuming 1 ¬ j ¬ m,(
m

j

)(
A� Id�m−jn

)( m⊙
i=1

Xi

)
=

∑
1¬i1<···<ij¬m

[
A
(
Xi1 � · · · �Xij

)]
�

⊙
s 6=i1,...,ij

Xs. (23)

Proof. Defining B := Id�m−jn ∈ Matm−j,m−jn and vi := Xie
�pi where |pi| = qi, i = 1, . . . ,m,

equation (18) becomes

(
A� Id�m−jn

) m⊙
r=1

Xre
�pr =

1(
m
j

) ∑
1¬i1<···<ij¬m

A
(
Xi1e

�pi1 � · · · �Xije
�pij

)
�

m⊙
s6=i1,...,ij

Xse
�ps . (24)

Attach
(q1+···+qm
q1,q2,...,qm

)−1∑
p1,...,pm

( k
p1,...,pm

)
to both sides of the equation and let k be any ordered

multi-index having modulus q1 + · · ·+ qm. The left-hand side becomes
(
A� Id�m−jn

)
(
⊙m

i=1Xi).
Multiplying the right-hand side of (23) by ek and expressing the result in terms of each of its
symmetric product factors, the product of the resulting five binomial and multinomial coefficients
is equal to

(q1+···+qm
q1,q2,...,qm

)−1
and the span of the multi-indices is precisely that of those in the right-

hand side of (24) once embedded into its sum.

An immediate consequence of either Lemma 2.13 or Lemma 2.14 is

Corollary 2.15. Given a square matrix A ∈ Mat1,1n and X1, . . . , Xm such that Xi ∈ Mat1,jin ,

(
A� Id�m−1n

)( m⊙
i=1

Xi

)
=

1
m

m∑
i=1

(AXi)�
(
X1 � · · · � X̂i � · · · �Xm

)
. � (25)
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Lemma 2.16. Given square matrix X ∈ Mat1,1n , any vector v ∈ Kn and r  1,(
Xv � Id�r

)
X�r = X�r+1

(
v � Id�r

)
. (26)

Proof. The first step is proving
(
Xv � Id�rn

)
X�r = Xv � X�r. This is immediate from (19)

but let us elaborate on the proof for the sake of clarity and illustration. The fact Id�rn = Iddn,r
simplifies some steps. Equation (18) for i = 1, j = 0, p = q = r yields, for every set of vectors
v1, . . . ,vr ∈ Kn, (

Xv � Id�rn
)

(v1 � · · · � vr) = Xv � (v1 � · · · � vr) . (27)

Set vi := Xe�pi ∈ Kn for any given pi, slight notation abuse notwithstanding since |pi| = 1.
Then (27) becomes(

Xv � Id�rn
) (
Xe�p1 � · · · �Xe�pr

)
= Xv �Xe�p1 � · · · �Xe�pr . (28)

Hence

(
Xv � Id�rn

)
X�re�k =

(
Xv � Id�rn

) 1
r!

∑
p1,...,pr

(
k

p1, . . . ,pr

)(
Xe�p1 � · · · �Xe�pr

)
=

1
r!

∑
p1,...,pr

(
k

p1, . . . ,pr

)
Xv �Xe�p1 � · · · �Xe�pr

= Xv � 1
r!

∑
p1,...,pr

(
k

p1, . . . ,pr

)
Xe�p1 � · · · �Xe�pr

= Xv �X�re�k (29)

sum multi-indices pi adding up to k and having successive moduli ji as always.
Equation (20) and application of Proposition 2.10 imply

X�r+1
(
v � Id�rn

)
e�k = X�r+1

(
v � e�k

)
= Xv �X�k1e�k11 � · · · �X�k1e�knn ,

precisely (29).

If (K, ∂) is a differential field [26], i.e. ∂ : K → K is a derivation, a linear map satisfying
the Leibniz rule ∂ (ab) = b∂ (a) + a∂ (b), this extends entrywise to matrices, ∂ (ai,j) := (∂ai,j)
and the Leibniz rule applies to �. This is immediate and well-known for square matrices, but
we are in a more general case:

Lemma 2.17. For any given X ∈ Matk1,j1n (K) and Y ∈ Matk2,j2n (K),

∂ (X � Y ) = ∂ (X)� Y +X � ∂ (Y ) . (30)

Proof. It suffices, from expression (16), to check it true for symmetric products of vectors u,v ∈
Symk1+k2 (Kn) but this is as trivial as for homogeneous polynomials in n arbitrary unknowns
K [E1, . . . , En] in virtue of Proposition 2.3 or isomorphism Symk1+k2 (V ?) ∼= Sk1+k2 (V,K) and
can be gleaned from any of references mentioned in Section 2.

Although the next result will be rendered academic by simplified expressions in Section 4.1,
it is worth writing for the sake of clarifying certain routinely-appearing matrix blocks a bit
further.
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Lemma 2.18.

a) If Y is a square n× n matrix having entries in K and Ẏ = AY , then

d

dt
SymkY = k

(
A� Symk−1 (Idn)

)
SymkY. (31)

b) If X ∈ Mat1,j1n (K) and Y ∈ Mat1,j2n (K) satisfy systems

Ẋ = AX +B1, Ẏ = AY +B2, A ∈ Mat1,1n (K) , Bi ∈ Mat1,jin (K) ,

then the symmetric product of these matrices satisfies the linear system

d

dt
(X � Y ) = 2

(
A� Iddn,k

)
(X � Y ) + (B1 � Y +B2 �X) . (32)

c) More generally, if Xi, Bi ∈ Mat1,jin (K), i = 1, . . . ,m, A ∈ Mat1,1n and

Ẋi = AXi +Bi, i = 1, . . . ,m,

then
d

dt

m⊙
i=1

Xi = m
(
A� Id�m−1dn,k

) m⊙
i=1

Xi +
m∑
i=1

Bi �
⊙
j 6=i

Xj . (33)

Proof. a) Immediate upon application of commutativity and (22) or (25) to

d

dt

(
Y

k)
� · · ·� Y

)
=

k∑
i=1

Y � · · ·�

k︷︸︸︷
Ẏ � · · · � Y =

k∑
i=1

Y � · · ·�
k︷︸︸︷
AY � · · · � Y.

b) Follows from Lemma 2.17 and the commutative and distributive properties of �.

c) We use induction, m = 2 being the previous item. Leibniz rule (30) and associativity imply

˙
m⊙
i=1

Xi =

(
d

dt

m−1⊙
i=1

Xi

)
�Xm +

(
m−1⊙
i=1

Xi

)
� Ẋm,

wherein induction hypothesis implies(m− 1)
(
A� Id�m−1dn,k

)m−1⊙
i=1

Xi +
m−1∑
i=1

Bi �
⊙
j 6=i

Xj

�Xm + (AXm +Bm)�
m−1⊙
i=1

Xi,

which is equal in virtue of the distributive property and (25) to[
m−1∑
i=1

AXi �
(
X1 � · · · � X̂i � · · · �Xm−1

)]
�Xm +

m−1∑
i=1

Bi �
⊙
j 6=i

Xj �Xm

+AXm �
m−1⊙
i=1

Xi +Bm �
m−1⊙
i=1

Xi

=

[
m∑
i=1

AXi �
(
X1 � · · · � X̂i � · · · �Xm

)]
+

m∑
i=1

Bi �
⊙
j 6=i

Xj ,

further application of (25) ending the proof.
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Remark 2.19. Albeit not explicitly as in (31), the matrix proven equal to k
(
A� Id�k−1n

)
has

appeared in numerous prior references (e.g. [2, 3, 4, 5, 7]) whenever an equation for Symk such
as (31) arises, has been sometimes labelled symkA and has been consistently called symmetric
power of A in the sense of Lie algebras, its Lie group counterpart summarily standing therein
for �k as defined in this paper.

3 Symmetric products and exponentials of infinite matrices

The next step towards a compact form to linearised higher variationals is assembling the matrix
blocks gleaned from Remark 2.19 together into a compact matrix whenever dealing with different
blocks Y1, Y2, . . . satisfying different differential equations.

3.1 Products and exponentials

Of the myriad ways to note a set of infinite matrices, we may need one taking finite submatrix
orders into account. Alternatively, of all the ways in which to write a K-algebra S, a need may
arise to express it whenever possible S = Sym (V ) :=

⊕
k0 Symk (V ) for a given vector space.

Notation 3.1. From now on Matn,m (K) denotes the set of all block matrices

A = (Ai,j)i,j0 , Ai,j : SymiKm → SymjKn,

hence Ai,j ∈ Mdn,i×dm,j (K) = Mati,jn,m (K):

A =



. . .
...

...
...

...

· · · A3,3 A3,2 A3,1 ← A3,0

· · · A2,3 A2,2 A2,1 ← A2,0

· · · A1,3 A1,2 A1,1 ← A1,0

· · · A0,3 A0,2 A0,1 ← A0,0


We write Mat (K) := Matn,n (K) if the context allows for it, i.e. the value of n is unambiguous.

Conversely, the set of matrices Mati,jn,m (K) is identified as a subset of Matn,m (K) by identi-
fying every such block Ai,j with an element of Matn,m (K) all of whose blocks are zero save for,
perhaps, Ai,j.

We define the following product on Matn,m (K). For a formulation yielding the same results
see [11, p. 2].



14 Linearised Higher Variational Equations

Definition 3.2. We define, for every given A,B ∈ Matn,m (K), matrix A�B = C ∈ Matn,m (K)
where for every given i, j,

Ci,j =
∑

0 ¬ i1 ¬ i
0 ¬ j1 ¬ j

(
j

j1

)
Ai1,j1 �Bi−i1,j−j1 . (34)

Same as always, �k will stand for powers built with this product.

Example 3.3. Matrix A�B takes the following form in its simplest echelons:
. . .

...
...

. . .
... A0,0B2,0 +A1,0 �B1,0 +A2,0B0,0

· · · A0,0B1,1 +A0,1 �B1,0 +A1,0 �B0,1 +A1,1B0,0 A0,0B1,0 +A1,0B0,0
· · · A0,0B0,1 +A0,1B0,0 A0,0B0,0

 ,

and coefficients other than 1 will start appearing in further block rows and columns. We split
row ?,0 and column 0,? from the rest of the matrix for further clarity.

The following is immediate and part of it has already been mentioned before, e.g. [10]:

Lemma 3.4. Product � on Matn,m is associative and commutative, and (Mat (K) ,+,�) is an
integral domain as well as a K algebra if endowed with the usual product by scalars in K. Its
identity element is 1 made up of zero blocks except for 0,0 which is equal to 1K . �

Definition 3.5. For every matrix A ∈ Mat (K) we define the formal power series

exp�A := 1 +A�1 +
1
2
A�2 + · · · =

∞∑
i=0

1
i!
A�i ∈ Matn,m [[X]] .

Whenever A has all but a finite distinguished submatrix Aj,k equal to zero (e.g. Examples 3.7
below or Lemma 3.11), the abuse of notation exp�Aj,k = exp�A will be customary.

See also [10]. The fact � is commutative saves us the trouble of having to check matrix
commutation in the properties below, whose proof works exactly like that of scalar exponentials:

Lemma 3.6.

a) For every two A,B ∈ Matn,m, exp� (A+B) = exp�A� exp�B.

b) For every Y ∈ Matn,m and any derivation δ : K → K defined on field K, then

δ exp� Y = (δY )� exp� Y.

c) ([8, Corollary 3]) For every two square matrices A,B ∈ Mat1,1n , exp�AB = exp�A exp�B.

d) In particular, for every invertible square matrix A ∈ Mat1,1n , exp�A
−1 =

(
exp�A

)−1. �
Examples 3.7.

1. Let A ∈ Mat (K) such that all blocks are zero except for 1,1:

A =


. . .

...
...

· · · A1,1 0
· · · 0 0

 .
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For 12A
�2, expressions (34) containing A�21,1 are those for which i = j = 2, hence

1 +A+
1
2
A�2 =


. . .

...
...

...
· · · A�21,1
· · · A1,1
· · · 1


and the pattern is clear in general: exp�A1,1 = exp�A = diag

(
· · · , A�k1,1, . . . , A1,1, 1

)
.

2. For row or column vectors this expression is even simpler. If the only non-zero block in A
is a row vector, Ak,0 = x =

(
x1, . . . , xdn,k

)
∈ Matn,k,0 (K),

A =


. . .

...
...

...
· · · 0 0 · · · 0
· · · 0 x · · · 0

 ,
the only expression (34) not automatically zero in (A�A) is (A�A)0,2k =

(2k
k

)
A0,k�A0,k.

Recursively, the only expression not automatically zero in A�j is(
A�Aj−1

)
0,jk

=

(
jk

k

)
·
(

(j − 1) k
k

)
· · ·
(

2k
k

)
A�j0,k. (35)

For instance, if k = 1,

exp�A =
∑
j0
x�j =


. . .

...
...

...
...

...
· · · 0 0 0 0 0
· · · x�4 x�3 x�2 x 1

 .
3. This does not apply mutatis mutandis to matrices whose only non-trivial blocks are in the
0,k column. The only non-trivial block in A�j is jk,0 whose expression is summarised in
switching row and column indices and expunging binomials from (35). For k = 1, we have

exp� x = exp�


. . .

...
...

· · · 0 0
· · · 0 x

· · · 0 0

 =



. . .
...

...
· · · 0 1

j!x
�j

...
...

· · · 0 1
2x
�2

· · · 0 x

· · · 0 1


.

A fourth example, namely matrices A ∈ Mat (K) equal to zero save for block row 1,k, k  1
(see (37)), deserves special attention in the forthcoming Sections. Let us first fix conventions:

Notation 3.8. For every set of indices satisfying 1 ¬ i1 ¬ · · · ¬ ir and i1+ · · ·+ ir = k, cki1,...,ir
is defined as the amount of totally ordered partitions of a set of k elements among subsets of
sizes i1, . . . , ir. We will write cki following i = (i1, . . . , ir) and omit super-index k if sum |i| is
known beforehand.

Remarks 3.9.

1. cki1,...,ij = #Ii1,...,ij1,...,k following (61) below. Needless to say,
∑
i1+···+ij=k c

k
i1,...,ij

=
{k
j

}
, the

Stirling number of the second type ([1, §24.1.4]), and
∑k
j=1

∑
i1+···+ij=k c

k
i1,...,ij

= Bk, the
kth Bell number [25, Vol 2, Ch. 3].
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2. Since each subset of size is is supposed to be ordered, we must divide the total amount by
the orders of the corresponding symmetric groups, hence the explicit formula:

cki1,...,ij =

(
k

i1 i2 ··· ij

)
n1! · · ·nm!

, where
{

(i1, . . . , ij) = (k1 n1. . . k1, k2 n2. . . k2, · · · , km nm. . . km) ,
1 ¬ k1 < k2 < · · · < km.

(36)

Lemma 3.10. Let Y ∈ Mat (K) equal to zero outside of block row 1,k, k  1:

Y :=


...

...
...

...
· · · 0 0 0 0
· · · Y3 Y2 Y1 0
0 0 0 0 0

 , Yi ∈ Mat1,in . (37)

Let Zr,s, s, r  1, be the corresponding block in exp� Y . Then,

a) Row block r in exp� Y is recursively obtained in terms of row blocks 1 and r − 1:

Zr,s =
1
r

s−r+1∑
j=1

(
s

j

)
Yj � Zr−1,s−j . (38)

In particular, Zr,r = Y �r1 and Zr,s = 0dn,r,dn,s whenever r > s.

b) For every m, r  1 and any v ∈ Kn,(
Y1v � Id�rn

)
Zr,r = Zr+1,r+1

(
v � Id�rn

)
. (39)

c) Using Notation 3.8 and (36), for every s  r

Zr,s =
∑

i1+···+ir=s
csi1,...,irYi1 � Yi2 � · · · � Yir . (40)

d) Let A ∈ Mat (K) defined with similar disposition as Y , its horizontal strip not necessarily
at level 1,∗:

A :=



...
...

...
...

· · · 0 0 0 0
· · · A3 A2 A1 0
· · · 0 0 0 0

...
...

...
...

· · · 0 0 0 0
0 0 0 0 0


, At ∈ Matp,tn .

For every t, i  1 and s  t+ i, the following factorization holds:

s−i∑
j=t

(
s

j

)
(AtZt,j)� Zi,s−j =

(
t+ i

i

)(
At � Id�in

)
Zt+i,s. (41)

e) If Q ∈ Matn has only its square 1,1 block different from zero, then exp�QY =
(
exp�Q

) (
exp� Y

)
.

Proof. a) Using (34) on A = Y and B = Y �s−1,

Zr,s =
1
r!

∑
1¬s1¬s

(
s

s1

)
A1,s1 �Br−1,s−s1 =

1
r!

∑
1¬s1¬s

(
s

s1

)
Ys1 � ((r − 1)!Zr−1,s−s1) ;

hence, using the fact Zi,j = 0 for i > j, (38) ensues.
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b) Direct from (26) in Lemma 2.16.

c) By induction. For s = 1, r can only be equal to 1 in order to have a non-zero block and
Z1,1 = Y1 = c11Y1. Assume (40) holds for all r smaller than or equal to s− 1. We have

Zr,s =
1
r

s−r+1∑
j=1

(
s

j

)
Yj�Zr−1,s−j =

1
r

s−r+1∑
j=1

(
s

j

)
Yj�

∑
i1+···+ir−1=s−j

cs−ji1,...,ir−1
Yi1 �Yi2 �· · ·�Yir−1 .

Summand redistribution renders the above equal to

1
r

∑
j1+···+jr=s

Cj1,...,jrYj1 � Yj2 � · · · � Yjr , (42)

where, setting (j1, . . . , jr) = (k1 n1. . . k1, k2 n2. . . k2, · · · , km nm. . . km) , and defining ki := (ki ni. . . ki)
and Ki :=

(
k1, . . . ,ki−1, ki ni−1. . . ki,ki+1, . . . ,km

)
,

Cj1,...,jr = Ck1,...,km :=

(
s

k1

)
cs−k1K1 +

(
s

k2

)
cs−k2K2 + · · ·+

(
s

km

)
cs−kmKm .

Each of the summands in Cj1,...,jr is equal to

s!
ki! (s− ki)!

(s−ki)!
k1!n1k2!n2 ···ki−1!ni−1ki!niki+1!ni+1 ···km!nm

n1!n2! · · · (ni − 1)! · · ·nm!
= nmc

s
j1,...,jr ,

hence the coefficient of Yj1�· · ·�Yjr in (42) is equal to 1r (n1 + · · ·+ nm) csj1,...,jr = csj1,...,jr .

d) Let us express the left-hand side in (41) in terms of (40):

s−i∑
j=t

(
s

j

)At ∑
m1+···+mt=j

cjm1,...,mtYm1 � · · · � Ymt

�
 ∑
k1+···+ki=s−j

cs−jk1,...,ki
Yk1 � · · · � Yki

 ,
distributivity yielding it equal to

s−i∑
j=t

(
s

j

) ∑
m1,...,mt

∑
k1,...,ki

cjm1,...,mtc
s−j
k1,...,ki

[At (Ym1 � · · · � Ymt)]� Yk1 � · · · � Yki . (43)

The above multi-sums are indexed, respectively, by sets Jt,j and Ji,s−j , where

Jr,c := {(n1, . . . , nr) ∈ Zr : 1 ¬ n1 ¬ n2 ¬ · · · ¬ nr and n1 + · · ·+ nr = c} .

The set of all ordered concatenations of index vectors in Jt,j and Ji,s−j as j varies from t
to s− i equals the complete set Jt+i,s. Conversely, for every multi-index

n = (n1, . . . , nt, nt+1, . . . , nt+i) ∈ Jt+i,s,

consider the set of pairs of multi-indices m = (m1, . . . ,mt) and k = (k1, . . . , ki) whose
ordered concatenation is n:

It,i (n) = {(m,k) : σ (m1, . . . ,mt, k1, . . . , ki) = n for some σ ∈ Si+t}

the terms in (43) indexed by It,i (n) are summed up in

∑
(m,k)∈It,i(n)

(
s

|m|

)
cm ck [At (Ym1 � · · · � Ymt)] (Yk1 � · · · � Yki) .
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Let us discriminate among terms in the above sum. For every (m,k) ∈ It,i (n), split m
and k into copies of different integers:

m =
(
µ1 M1. . . µ1, · · · , µp Mp. . . µp

)
k =

(
µ1 K1. . . µ1, · · · , µq Kq. . . µq

)  1 ¬ µ1 < µ2 < · · · < µmax{p,q}. (44)

This obviously implies (equalling Mi or Ki multiplicities to zero whenever necessary)

n =
(
µ1 M1+K1. . . µ1, · · · , µmax{p,q}

Mmax{p,q}+Kmax{p,q}. . . µmax{p,q}
)
, (45)

and
max{p,q}∑
ν=1

Mν +Kν = t+ i,

max{p,q}∑
ν=1

Mνµν +Kνµν = s;

the amount of permutations of n in (45) leaving m and k in (44) invariant is equal to(
M1 +K1
M1

)
·
(
M2 +K2
M2

)
· · ·
(
Mmax{p,q} +Kmax{p,q}

Mmax {p,q}

)
.

Multiplication of this product by cn yields (writing r = max {p, q})(M1+K1
M1

)
·
(M2+K2

M2

)
· · ·
(Mr+Kr

Mr

)
·
(s
n

)
(M1 +K1)! (M2 +K2)! · · · (Mr +Kr)!

=
s!

M1!K1!µ1!M1+K1 · · ·Mr!Kr!µr!Mr+Kr
. (46)

Let us now return to sum (43). Using multiplicities as in (44), the summand corresponding
to a given (m,k) ∈ It,i (n) has its coefficient equal to(

s

|m|

)
cm ck =

(
s

M1µ1 + · · ·+Mpµp

)(M1µ1+···+Mpµp
m

)
M1! · · ·Mp!

(K1µ1+···+Kqµq
k

)
K1! · · ·Kq!

which simplifies into (46).

Hence
(s
j

)
cjmc

s−j
k times [At (Ym1 � · · · � Ymt)] � Yk1 � · · · � Yki equals csm,k times all per-

mutations of the factors leaving these products invariant. This allows us to apply Lemma
2.14 to At and Y�m � Y�k := Ym1 � · · · � Ymt � Yk1 � · · · � Yki :(
s

j

)
cjmc

s−j
k [At (Ym1 � · · · � Ymt)]�Yk1�· · ·�Yki =

(
i+ t

i

)(
At � Idin

)
Y�m�Y�k. (47)

The fact every summand in (43) fits the same profile as the left-hand side in (47) allows
us to factor

(i+t
i

) (
At � Idin

)
out of the whole sum, namely Zi+t,s.

e) Replacing each factor Yij by QYij in (40) and applying Lemma 2.10 we obtain exp�QY =(
Z̃r,k

)
where

Z̃r,s =
∑

i1+···+ir=s
Q�r � csi1,...,irYi1 � Yi2 � · · · � Yir = Q�rZr,s,

hence matrix exp� Y appears multiplied by diag
(
· · · , Q�2, Q�1, 1

)
= exp�Q.

Lemma 3.11. Let A and Y be as in Lemma 3.10. Then,(
A exp� Y

)
� exp� Y =

(
A� exp� Idn

)
exp� Y. (48)
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Proof. Upon observation of (34), B := A� exp� Idn ∈ Mat (K) is defined recursively by

B1 = A1, Bk =


( k
k−1
)
A1 � Id�k−1n( k

k−2
)
A2 � Id�k−2n

... Bk−1(k
0

)
Ak

 , k  1.

Let

Φ1 = Y1, Φk =


Zk,k
Zk−1,k

... Φk−1
Z1,k

 , k  2, (49)

be the matrix formed by the first k row and column blocks in exp� Y . Block row r of B is

Br :=
( ( k

r−1
)
Ak+1−r � Id�r−1n

(k−1
r−1
)
Ak−r � Id�r−1n · · ·

( r
r−1
)
A1 � Id�r−1n 0 · · · 0

)
,

the row comprised of the first k blocks in A is written Ak = (A1,k, A1,k−1 . . . , A1,1) and the first
block column in Φk is Zk := (Zk,k, Zk−1,k . . . , Z1,k)

T .
For every s  1, block 1,s in A exp� Y is equal to

Xs = AsZ
s =

s∑
j=1

AjZj,s,

hence for every r = 1, . . . , k block r,k in
(
A exp� Y

)
� exp� Y is equal to

k−r+1∑
j=1

(
k

j

)
Xj � Zr−1,k−j =

k−r+1∑
j=1

(
k

j

) j∑
t=1

AtZt,j

� Zr−1,k−j ,
which can be rewritten as

k−r+1∑
t=1

k−r+1∑
j=t

(
k

j

)
(AtZt,j)� Zr−1,k−j ,

its innermore sum ostensibly calling for Lemma 3.10 reenacted with p = 1, s = k and i = r− 1.
(41) indeed yields the above equal to

k−r+1∑
t=1

(
t+ r − 1
r − 1

)(
At � Id�r−1n

)
Zt+r−1,k,

precisely block combination BrZ
k.

3.2 Application to power series

Since polynomials and power series split into homogeneous components, Example 3.7(3) implies:

Lemma 3.12.

a) Let F ∈ K [[x]], x = (x1, . . . , xn), be a formal series. Then there exists a set of row blocks
M1,iF ∈ Mat1,im,n (K), i  0 such that F admits the expression F (x) = MF exp�X, where

MF :=


...

...
...

· · · 0 0 0
· · · M1,2F M1,1F M1,0F
· · · 0 0 0

 ∈ Mat1,n (K) , X :=


. . .

...
...

· · · 0 0
· · · 0 x

· · · 0 0

 .
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b) If F = F1 × · · · × Fm is a vector power series, adequate M1,iF ∈ Mat1,im,n (K) render

F (x) = MF exp�X where MF :=


...

...
...

· · · 0 0 0
· · · M1,2F M1,1F M1,0F
· · · 0 0 0

 ∈ Matm,n.

Following Definition 3.5, we write F (x) = MF exp� x if it poses no clarity issue. �

From the above Lemma it follows that every formal power series can be expressed in the
form MF exp� x, where abusing notation once again

MF = JF +M1,0F :=

(
· · · M1,2F M1,1F 0
· · · 0 0 0

)
+

(
0 M1,0F
0 0

)
. (50)

In other words: MF equals the sum of two matrices with easily computable �-exponentials: one
following Example 3.7 (3) (same as x) and one following pattern (37). This fact, Lemma 3.6, the
fact (Mat (K) ,+,�) is an integral domain and the universal property of � on finite products
yield the following two results; see [8, 10] for a proof.

Lemma 3.13. Given power series F = (F1, . . . , Fm) and G = (G1, . . . , Gp) in n and m inde-
terminates, respectively,

a) If n = m, MFG = MF �MG.

b) exp� F (x) =
(
exp�MF

) (
exp� x

)
.

c) MG◦F = MG exp�MF .

d) exp�
(
MG exp�MF

)
=
(
exp�MG

) (
exp�MF

)
.

Corollary 3.14. Let F (x) = (F1, . . . , Fp) (x1, . . . , xn) be a vector power series, y = F (x) and

X = Rx,X exp� x ∈ KN ,
Y = Sy,Y exp� y ∈ KP ,

}
Rx,X ∈ MatN,n (K) , Sy,Y ∈ MatP,p (K) ,

be independent and dependent variable changes, which we assume admit formal inverse changes

x = RX,x exp�X,
y = SY,y exp� Y ,

}
RX,x ∈ Matn,N (K) , SY,y ∈ Matp,P (K) .

Then, the expression of F in the new variables, written in that in those old, is

MF,X,Y = Sy,Y
(
exp�MF,x,y

)
exp�RX,x where y = F (x) = MF,x,y exp� x. � (51)

As was hinted at in [10, p. 5], the above result shows interesting light on the way finite-
level transformations translate into transformations on Matn,m. For a linear transformation of
the independent variables x = BX, however, basic properties of exp� are as useful as (51) in
proving F admits the following expression in the new variable X (mind the effect of the first
matrix, equal to zero save for block 1,1 which is equal to Idn, on the second one):

F (X) = Idn
(
exp�MF

) (
exp�B

)
X =

(
JF +M0,0F

) (
exp�B

)
exp�X. (52)

This will be applied to first integrals of dynamical systems in Section 5.
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4 Higher-order variational equations

4.1 Structure

Let us step back to what was said in Section 1.2. For each particular integral curve φ ={
φ (t) : t ∈ T ⊆ P1C

}
of a given complex autonomous dynamical system (DS), the variational

system VEkφ for (DS) along φ is satisfied by the partial derivatives ∂k

∂zkϕ (t,φ (t)).
Case k = 1 being trivial as shown in (VEφ), the situation of interest is k > 1. We will eschew

formulations such as those in [24, eq (14)] in favour of a two-fold explicit expression: plain, sum-
related expansion (63), and equally plain formulae (53), (64), (LVEφ) and (VEkφ) using Linear
Algebra to express multilinear maps.

Notation 4.1. Define φ (t) be a particular solution of (DS), K := C (φ), Ai := X(i) (φ) and
Yi := lex

(
∂i

∂ziϕ(t,φ)
)
, and following Lemma 3.10, let

Φ1 = Y1, Φk =


Zk,k
Zk−1,k

... Φk−1
Z1,k

 , k  2, (53)

be formed by the first k block rows and columns in Φ = exp� Y . Define A, Y ∈ Mat (K) as in
Lemma 3.10 with the above terms Ai, Yi as blocks.

We also denote the canonical basis on Kn by {e1, . . . , en}.

Lemma 4.2. In the hypotheses described in Notation 4.1, let k  1. Then,

Yk =
n∑

m=1

∂Yk−1
∂zm

(
eTm � Id�k−1n

)
, (54)

and for every m = 1, . . . , n,

∂

∂zm
Yk = Yk+1

(
em � Id�kn

)
, (55)

∂

∂zm
Zr,k = Zr,k+1

(
em � Id�kn

)
−
(
Y1em � Id�r−1n

)
Zr−1,k, for every r ¬ k, (56)

∂

∂zm
Ak = Ak+1

(
Y1em � Id�kn

)
. (57)

Proof. (54) is an immediate consequence of Lemma 2.12 and equation (55) which we are now
going to prove. We have, for every given ordered multi-index i = (i1, . . . , ik),

∂Yk
∂zm

ei1 � · · · � eik =
∂

∂zm

∂kϕ

∂zi1∂zi2 · · · ∂zik
= Yk+1em � ei1 � · · · � eik .

The right-hand side in (55) is equal to this expression, too, by simple application of the same
principle as in (20) in order to obtain

(
em � Id�kn

)
e�i = em � e�i. The effect of ∂

∂z on Aj is
clear as well: chain rule implies

∂Ak
∂zm

ei1�· · ·�eik =
∂

∂zm

∂X

∂zi1∂zi2 · · · ∂zik
=

n∑
r=1

∂k+1X

∂zi1∂zi2 · · · ∂zik∂zr
∂ϕr
∂zm

=
n∑
r=1

Ak+1
(
er � e�i

) ∂ϕr
∂zm

,

which is equal, again using (20) in order to obtain ∂ϕr
∂zm

er � e�i =
(
∂ϕr
∂zm

er � Id�rn
)
e�i, to

Ak+1

n∑
r=1

(
er � e�i

) ∂ϕr
∂zm

= Ak+1

n∑
r=1

(
∂ϕr
∂zm

er � e�i
)

= Ak+1

n∑
r=1

(
∂ϕr
∂zm

er � Id�rn

)
e�i,
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hence to

Ak+1

(
∂ϕ

∂zm
� Id�kn

)
e�i = Ak+1

(
Y1em � Id�kn

)
e�i.

Let us prove (57) by induction over k. Assume the equation holds for all values smaller than
k. Derivation of (38) and use of (55) and Leibniz rule (30) yields

∂

∂zm
Zr,k = S1 + S2 − S3,

where

S1 :=
1
r

k−r+1∑
j=1

(
k

j

)[
Yj+1

(
em � Id�jn

)]
� Zr−1,k−j ,

S2 :=
1
r

k−r+1∑
j=1

(
k

j

)
Yj �

[
Zr−1,k−j+1

(
em � Id�k−jn

)]
,

S3 :=
1
r

k−r+1∑
j=1

(
k

j

)
Yj �

[(
Y1em � Id�r−2n

)
Zr−2,k−j

]
.

Completion of S3 with j = k − r + 2 and application of (41) with i = 1, t = r − 2, s = k,
At = Y1em � Id�r−2n and p = r − 1 yields

S3 =
r − 1
r

(
Y1em � Id�r−1n

)
Zr−1,k −

1
r

(
k

k − r + 2

)
Yk−r+2 �

[(
Y1em � Id�r−2n

)
Zr−2,r−2

]
. (58)

The second term in the above expression can be written in the same manner as summands in
S2; indeed, using (26) and the fact Zr−2,r−2 = Y �r−21 ,(

Y1em � Id�r−2n

)
Zr−2,r−2 = Zr−1,r−1

(
em � Id�r−2n

)
,

hence the second term in (58) is

1
r

(
k

k − r + 2

)
Yk−r+2�

[(
Y1em � Id�r−2n

)
Zr−2,r−2

]
=

1
r

(
k

k − r + 2

)
Yk−r+2�

[
Zr−1,r−1

(
em � Id�r−2n

)]
,

namely the additional summand for j = k − r + 2 in S2.
A missing term 1

r

(
Y1em � Id�r−1n

)
Zr−1,k needs to be accounted for in the first summand

of (58). But it equals term j = 0 for S1. Hence, index shift puts S1, S2 and the two extra terms
from (58) together in a single sum:

∂Zr,k
∂zm

=
1
r

k−r+2∑
j=1

sj −
(
Y1em � Id�r−1n

)
Zr−1,k,

where

sj =

(
k

j − 1

)[
Yj
(
em � Id�j−1n

)]
� Zr−1,k−j+1 +

(
k

j

)
Yj �

[
Zr−1,k−j+1

(
em � Id�k−jn

)]
. (59)

Let us check sj is equal to
(k+1
j

)
(Yj � Zr−1,k+1−j)

(
em � Id�kn

)
. The columns of the latter matrix

are of the following form, defining 1m =

(
0, . . . ,

(m)
1 , . . . , 0

)
∈ Zn and whenever |k| = k:

(
k + 1
j

)
(Yj � Zr−1,k+1−j) e�k+1m =

∑
|i|=j

(
k + 1m

i

)
Yje
�i � Zr−1,k−j+1e�k+1m−i,
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and can be split into two sums depending on whether i = (i1, . . . , in) above satisfies im > 0:

∑
|p|=j−1

(
k
p

)
Yj
(
em � e�p

)
� Zr−1,k−j+1e�k−p +

∑
|q|=j

(
k
q

)
Yje
�q � Zr−1,k−j+1

(
em � e�k−q

)
,

precisely sjek as in (59). Hence

∂Zr,k
∂zm

=
1
r

k−r+2∑
j=1

(
k + 1
j

)
Yj � Zr−1,k+1−j

(
em � Id�kn

)
−
(
Y1em � Id�r−1n

)
Zr−1,k

= Zr,k+1
(
em � Id�kn

)
−
(
Y1em � Id�r−1n

)
Zr−1,k.

Proposition 4.3 (First explicit version of non-linearised VEkφ). In the above hypotheses,

Ẏ = A exp� Y ; (VEφ)

in other words, for every k  1,

d

dt
Yk =

k∑
j=1

AjZk,j =
k∑
j=1

Aj
∑

i1+···+ij=k
cki1,...,ijYi1 � Yi2 � · · · � Yij . (VEkφ)

Proof. Assume the result is true for k − 1, and let us prove it for k. That is, assume VEk−1φ

can be expressed in the form d
dtYk−1 =

∑k−1
j=1 AjZj,k−1. We recall the entries in Yk−1 are partial

derivatives of ϕ (t, z), hence d
dt ≡

∂
∂t on every entry, Schwarz Lemma applies and derivation of

(54) yields

d

dt
Yk =

n∑
m=1

∂

∂t

∂Yk−1
∂zm

(
eTm � Id�k−1n

)
=

n∑
m=1

∂

∂zm

∂Yk−1
∂t

(
eTm � Id�k−1n

)
;

induction hypothesis and Leibniz rule render d
dtYk equal to

n∑
m=1

∂

∂zm

k−1∑
p=1

ApZp,k−1

(eTm � Id�k−1n

)
=

n∑
m=1

k−1∑
p=1

∂Ap
∂zm

Zp,k−1 +Ap
∂Zp,k−1
∂zm

(eTm � Id�k−1n

)
;

equations (56) and (57) imply this is equal to S1 + S2 − S3, where

S1 =
n∑

m=1

k−1∑
p=1

Ap+1
(
Y1em � Id�pn

)
Zp,k−1

(
eTm � Id�k−1n

)
,

S2 =
n∑

m=1

k−1∑
p=1

ApZp,k
(
em � Id�k−1n

) (
eTm � Id�k−1n

)
,

S3 =
n∑

m=1

k−1∑
p=1

Ap
(
Y1em � Id�p−1n

)
Zp−1,k−1

(
eTm � Id�k−1n

)
.

Sum swapping in
∑
m

∑
p implies

S2 =
k−1∑
p=1

ApZp,k

n∑
m=1

(
em � Id�k−1n

) (
eTm � Id�k−1n

)
=

k−1∑
p=1

ApZp,k. (60)
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Simple index shift on p and (39) render S1 − S3 equal to

n∑
m=1

Ak

(
Y1em � Id�k−1n

)
Zk−1,k−1

(
eTm � Id�k−1n

)
= Ak

n∑
m=1

(Y1 � Zk−1,k−1)
(
em � Id�k−1n

)(
eTm � Id�k−1n

)
,

which is equal to

Ak (Y1 � Zk−1,k−1)
n∑

m=1

(
em � Id�k−1n

)(
eTm � Id�k−1n

)
= Ak (Y1 � Zk−1,k−1) = AkZk,k,

the missing summand in (60).

The following is but a reformulation of the above result:

Corollary 4.4 (Second explicit version of non-linearised VEkφ). Let ϕ (t,φ) = (φ1, . . . , φn)
denote the flow of (DS). Let k  1 be the order of the variational system. Given integers
N1, . . . , Nk  1, r = 1, . . . , k and m1,m2, . . . ,mr  0 such that

∑r
j=1mj = k, define:

a) SN1,...,Nk := {σ (N1, . . . , Nk) : σ ∈ Sk} and the set of partitions of {N1, . . . , Nk} in ordered
subsets of sizes m1, . . . ,mr:

Im1,...,mrN1,...,Nk
:= {(K1, . . . ,Kr) ∈ SN1,...,Nk : Ki = (Ki,1, . . . ,Ki,mi) , Ki,1 < · · · < Ki,mi} ; (61)

b) and, using abridged notation
∑
j1,...,jr to denote

∑n
j1=1

∑n
j2=1 · · ·

∑n
jr=1,

Tm1,...,mrN1,...,Nk
:=

∑
(K1,...,Kr)∈I

m1,...,mr
N1,...,Nk

∑
j1,...,jr

∂rXi

∂zj1 · · · ∂zjr
∂m1φj1
∂zK1

· · · ∂
mrφjr
∂zKr

. (62)

Then, the order-k variational equation along φ = {φ (t)} is summarised in the following:

d

dt

∂kφi
∂zN1∂zN2 · · · ∂zNk

=
k∑
r=1

∑
m1,...,mr

Tm1,...,mrN1,...,Nk
, i, N1, . . . , Nk ∈ {1, . . . , n} , (63)

indices in
∑
m1,...,mr again constrained by 0 ¬ m1 ¬ m2 ¬ · · · ¬ mr and m1 + · · ·+mr = k. �

In the previous Lemma we effectively settled the entries for lower n rows in ALVEkφ
and the

first n columns in Φk by virtue of (VEkφ). Let us now prove the result true for the rest of the
matrices.

Proposition 4.5 (Explicit version of LVEkφ). Still following Notation 4.1, the infinite system

Ẋ = ALVEφX, ALVEφ := A� exp� Idn, (LVEφ)

has Φ := exp� Y as a solution matrix. Hence, for every k  1,

a) the lower-triangular recursive Dn,k × Dn,k form for LVEkφ is Ẏ = ALVEkφ
Y , its system

matrix being obtained from the first k row and column blocks of ALVEφ:

ALVEkφ
=



( k
k−1
)
A1 � Id�k−1n( k

k−2
)
A2 � Id�k−2n

... ALVEk−1
φ(k

0

)
Ak

 , (64)
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b) and the principal fundamental matrix for LVEkφ is Φk from Φ = exp� Y in Notation 4.1.

Proof. (48) in 3.11, (VEφ) in Proposition 4.3, and item (b) in Lemma 3.6 imply

˙
exp� Y = Ẏ � exp� Y =

(
A exp� Y

)
� exp� Y =

(
A� exp� Idn

)
exp� Y.

The rest follows from Lemma 3.10.

Example 4.6. For instance, for k = 5 we have

ALVE5φ
=


5A1 � Id�4n
10A2 � Id�3n 4A1 � Id�3n
10A3 � Id�2n 6A2 � Id�2n 3A1 � Id�2n
5A4 � Idn 4A3 � Idn 3A2 � Idn 2A1 � Idn

A5 A4 A3 A2 A1


and, using any of the equivalent expressions (38), (40), the fundamental matrix having IdDn,5
as an initial condition is

Φ5 =


Y �51

10Y �31 � Y2 Y �41
10Y �21 � Y3 + 15Y1 � Y �22 6Y �21 � Y2 Y �31

10Y2 � Y3 + 5Y1 � Y4 4Y1 � Y3 + 3Y2 � Y2 3Y1 � Y2 Y �21
Y5 Y4 Y3 Y2 Y1

 ,

hence (VEkφ) for k = 5 can be expressed as

Ẏ5 = A1Y5+A2 (10Y2 � Y3 + 5Y1 � Y4)+A3
(
10Y �21 � Y3 + 15Y1 � Y �22

)
+A4

(
10Y �31 � Y2

)
+A5Y �51 .

4.2 Explicit solution and monodromy matrices for LVEkφ

Let T ⊆ P1C be the domain for time variable t in (DS) and γ ⊂ T a closed path based at point
t0 ∈ T . Analytic continuation extends to polynomial functions, hence to symmetric products
as seen in (16). Assume k = 1. If Y1 is a fundamental matrix of first-order (VEφ), analytic
continuation along γ yields

Y1 (t0)
γ−−→
cont

Y1 (t0) ·M1,γ ,

M1,γ being the monodromy matrix ([28]) of (VEφ). Assume Y1 := Φ1 is the principal fundamental
matrix for (VEφ), any other fundamental matrix Ψ1 recovered from Ψ1 = Y1Ψ1 (t0).

Having computed Y1, the non-linearised second-order equation, after Proposition 4.3, is

Ẏ2 = A1Y2 +A2 · Sym2 (Y1) . (VE2φ)

Following Proposition 4.5, linearised completion LVE2φ has principal fundamental matrix

Φ2 =

(
Y �21
Y2 Y1

)
.

A particular solution Y2 of (VE2φ) is found via usual variation of constants:

Y2 = Y1

∫
Y −11 A2Sym2 (Y1) ,
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which becomes a contour integral whenever time is taken along path γ:

Y2
γ−−→
cont

Q1,2,γ := M1,γ

∫
γ
Y −11 A2Sym2 (Y1) , (65)

hence

Idn = Φ2 (t0)
γ−−→
cont

(
Y �21 (t0)M�21,γ 0
Y1 (t0)Q1,2,γ Y1 (t0)M1,γ

)
= Φ2 (t0)

(
M�21,γ 0
Q1,2,γ M1,γ

)
,

and [γ] 7→Mi,γ is a group morphism π1 (T, t0)→ GLDn,i (C), hence for any fundamental matrix

Ψ2 (t0)
γ−−→
cont

Ψ2 (t0)

(
M�21,γ 0
Q1,2,γ M1,γ

)
;

therefore the monodromy of LVE2φ along γ will be

M2,γ :=

(
M�21,γ 0
Q1,2,γ M1,γ

)
=

(
M�21,γ 0

M1,γ
∫
γ Y
−1
1 A2Y

�2
1 M1,γ

)
(66)

Assume k = 3. The principal fundamental matrix of LVE3φ will be

Φ3 =

 Sym3 (Y1)
3Y1 � Y2 Sym2 (Y1)

Y3 Y2 Y1


and any other fundamental matrix can be expressed in the form Ψ3 = Φ3C as usual. Let us now
find a solution to

Ẏ3 = A1Y3 + 3A2Y1 � Y2 +A3Sym3 (Y1) , (67)

Same as before, a particular solution Y3 of (67) is Y3 = Y1V3 where

V̇3 = Y −11

(
3A2Y1 � Y2 +A3Sym3 (Y1)

)
,

yielding a new contour integral if τ ∈ γ:

Y3
γ−−→
cont

Q1,3,γ := M1,γ

∫
γ
Y −11

(
3A2Y1 � Y2 +A3Sym3 (Y1)

)
dτ. (68)

The remaining term of our monodromy matrix is a direct consequence of analytic continuation
as performed on 3Y1 � Y2:

0 = 3Y1 (t0)� Y2 (t0)
γ−−→
cont

3M1,γ �Q1,2,γ = 3M1,γ �
(
M1,γ

∫
γ
Y −11 A2Y

�2
1

)
Our monodromy matrix is

M3,γ :=

 M�31,γ
3M1,γ �Q1,2,γ M�21,γ

Q1,3,γ Q1,2,γ M1,γ

 =

 M�31,γ
3M1,γ �Q1,2,γ M2,γQ1,3,γ

 (69)

The pattern is clear now. Assume we have computed solutions Y1, . . . , Yk−1 and performed
continuation up to k − 1:

Φk−1
γ−−→
cont

Φk−1Mk−1,γ := Φk−1


Qk−1,k−1,γ
Qk−2,k−1,γ Qk−2,k−2,γ

...
...

. . .
Q2,k−1,γ Q2,k−2,γ · · · Q2,2,γ
Q1,k−1,γ Q1,k−2,γ · · · Q1,2,γ Q1,1,γ

 ,
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where
Qr,s,γ :=

∑
i1+···+ir=s

csi1,...,irQ1,i1,γ �Q1,i2,γ � · · · �Q1,ir,γ , s  r  2. (70)

Then, the fundamental matrix for
(
LVEkφ

)
will be expressed in the form (53), its lower left

block Yk being computable in terms of the blocks Z2,k, . . . , Zk,k above it (all of which involve
Y1, . . . , Yk−1) in virtue of (VEkφ): Yk = Y1Vk, which is continued into Q1,k,γ := M1,γ

∫
γ Vk, where

˙
Vk = Y −11

∑k
j=2AjZj,k. Upper terms Z2,k, . . . , Zk,k are continued into Q2,k, . . . , Qk,k as in (70),

s replaced by k. It is clear we have proven the following:

Lemma 4.7. The monodromy matrix Φk to LVEkφ along closed path γ is composed by the first
k row and column blocks in

exp�Qγ := exp�

 · · · 0 0 0
· · · Q1,2,γ Q1,1,γ 0
· · · 0 0 0

 , (71)

where Q1,1,γ := M1,γ, blocks above the bottom row are computed according to (70) and

Q1,s,γ := M1,γ

∫
γ
Y −11

s∑
j=2

AjQj,s,γ , 2 ¬ s ¬ k. � (72)

We assume there are two generators [γ] , [γ̃] ∈ π1 (T ; t0), yielding two different matrices:

γ ←→ Qγ , γ̃ ←→ Qγ̃

Commutativity of monodromy matrices now admits simple, compact formulation:

Proposition 4.8. Two monodromy matrices Mk,γ and Mk,γ̃ for LVEkφ commute if, and only if,
their previous blocks Mk−1,γ ,Mk−1,γ̃ commute and the additional properties hold

k∑
j=r

Qr,j,γQj,k,γ̃ =
k∑
j=r

Qr,j,γ̃Qj,k,γ , for every r = 1, . . . , k − 1,

matrices defined as in (70) and (72). �

Remarks 4.9.

a) The monodromy group of a linear system is contained in its differential Galois group
(e.g. [26]). The motivation for the above Lemma and Proposition is to capitalise on this
fact. This may in turn be a step towards future constructive incarnations of the Morales-
Ramis-Simó Theorem 1.3. The main obstacle implementing Proposition 4.8, symbolico-
computational issues aside, is the incertitude on whether Mk,γ and Mk,γ̃ belong to the

Zariski identity component Gal
(
LVEkφ

)◦
; a sufficient condition for arbitrary order is ful-

filment at order 1, M1,γ ,M1,γ̃ ∈ Gal (VEφ)◦, itself an open problem in general.

b) All disquisitions and results on the variational jet in [20, 21] are referred to the lower n-row
strip for commutators of these monodromies. More specifically:

• what is called jet therein is lower strip Y in principal fundamental matrix Φ = exp� Y
for infinite system (LVEφ), and we will use this terminology in the following Section;

• morphism properties imply monodromy matrices along path commutators are equal
to monodromy matrix commutators: Mk,γ−12 γ−11 γ2γ1

= M−1k,γ2M
−1
k,γ1

Mk,γ2Mk,γ1 ;
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• hence, the “jet commutation” properties in [20, 21] amount to lower stripQk,γ−12 γ−11 γ2γ1

(that is Y after passage along γ−12 γ−11 γ2γ1) equalling Idn. Ditto for calculations in-
volving powers of monodromy matrices used in other references.

Although [20, 21] clearly benefit from the use of automatic differentiation techniques (see
also [19]), it may be argued that expressions such as those in (LVEφ) provide for a fuller
control of the general structure of the whole variational complex when it comes to symbolic
computations, as well as a further check aid for the aforementioned techniques.

5 First integrals and higher-order variational equations

Let F : U ⊆ Cn → Cn be a holomorphic function and φ : I ⊂ C → U . Firstly, the flow ϕ (t, z)
of X admits, at least formally, Taylor expansion (1) along φ which is expressible as

ϕ (t,φ+ ξ) = φ+ Y1ξ +
1
2
Y2ξ

�2 + · · · = φ+ Jφ exp� ξ, (73)

where Jφ is the jet for flow ϕ (t, ·) along φ, displayed as Y in (37) and defined in Notation 4.1
– that is, the matrix whose �-exponential Φ is a solution matrix for (LVEφ).

Secondly, the Taylor expansion of F along φ can be written, cfr. [5, Lemma 2] and Notation
1.4, as

F (y + φ) = F (φ) +
∞∑
m=1

1
m!

〈
F (m) (φ) , Symmy

〉
. (74)

Basic scrutiny of Example 3.7(3), Lemma 3.12 and (50) trivially implies (74) can be expressed
as F (y + φ) = Mφ

F exp� y, where

Mφ
F = JφF + F (0)(φ) :=

 · · · 0 0 0
· · · F (2)(φ) F (1)(φ) F (0)(φ)
· · · 0 0 0

 ∈ Mat1,n (K) ,

i.e. JφF is the jet or horizontal strip of lex-sifted partial derivatives of F at φ.

Definition 5.1. We call

Ẋ = ALVE?φX, ALVE?φ := −
(
A� exp� Idn

)T
, (LVE?φ)

the adjoint or dual variational system of (DS) along φ. Same as in (LVEφ) and all throughout
4.1, consideration of finite subsystems, namely the lowest Dn,k × Dn,k block, leads to specific

notation
(
LVEkφ

)?
.

The following is well-known for finite systems and immediate upon derivation of equation
ΦkΦ

−1
k = IdDn,k :

Lemma 5.2.
(
Φ−1k

)T
is a principal fundamental matrix of

(
LVEkφ

)
for every k  1.

Hence,
(
Φ−1

)T , is a solution to (LVE?φ), where Φ = exp� Jφ. �

The following was proven in [24] and recounted in [5, Lemma 7], and may now be expressed
in a simple, compact fashion:

Lemma 5.3. Let F and φ be a holomorphic first integral and a non-constant solution of (DS)
respectively. Let V := JTF be the transposed jet of F along φ. Then, V is a solution of (LVE?φ).
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Proof. Let us recall formal expansion (73) and F (y) = JφF exp� y for every y ∈ Kn. Let ψ =
ϕ (t,φ+ ξ). We have, using Lemma 3.13,

F (ψ) = F
(
φ+ Jφ exp� ξ

)
= Mφ

F exp�
(
Jφ exp� ξ

)
=
(
Mφ
F exp� Jφ

)
exp� ξ,

and F (ψ) is supposed to be constant, hence applying (LVEφ) and Lemma 3.13

0 =
˙(

Mφ
F exp� Jφ

)
exp� ξ =

(
˙

Mφ
F +Mφ

FALVEφ

)
exp� Jφ exp� ξ =

(
˙

Mφ
F +Mφ

FALVEφ

)
exp� (ψ − φ) ,

hence
˙

Mφ
F +Mφ

FALVEφ = 0 leading us to the final result after transposing both sides.

Compound the jet of field X, i.e. A in Notation 4.1 and Proposition 4.5, with a 1,0 term A0,
equal to X(0) = X (φ) = φ̇:

Â :=

 · · · 0 0 0
· · · A2 A1 A0
0 0 0 0

 , Ai := X(i) (φ) ∈ Mat1,in (K) .

It is easy to check, via possibilities offered on i1 and j1 in (34), that the symmetric product of
Â with exp� Idn adds only a relatively minor addendum to ALVEφ , namely a superdiagonal of
blocks

(i
i

)
A0 � Id�in ∈ Mati+1,in , i  1, effectively rendering it block-Hessenberg:

ÂLVEφ := Â� exp� Idn = lim
k
ÂLVEkφ

,

where, isolating ALVEkφ within ÂLVEkφ
by means of a solid line,

ÂLVEk
φ

:=



A0 � Id�kn(
k
k−1
)
A1 � Id�k−1n A0 � Id�k−1n

...
...

. . .(
k
2

)
Ak−2 � Id�2n

(
k−1
2

)
Ak−3 � Id�2n · · · A0 � Id�2n(

k
1

)
Ak−1 � Idn

(
k−1
1

)
Ak−2 � Idn · · · A1 � Idn A0 � Idn

Ak Ak−1 · · · A2 A1 A0
0 0 · · · 0 0 0


(75)

=



(
k
k

)
X(0) (φ)� Id�kn(

k
k−1
)
X(1) (φ)� Id�k−1n

ÂLVEk−1
φ

(
k
k−2
)
X(2) (φ)� Id�k−2n

...(
k
0

)
X(k) (φ)� Id�0n

 .

Using the Mk–Mk notation in [5], it is immediate to check that

MT
k = Id�k−1n � φ̇ = Id�k−1n �X (φ) , (76)

and ÂLVEkφ
= MT

k−1 for every k  1. An older result using said notation is easier to prove

in this setting. Indeed, the same reasoning underlying (55) applies to row vector F (k), hence
∂
∂zm

F (k) = F (k+1)
(
em � Id�kn

)
, and following Lemma 2.12

˙
F (k) = F (k+1)

n∑
m=1

(
em � Id�kn

)
˙φm = F (k+1)

(
φ̇� Id�kn

)
= F (k+1)

(
A0 � Id�kn

)
,

implying
˙(

F (k)
)T

=
(
A0 � Id�kn

)T (
F (k+1)

)T
; placing all terms on one side, and observing Lemma

5.3 and the transpose of expression (75), we obtain:
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Proposition 5.4 ([5, Th. 12]). Let F , φ, V be defined as in Lemma 5.3. Then ÂTLVEφV = 0. �

This takes us back to the end of Section 3.2. Consider gauge transformation ([2, 5, 6, 22])
x = PX transforming linear system ξ̇ = A1ξ into equivalent

Ξ̇ = P [A1] Ξ :=
(
P−1A1P − P−1Ṗ

)
Ξ.

Using notation Yi = PXi, Jφ = PX and item (e) in Lemma 3.10, we recover the result already
seen in previous references, summarised in the extension of gauge transformations to higher
dimensions via P�k:

exp� (X) = exp�
(
P−1Jφ

)
= exp� P

−1 exp� Jφ = diag
(
· · · ,

(
P−1

)�3
,
(
P−1

)�2
, P−1, 1

)
exp� Jφ,

and very simple application of properties seen so far extends the general structure of the gauge
transformation to Ψ = exp� P

−1 exp� Jφ:

Ψ̇ = P
[
ALVEφ

]
Ψ :=

(
exp� P

−1ALVEφ exp� P −
(
P−1ṖP−1 � exp� P

−1
)

exp� P
)

Ψ. (77)

The above gauge transformation can be seen as the effect of transformation z = PZ on
the jet of (DS). Given a first integral F of the latter, we may always assume F (φ) = 0, which
implies M1,0F = 0 and, as seen in (52) or in Lemma 3.6,

FP (Z) = JF
(
exp� P

)
exp�Z,

a first integral of the transformed system Ż = P−1X (PZ) − P−1ṖZ. The jet of this formal
series is

JFP = JF
(
exp� P

)
=

 · · · 0 0 0
· · · F (0)(φ)P�3 F (2)(φ)P�2 F (1)(φ)P
· · · 0 0 0

 ∈ Mat1,n (K) ,

and applying (77), Lemmae 5.3 and 5.4, we have just proven the following:

Proposition 5.5. The transposed jet VP := JTFP in the new variables must satisfy

V̇P = −P
[
ALVEφ

]T
VP ,

(
̂

P
[
ALVEφ

]
� exp� Idn

)T
VP = 0. � (78)

The key importance in practical examples resides in ensuring the reduction matrix P sim-
plifies P

[
ALVEφ

]
enough to render (78) easier (or more convenient) to solve than its unreduced

counterparts, Lemma 5.3 and Proposition 5.4: see [3, 4] for precise information.

5.1 Work in progress

One last comment in this direction is the possible application of a Baker-Campbell-Hausdorff
[15] sorts of formula to (78) and the solution Ψ = exp� P

−1 exp� Jφ of the adjoint system of
the reduced variational system (77). The process would involve the computation of a matrix Q
such that Ψ = exp�Q = exp� P

−1 exp� Jφ, followed by inversion and transposition of exp�Q
in terms of Q, a trivial task if Q ∈ Mat1,1n but less so in general – this is where the degree of
reduction of (77) by P would most likely play a role.
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Mathématique de France, Paris, 2001.

[7] M. Barkatou, On rational solutions of systems of linear differential equations, J. Symbolic
Comput. 28 (1999), no. 4-5, 547–567.

[8] U. Bekbaev, A matrix representation of composition of polynomial maps,
arXiv:0901.3179v3 [math.AC] 22 Sep 2009.

[9] , A radius of absolute convergence for power series in many variables,
arXiv:1001.0622v1 [math.CV] 5 Jan 2010.

[10] , Matrix representations for symmetric and antisymmetric multi-linear maps
arXiv:1010.2579v1 [math.RA] 13 Oct 2010

[11] , An inversion formula for multivariate power series arXiv:1203.3834v1
[math.AG] 17 Mar 2012

[12] E. T. Bell, Exponential Numbers, Amer. Math. Monthly 41, 411-419, 1934.

[13] A. Blokhuis and J. J. Seidel, An introduction to multilinear algebra and some applications,
Philips J. Res. 39 (1984), no. 4-5, 111–120.
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