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Abstract. We give sufficient conditions to ensure the existence of symmetrical
periodic orbits for a class of Hamiltonian systems having some singularities.
The results are applied to different subproblems of the gravitational n-body
problem where singularities appear due to collisions.

1. Introduction. The motivation for this paper comes from the gravitational n-
body problem. For a given n, besides the collinear and the planar n-body problem,
that can be considered as subproblems of the spatial one, there are different invariant
problems using suitable symmetries. We are interested in subproblems that can be
reduced to two degrees of freedom. Well known examples are the collinear and the
isosceles three body problems. In the first one, the three masses move on a line. In
the isosceles problem, we consider the three masses m1,m2,m3 with m1 = m2, at
the vertices of an isosceles triangle, such that the distance between m1 and m3 is
equal to the distance between m2 and m3. With suitable initial velocities, m3 moves
along the z-axis and m1,m2 move in a symmetric way such that the configuration
is always an isosceles triangle. As usual the center of masses is placed at the origin

It is well known that in the collinear three body problem, there exists a sym-
metrical periodic orbit, called the “Schubart orbit”, such that the behaviour of the
masses in one period is as follows. Assume the masses are labeled as m1,m2,m3

from left to right, being m1 = m3, and m2 located at the origin at t = 0. The
mass m2, leaving from the origin, initially moves to the right and collides with m3,
then it goes to the left and it collides with m1. After that it returns to the origin
in a symmetric way. So, in one period, there are two binary collisions. This or-
bit was computed numerically by Schubart in [12]. Recently, Moeckel ([6]) gave a
topological proof of the existence of that orbit. For the isosceles problem, numerical
computations (see [13]) give evidence of the existence of a symmetrical “Schubart-
like” periodic orbit in the sense that in one period the equal masses in the basis
of the triangle have two binary collisions while the third mass goes up and down
on the vertical axis and passes through the origin when the other masses are at a
maximum distance.
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In this paper we study the existence of doubly symmetric “Schubart-like” periodic
orbits in a general setting that includes typical subproblems of the n-body problem.
Our goal is to show that many of these subproblems can be studied in a common
framework. We shall give sufficient conditions for the existence of “Schubart-like”
periodic orbits for a general potential. We remark that these conditions only involve
a function of one variable (the potential restricted to the configuration circle). Then,
to prove the existence of this kind of orbits in a particular problem reduces to check
that the conditions of our theorems hold.

We shall consider a Hamiltonian system having some singularities. When applied
to the n-body problem, the singularities correspond to collisions. Assuming that the
potential satisfies some hypotheses we shall prove the existence of such a “Schubart-
like” periodic orbit. This result will be applied to different subproblems of the
n-body problem, in particular, to the isosceles problem.

Let H be a classical Hamiltonian in two degrees of freedom

H(q,p) =
1

2
pTA−1p − U(q), q = (q1, q2) ∈ D ⊂ R

2, p = (p1, p2) ⊂ R
2, (1)

where A is a constant diagonal matrix, A = diag(a1, a2), a1, a2 > 0. In fact we can
think that (1) gives the motion of a particle in the plane (q1, q2) under a prescribed
potential U(q). We shall consider negative values of the energy h. So, the motion
is restricted to the so called Hill’s region defined by h + U(q) ≥ 0. The boundary
of the Hill’s region is the so called zero velocity curve. The existence of the zero
velocity curve will be guaranteed by the assumptions that we shall make on U .

Moreover we shall require some conditions on U in order that the system has
different singularities to be identified with collisions for the subproblems of the
n-body problem.

Let us introduce r2 = qTAq and s = q/r. Then sTAs = 1 and we define θ such
that

s1 =
1√
a1

cos θ, s2 =
1√
a2

sin θ. (2)

We shall assume that there exist some constants θa, θb, with 0 < θb − θa ≤ π such
that the domain D is defined as D = {(r, θ) | r > 0, θa < θ < θb}. Moreover we
assume that the potential U(q) satisfies the following assumptions.

Assumptions

A.1. U(q) is an homogeneous function of degree -1 such that U(q) = V (θ)/r where

V (θ) =
β1

sin(θb − θ)
+

β2

sin(θ − θa)
+ V̂ (θ), (3)

being β1 > 0, β2 ≥ 0 constants, where β2 = 0 if and only if θb − θa = π, and
V̂ (θ) > 0 a smooth (at least C3) bounded function in [θa, θb]. Furthermore,
the critical values of V (θ) are non degenerate, that is, if V ′(θ∗) = 0 then
V ′′(θ∗) 6= 0.

A.2. V (θ) is symmetrical with respect to θm := (θa + θb)/2.

We note that A.2 implies that β1 = β2 if θb − θa < π. Furthermore, if U(q)
satisfies the assumptions A.1 and A.2, then the Hamiltonian system has a singularity
at r = 0, corresponding to “total collision”. However, (3) implies that additional
singularities are located at θ = θa and θ = θb for any r > 0. In our examples coming
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from the n-body problem, they will correspond to collisions of k bodies where k < n.
We shall refer to them as a-collisions and b-collisions respectively.

As a first example we consider a generalization of the isosceles three body prob-
lem. We put n equal masses m1 = m2 = . . . = mn = m, equally spaced in a circle
of radius q1 centered at the origin in some horizontal plane z = z1. An additional
mass mn+1 = µ is placed on the z-axis (see Figure 1). Let us denote by q2 the
signed distance between mn+1 and the plane z = z1, such that q2 > 0 (q2 < 0) if
mn+1 is on the positive (negative) z-axis. As usual the center of masses is placed at
the origin. We can chose initial velocities in such a way that mn+1 is moving along
the z-axis and m1,m2, . . . ,mn move on half lines in such a way that at any time t,
they form a regular n-gon.

x

y

z

q1

q2

θ

V(θ)

θa=-π/2 θL θm=0 θR θb=π/2

Figure 1. Left: A schematic representation of the pyramidal
problem for n = 6. Right: The potential V (θ) for the pyrami-
dal problem for n = 3, µ = 1.2.

It is not restrictive to assume that m = 1. After some normalizations (preserving
the notation q1, q2 for the new variables), the motion of the masses is described by
a Hamiltonian (1) with A = I , q = (q1, q2) = r(cos θ, sin θ) and, the potential
U(q) = V (θ)/r, being

V (θ) =
Sn

4 cos θ
+

µ
√

1 + (n/µ) sin2 θ
, −π/2 < θ < π/2, (4)

where Sn is a constant depending on n, to be defined in (43) (see Figure 1). The
values θb = π/2 and θa = −π/2, correspond to a collision of masses m1, . . . ,mn

whilemn+1 remains in the upper and lower z-axis respectively. We call this problem,
the n-pyramidal problem. In particular, if n = 2, we get the classical planar isosceles
problem.

For a Hamiltonian system defined by (1), with a potential V satisfying A.1 and
A.2, a “Schubart-like” periodic orbit will be a symmetric periodic orbit whose be-
haviour in one period can be described as follows. At initial time, we can assume
θ = θm. In the first quarter of period, θ increases until it reaches θ = θb. In the
next quarter of period, the motion is obtained by reversing time, so, θ decreases
until it reaches θ = θm. In the second half of the period, the motion is symmetric
with respect θ = θm. That is, for the variable θ one has

θ(T/4 + t) = θ(T/4 − t), 0 ≤ t ≤ T/4,

θ(T/2 + t) = 2θm − θ(t), 0 ≤ t ≤ T/2.
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We note that in fact the orbit is determined by its behaviour in a quarter of period.
This is why we name doubly periodic these kind of orbits. A precise definition will
be given in section 3.

Our main results are the following

Theorem 1.1. Let V (θ) be given by (3), satisfying the assumptions A.1 and A.2.
Assume V (θ) has exactly three non-degenerate critical points at θ = θL, θm, θR such
that θa < θL < θm < θR < θb. Moreover we assume that the following conditions
are satisfied

3V (θR) − 2V (θm) > 0, (5)

cos(θb − θ)V̂ (θ) − sin(θb − θ)V̂ ′(θ) > 0, θR ≤ θ ≤ θb, (6)

G(θ) :=
1

θR − θm
− (θ − θm)

2

√

2(θR − θ)

θR − θm
+ 2

V ′(θ)

V (θm)
> 0, θm ≤ θ ≤ θR. (7)

Then, there exists a “Schubart-like” periodic orbit.

Theorem 1.2. Let V (θ) satisfying the assumptions A.1 and A.2, being θm the
unique critical point of V (θ). Assume that θb − θa < π, and the following condition
is satisfied

cos(θb − θ)V̂ (θ) − sin(θb − θ)V̂ ′(θ) > 0, θm ≤ θ ≤ θb. (8)

Then there exists a “Schubart-like” periodic orbit.

For the n-pyramidal problem we shall prove that if n < 473, V (θ) in (4) has
three non-degenerate critical points. Using theorem 1.1 we shall prove the following
result

Theorem 1.3. Let us consider the n-pyramidal problem for 2 ≤ n < 473. Then,
there exists a “Schubart-like” periodic orbit.

For the orbit given by Theorem 1.3, we can assume that at the initial time, all
the masses lie in the same plane with mn+1 at the center of the n-gon determined
by m1, . . .mn and q̇2(0) > 0. In the first quarter of period, mn+1 goes up along
the z axis and the polygon formed by m1, . . .mn shrinks going to collision. At the
moment of collision, one has θ = π/2, and mn+1 is at a maximum height. In the
next quarter of period, mn+1 goes down and m1, . . .mn move away and they return
to the initial configuration with q2(T/2) = 0, but now q̇2(T/2) < 0, where T denotes
the period. In the second half of period the motion repeats in a symmetrical way.

Similar results for other problems will be given in section 4.

To prove Theorems 1.1 and 1.2 we mainly use qualitative methods. A similar
approach was used in [11] to study the planar isosceles problem. Moreover, in
[11] it is proved the existence of a symbolic dynamics, which depends on the mass
parameter, by linking the behaviour of orbits passing near triple collision and near
infinity. As a consequence of that symbolic dynamics some families of periodic orbits
were obtained. In this paper we are only interested in doubly symmetric “Schubart-
like” periodic orbits. However it is also expected to get symbolic dynamics in our
examples. A key point is the behaviour of the orbits passing near total collision. In
section 2 we shall analyze them by using the well know blow up introduced in [3].
In this way the flow can be extended to the so called total collision manifold, to be
denoted as C. The behaviour of the invariant manifolds of the equilibrium points
on C, determines the dynamics near total collision. In section 3 we prove the main
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results concerning the existence of periodic orbits. Finally in section 4 we apply the
results to several concrete examples.

2. The system near total collision. We shall study the Hamiltonian system
given by (1) in a neighbourhood of total collision using the blow up coordinates
introduced by McGehee [3] (see also [1], [5]). Let r, s, v,u be defined by

r2 = qTAq, s = q/r, v = r1/2sTp, u = r1/2A−1p− vs,

where A = diag(a1, a2), a1 > 0, a2 > 0. Now we introduce θ, u

s = (A−1)1/2(cos θ, sin θ)T , u = u(A−1)1/2(− sin θ, cos θ)T .

After a scaling of time defined by dτ = r−3/2dt, the equations of the system become

dr

dτ
= rv,

dv

dτ
=

v2

2
+ u2 − V (θ),

dθ

dτ
= u, (9)

du

dτ
= −vu

2
+ V ′(θ),

where V ′(θ) = dV (θ)
dθ . The energy relation in the new variables is

hr =
1

2
(v2 + u2) − V (θ). (10)

The system (9) can be extended analytically to r = 0. The total collision manifold
defined as

C := {(v, θ, u) | θa < θ < θb, v
2 + u2 = 2V (θ)}

is invariant. A remarkable fact is that the flow on C is gradient-like with respect to

v because the second equation in (9) can be written as
dv

dτ
=
u2

2
. For any θ∗ such

that V ′(θ∗) = 0, there exist two equilibria of (9): (r, v, θ, u) = (0,±v∗, θ∗, 0) where

v∗ =
√

2V (θ∗). We shall denote these points as P±(θ∗) depending on the sign of v.
If we restrict the flow to C, the eigenvalues of the linearized system are

λ± =
1

4

(

−vP ±
√

v2
P + 16V ′′(θ∗)

)

, (11)

being vP = ±v∗. The eigenvectors are (1, λ±) in coordinates θ, u. Then, if θ∗ is a
minimum of V (θ), the corresponding equilibria on C are saddle points. If θ∗ is a
maximum of V (θ), the point is an attractor if vP = v∗, and a repellor if vP = −v∗.

To get the complete picture of the neighbourhood of the equilibria one has to
add a double eigenvalue equal to vP . We shall denote by W u(s)(P ) the unstable
(stable) invariant manifolds of the equilibrium point P . Furthermore, if P is a saddle

point, we shall denote by W u,1
C

(P ) (W u,2
C

(P )) the branch of the unstable invariant
manifold W u(P ), restricted to C, which leaves a neighbourhood of P with u > 0
(u < 0). Similar notation holds for the stable manifolds. Next table summarizes
the dimensions of the stable and unstable manifolds of the equilibrium points.
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W s
C

W u
C

W s W u

θ∗ minimum of V vP > 0 1 1 1 3
vP < 0 1 1 3 1

θ∗ maximum of V vP > 0 2 0 2 2
vP < 0 0 2 2 2

Moreover, if we fix a negative energy level, for any critical point of V , θ∗, one
has an orbit defined by θ = θ∗, u = 0. They are the so called homothetic orbits.
Clearly they belong to W s(P−(θ∗)) ∩W u(P+(θ∗)).

The system (9) is not defined for θ = θa and θ = θb. However it is possible to
regularize these singularities by introducing a new variable w and a new time s such
that

w = uF (θ), dτ = F (θ)ds,

with

F (θ) =
f(θ)
√

W (θ)
, W (θ) = f(θ)V (θ), (12)

where f(θ) = sin(θ − θa) sin(θb − θ) if 0 < θb − θa < π and f(θ) = sin(θb − θ) if
θb − θa = π. We remark that W (θ) is positive and bounded for θ ∈ [θa, θb]. The
system (9) becomes

ṙ = rvF (θ),

v̇ = F (θ)

(

2hr − v2

2

)

+
√

W (θ),

θ̇ = w, (13)

ẇ = −vw
2
F (θ) +

W ′(θ)

W (θ)

(

f(θ) − w2

2

)

+ f ′(θ)

(

1 +
f(θ)

W (θ)
(2hr − v2)

)

.

The energy relation is expressed now as

w2

2f(θ)
− 1 =

f(θ)

W (θ)

(

rh − v2

2

)

. (14)

The flow defined by (13) can be extended to θ = θa and θ = θb. We note that,
if θ = θa, θb, using (14) we obtain w = 0. Then for a fixed value of h, the flow is
defined in

M := {(r, v, θ, w) | r ≥ 0, θa ≤ θ ≤ θb, v ∈ R, w ∈ R, satisfying (14)}.
We shall keep the same notation for the collision manifold once the regularization
of a- and b-collisions was done, that is C = {(r, v, θ, w) ∈ M| r = 0}. This has the
effect of gluing lines θ = θa and θ = θb. In this way we obtain a nice topological
representation of C as a 2-sphere with four holes, that we denote as B+,−

a and B+,−
b

for θ = θa, and θ = θb respectively. The sign refers to the sign of v.
Let us consider an orbit on C. The ω-limit set can be an equilibrium point.

Otherwise, as time increases the orbit runs going up to one branch B+
a or B+

b .
Figure 2 shows the two branches of the unstable manifold of an equilibrium point
with v < 0.

On the other hand, we recover the zero velocity curve in the blow up variables
as

S0 := {(r, v, θ, w) ∈ M| v = 0, w = 0, θa < θ < θb}.
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Wu,2
C  (P)
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θ
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C  (P)
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C  (P)

Figure 2. The total collision manifold C, W u,1
C

(P ) (thick lines)

and W u,2
C

(P ) (thin lines) for the pyramidal problem with n = 4,
µ = 1. Left: The projection on the plane (θ, v). Right: The
projection on (θ,−w).

We introduce the following subsets of M
Sb := {(r, v, θ, w) | r ≥ 0, v = 0, w = 0, θ = θb, },
Sa := {(r, v, θ, w) | r ≥ 0, v = 0, w = 0, θ = θa, }.

Then S0, Sa and Sb are fixed by the symmetry

L1 : (r, v, θ, w) → (r,−v, θ,−w),

and

Sm := {(r, v, θ, w) ∈ M| v = 0, θ = θm}
is fixed by

L2 : (r, v, θ, w) → (r,−v, 2θm − θ, w).

Moreover it is easy to check that for the system (13) (and also for (9) by changing
w by u), L1 and L2 carry orbits to orbits reversing time.

2.1. Variational equations along an homothetic orbit. In order to prove the
main theorems we shall need, in section 3, some properties of the orbits passing
near an homothetic one. To this end we shall study in this section the variational
equations along these special orbits.

Let us consider an homothetic orbit with θ = θ∗, being θ∗ a non-degenerate
critical point of V (θ). As we restrict to θ near θ∗ we can use variables r, v, θ, u. By
taking u = 0, the system (9) reduces to

dr

dτ
= rv,

dv

dτ
=
v2

2
− V (θ∗)

that can be integrated easily. So, we get

v(τ) = −v∗ tanh(v∗τ/2), r(τ) =
v2
∗

2|h| cosh2(v∗τ/2)
. (15)

We remark that using this parametrization the homothetic orbit reaches v = 0 at
τ = 0. The variational equations of (9) along (15) uncouple in two systems

dξ1
dτ

= v(τ)ξ1 + r(τ)ξ2 ,
dξ2
dτ

= v(τ)ξ2, (16)

dξ3
dτ

= ξ4,
dξ4
dτ

= βξ3 −
v(τ)

2
ξ4, (17)
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where β = V ′′(θ∗). We are interested in the dynamics transversal to the homothetic
orbit. Hence, we focus our attention on the solutions of (17).

Assume that θ∗ is a maximum of V (θ) such that the eigenvalues (11) are real.
Then, restricted to C, P+(θ∗) is an attractor with λ− < λ+ < 0, and the weak
direction in C, with eigenvalue λ+, is the one given by the eigenvector (1, λ+). We
want to know how this direction evolves from a neighbourhood of P+(θ∗) until the
plane v = 0.

Let us introduce polar coordinates ξ3 = R cosψ, ξ4 = R sinψ, and ω(τ) =
tanh(v∗τ/2). Then

dψ

dτ
= β cos2 ψ +

v∗ω

2
sinψ cosψ − sin2 ψ,

dω

dτ
=

v∗
2

(1 − ω2). (18)

So, we get a planar autonomous system which is π−periodic in ψ. Hence, to study
the solutions of (18) it is sufficient to consider the domain

D := {(ψ, ω) | 0 ≤ ψ ≤ π, −1 ≤ ω ≤ 1}.
The main properties of (18) in D are the following (see Figure 3)

1. The lines ω = ±1 are invariant.
2. There are four equilibrium points in D

(ψ1, 1), (ψ2, 1), (π − ψ1,−1), (π − ψ2,−1)

where ψ1 = − arctanλ+, ψ2 = − arctanλ−, ψ1,2 ∈ (0, π/2).
3. The points (ψ1, 1), (π − ψ1,−1) are saddle points, (ψ2, 1) is an attractor and

(π − ψ2,−1) a repellor.
4. If we restrict to ψ = π, then dψ/dτ = β < 0.

We are interested in the transport, under the variational flow along the homo-
thetic orbit, of the weak attracting direction of P+(θ∗), (1, λ+), that is, tanψ(τ) →
λ+ as τ → −∞. So, we consider the unstable invariant manifold of the point
(π − ψ1,−1) and look for the intersection with ω = 0.

Lemma 2.1. Assume that θ∗ is a maximum of V , and let W u,+ be the branch of the
unstable invariant manifold of the point (π−ψ1,−1), that locally is contained in D.
Then W u,+ intersects ω = 0 at a point with coordinate ψ such that π/2 < ψ < π.

Proof. Let us define the curve

γ := {(ψ, ω) ∈ D |ω = −λ−/ tanψ, π/2 < ψ < π − ψ2}
and the following region (see Figure 3 (a))

R := {(ψ, ω) ∈ D | max{−λ−/ tanψ,−1} ≤ ω ≤ 0, π/2 ≤ ψ ≤ π}.
The inner product of the gradient vector of γ and the vector field defined by (18)
gives

E := λ− +
v∗
2

− βλ−

tan2 ψ
.

We recall that λ− < 0 and β < 0. Then, if π/2 < ψ < π − ψ2, we get tan2 ψ > λ2
−

and

E > λ− +
v∗
2

− β

λ−
=

1

λ−

(

λ2
− +

v∗
2
λ− − β

)

= 0.
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Therefore, the orbits through points of γ enter R for positive time. So, using the
property 4. we have that the only way to leave R is through ω = 0. Then W u,+

reaches ω = 0 with π/2 < ψ < π.

1,6

−1,0

−0,25

−0,75

1,7 1,9 2,1

−0,5

0,0
2,01,8 1,00,5

−1,0

−0,5

0,0

−0,75

1,5

−0,25

0,0

(a) (b)

Figure 3. The vector field (18) in the plane (ψ, ω). (a) The case θ∗
maximum of V . The equilibrium points (π−ψ1,−1), (π−ψ2,−1),
(π−ψ1 > π−ψ2) the curve γ and W u,+ are plotted. (b) The case
θ∗ minimum of V . The equilibrium (−ψ1,−1) and W u,+ are plot-
ted.

The Lemma above says that the direction (1, λ+) of P+(θ∗) rotates. This rotation
is given by the variation of the angle ψ from the equilibrium (π − ψ1,−1) up to
ω = 0 (which corresponds to v = 0). The Lemma implies that the angle remains
between π/2 and π.

Remark 1. We can apply the Lemma 2.1 to θ∗ = θm in the case that V (θ) has
three critical points when the eigenvalues (11) at P+(θm) are real. In this case the
orbits of (9) with r > 0 which approach P+(θm) in the direction (1, λ+) will leave a
neighbourhood of P+(θm) by following the homothetic orbit. The Lemma implies
that those orbits reach v = 0 without crossing θ = θm.

If θ∗ is a minimum of V (θ), then, restricted to C, P±(θ∗) are saddle points and
there are stable and unstable directions given by the eigenvectors (1, λ±) where
λ+ > 0 and λ− < 0. In this case for the system (18) we have β = V ′′(θ∗) > 0 and
there are four equilibria in D

(π + ψ1, 1), (ψ2, 1), (−ψ1,−1), (π − ψ2,−1)

where ψ1 = − arctanλ+ ∈ (−π/2, 0) and ψ2 = − arctanλ− ∈ (0, π/2).
Now, (π + ψ1, 1), (−ψ1,−1) are saddle points, (ψ2, 1) is an attractor and (π −

ψ2,−1) a repellor.

Lemma 2.2. Let θ∗ be a minimum of V , and let W u,+ be the branch of the unstable
invariant manifold of the equilibrium point (−ψ1,−1), that locally is contained in
D. Then W u,+ intersects ω = 0 at a point with coordinate ψ such that 0 < ψ < π/2.

Proof. We consider the region (see Figure 3 (b))

R := {(ψ, ω) | 0 < ψ < π/2, −1 ≤ ω ≤ 0}.



10 REGINA MARTÍNEZ

The point (−ψ1,−1) is the unique equilibrium point in R. Moreover, using (18), if

we restrict to ψ = π/2, dψ
dτ = −1, and dψ

dτ = β > 0 if ψ = 0. Then the only way to
leave R is through ω = 0.

Remark 2. The Lemma 2.2 can be applied to θ∗ = θL or θ∗ = θm when V (θ) has a
minimum at θ∗. Going from a neighbourhood of P+(θ∗) until the plane v = 0 near
the homothetic orbit, the unstable direction given by the eigenvector (1, λ+) rotates
but it remains in the first quadrant. This implies that, for points P in the local
unstable invariant manifold of P+(θ∗) with u > 0 (P ∈ W u,1

loc (P+(θ∗))), near the
homothetic orbit, forward in time, the θ, u components remain in the same region
until the orbit reaches the plane v = 0 and so, u > 0 and θ > θ∗.

We note that W s(P−(θ∗)) = L1(W
u(P+(θ∗))). So, Lemma 2.2 implies that the

manifolds W s(P−(θ∗)) and W u(P+(θ∗)) intersect transversally along the homo-
thetic orbit. In fact this result was proved in [10] in a more general setting.

3. Main results. In this section we shall prove the existence of “Schubart-like”
periodic orbits. To this end we shall prove that there exists a point in Sm such that,
forward in time, its orbit reaches Sb without crossing the section w = 0. Therefore
the orbit will be doubly symmetric with respect to the symmetries L1 and L2 (see
[2], [11]). This is the so called “Schubart-like” periodic orbit. In Figure 4 we plot
a pair of “Schubart-like” periodic orbits, using blow up coordinates, for a couple of
different potentials with three critical points (Figures 4 (a) and (b)), and, with a
unique critical point (Figures 4 (c) and (d)) .

θ

v

θ

w

(a) (b)

θ

v

θ

w

(c) (d)
Figure 4. Typical “Schubart-like” periodic orbits. We display
the projection on the (θ, v)-plane in the plots (a) and (c), and the
projection on the (θ, w)-plane in the (b) and (d) ones. The periodic
orbit of (a) and (b) corresponds to the n-pyramidal problem for
n = 3, and µ = 1.2. The one in (c) and (d) corresponds to the
2N -planar problem for N = 3 (to be introduced in section 4).
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Theorems 1.1 and 1.2 will follow after next results

Theorem 3.1. Let V (θ) be the potential defined in (3) satisfying the assumptions
A.1 and A.2 with three critical points at θL < θm < θR. Let us assume that
W u,1

C
(P−(θR)) has a b-collision with v < 0 before reaching the plane v = 0, and the

following conditions are satisfied

3V (θR) − 2V (θm) > 0, (19)

G(θ) :=
1

θR − θm
− (θ − θm)

2

√

2(θR − θ)

θR − θm
+ 2

V ′(θ)

V (θm)
> 0, θm ≤ θ ≤ θR. (20)

Then there exists a “Schubart-like” periodic orbit.

Theorem 3.2. Let V (θ) be a potential satisfying the assumptions A.1 and A.2

with a unique non-degenerate critical point, θm. Assume that W u,1
C

(P−(θm)) has
a b-collision with v < 0 before reaching the plane v = 0. Then there exists a
“Schubart-like” periodic orbit (see Figure 4 (c), (d)).

The proofs of Theorems 3.1 and 3.2 are postponed to the next subsection. We
shall see in this subsection that besides the conditions (19) and (20) (identical to

(5) and (7) in Theorem 1.1), the behaviour of W u,1
C

(P−(θR)) has a key role in the
proof of the existence of the periodic orbits. In the next Proposition one shows that
the condition (6) in Theorem 1.1 guaranties that W u,1

C
(P−(θR)) has the behaviour

required in Theorem 3.1. A similar remark holds for Theorems 3.2 and 1.2.

Proposition 1. Let V (θ) be the potential defined in (3) satisfying the assumption
A.1. Let θ∗ be a non-degenerate critical point of V (θ) such that V ′(θ) > 0 if
θ∗ < θ < θb and, θ∗ > θb − π/2 if π/2 < θb − θa ≤ π. Assume that the following
condition is satisfied

cos(θb − θ)V̂ (θ) − sin(θb − θ)V̂ ′(θ) > 0, θ ∈ [θ∗, θb]. (21)

Then W u,1
C

(P−(θ∗)) has a collision at θ = θb before reaching the plane v = 0 forward
in time.

Remark 3. The assumptions on θ∗ in Proposition 1 imply that there are not critical
points of V (θ) in the interval (θ∗, θb). On the other hand, if π/2 < θb − θa ≤ π we
assume θ∗ > θb−π/2. No restriction on θ∗ is needed in the case 0 < θb− θa ≤ π/2.

We also remark that these conditions are satisfied under the hypotheses of the
Theorems 1.1 and 1.2. Assume that V (θ) satisfies the hypotheses of Theorem 1.1.
Then using that θb − θa ≤ π we have

θb − π/2 ≤ θm < θR

and the Proposition 1 holds for θ∗ = θR. In the case of Theorem 1.2 we get
θb − π/2 < θm and so Proposition 1 holds for θ∗ = θm.

Proof. To prove the Proposition we shall use a new variable g = v√
W (θ)

with W (θ)

defined in (12), as it was introduced in [9] for the isosceles problem. Then, the
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equations (13) restricted to C are the following

ġ = 1 − g2

2
f(θ) − gw

2

W ′(θ)

W (θ)
,

θ̇ = w, (22)

ẇ = −gw
2
f(θ) + f ′(θ)(1 − f(θ)g2) +

W ′(θ)

W (θ)

(

f(θ) − w2

2

)

,

and C becomes

w2

2f(θ)
− 1 = −1

2
f(θ)g2. (23)

We remark that the flow defined by (22) is not necessarily gradient-like with respect
to g. For any critical point of V (θ), (22) has two equilibrium points. The assumption
on θ∗ implies that θ∗ is a minimum of V (θ). Let us denote by P± the equilibria of

(22) with θ = θ∗ and g = ±
√

2/f(θ∗) respectively. Then P± are saddle points. We
shall prove that W u,1(P−) has a first b-collision at some point with g < 0.

An important fact is that, using the variable g, the collision manifold (23) does
not depend explicitly on W (θ) (or, equivalently, on V (θ)) but it depends on the
function f . We remark that f(θ) = sin(θb − θ) if θb − θa = π and f(θ) = sin(θb −
θ) sin(θ−θa) otherwise. We recall that these are the suitable functions to regularize
the singularities at θa,b in both cases.

We introduce Vs(θ) :=
β1

sin(θb − θ)
and Ws(θ) = f(θ)Vs(θ), and we write

W ′(θ)

W (θ)
=
W ′
s(θ)

Ws(θ)
+ Ω(θ).

Therefore, in the case θb − θa = π (using f(θ) = sin(θb − θ)) we get

Ws(θ) = β1, Ω(θ) = − (cos(θb − θ)V̂ − sin(θb − θ)V̂ ′)

f(θ)V (θ)
. (24)

If θb − θa < π (using f(θ) = sin(θb − θ) sin(θ − θa)) one has

Ws(θ) = β1 sin(θ − θa),

Ω(θ) :=
1

V (θ)Vs(θ) sin2(θb − θ)

(

−β1β2 sin(θb − θa)

sin2(θ − θa)
− β1L(θ)

)

, (25)

L(θ) := cos(θb − θ)V̂ (θ) − sin(θb − θ)V̂ ′(θ).

If we set Ω(θ) equal to zero, (22) reduces to

ġ = 1 − g2

2
f(θ) − gw

2

W ′
s(θ)

Ws(θ)
,

θ̇ = w, (26)

ẇ = −gw
2
f(θ) + f ′(θ)(1 − f(θ)g2) +

W ′
s(θ)

Ws(θ)

(

f(θ) − w2

2

)

.

If θb − θa = π, using (24), W ′
s(θ) = 0 and (26) reduces to

ġ = 1 − g2

2
f(θ),

θ̇ = w,

ẇ = −gw
2
f(θ) + f ′(θ)(1 − f(θ)g2),



ON “SCHUBART-LIKE” PERIODIC ORBITS 13

where f(θ) = sin(θb−θ). It is easy to check that the system above has the following
orbits (see Figure 5)

g0(θ) = j
√

2 sin(θb − θ), w0(θ) = −j cos(θb − θ)
√

2 sin(θb − θ), j = ±1. (27)

In the case θb − θa < π, from (25) one has W ′
s(θ) = β1 cos(θ− θa) and (26) has the

following orbits

g0(θ)=j

√

2 sin(θb−θ)
sin(θ − θa)

, w0(θ)=−jcos(θb−θ)
√

2 sin(θb−θ) sin(θ−θa), j=±1. (28)

θ

g

θm θθs

g

θ

Figure 5. Projection on the (θ, g)-plane of orbits of system (26).
Thick lines correspond to branches with w > 0. Thinner lines
represent branches with w < 0. Left: Case θb− θa = π. The orbits
(27) and the equilibrium point at θs = θm are plotted. Middle:
Case π/2 < θb − θa < π. The projection of orbits (28) and the
equilibrium point θs are plotted. Right: Case θb − θa < π/2. The
projection of orbits (28).

We note that θs is a critical point of Vs(θ) if and only if cos(θb − θs) = 0, that
is, θs = θb − π/2. Therefore, if θb − θa ≤ π/2, the system (26) has no equilibrium
points for θa < θ < θb. Otherwise, we get two equilibria such that (g, θ, w) =

(±
√

2/f(θs), θs, 0) which are saddle points. In particular, if θb − θa = π, we obtain
θs = θm and (27) gives the unstable and stable invariant manifolds of these points
(see Figure 5). We remark that θ∗ > θm if θb − θa = π, and θ∗ > θs if π/2 <
θb − θa < π.

Let us consider now the complete system (22) that is we recover the function
Ω(θ) defined in (24). Now, (27) and (28) do not define orbits of (22) but they are
curves lying in the invariant manifold (23). Let us introduce

γ := {(g, θ, w) | θ∗ ≤ θ ≤ θb, g = g0(θ), w = w0(θ), using j = −1}
and the region

R := {(g, θ, w) | θ∗ ≤ θ ≤ θb, w ≥ 0, g ≤ g0(θ), j = −1 and (23) holds }, (29)

where g0(θ), w0(θ) are defined in (27) or (28), depending on θb − θa, with j = −1.
We note that in a small neighbourhood of P−, the branch W u,1(P−) is contained
in R. We shall see that the only way to leave the region R is through θ = θb. From
(21) and using (24) and (25) we get Ω(θ) < 0 if θ∗ ≤ θ ≤ θb. Then the vector field
defined by (22) on points of γ satisfies

ġ = 1 − g2f

2
− gw

2

W ′(θ)

W (θ)
< 1 − g2f

2
− gw

2

W ′
s(θ)

Ws(θ)
. (30)
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Therefore the orbits of (22) enter R through γ. However if θ∗ < θ < θb and
w = 0, from (23) we obtain f(θ)g2 = 2. Then the last equation in (22) reduces to

ẇ = f(θ)V ′(θ)/V (θ) > 0. Moreover if θ = θ∗ and w > 0 we have θ̇ > 0. Then
we conclude that the only way to leave the region R is through θ = θb. Moreover,
using the uniqueness of solutions of (22), W u,1(P−) reaches θ = θb at some point
with g < 0, that is with v < 0.

Remark 4. Assume that V (θ) has three non degenerate critical points at θ =
θL, θm, θR, with θL < θm < θR. The Proposition 1 holds by taking θ∗ = θR. We
have seen in the proof of the Proposition that on C, for points in the region R
defined in (29), the orbit exits R forward in time through θ = θb with g < 0. In
particular, this occurs for points on C with θ = θR, w > 0 and

g ≤ g0(θR) (31)

where g0(θR) = −
√

2 sin(θb − θR) in the case θb − θa = π and,

g0(θR) = −
√

2 sin(θb − θR)/ sin(θR − θa)

if θb − θa < π. If we recover the variable v, the condition (31) becomes

v ≤
√

W (θR)g0(θR) = −
√

2V (θR) sin(θb − θR) (32)

in both cases θb − θa = π and θb − θa < π.

Remark 5. The Proposition 1 holds also for non symmetrical potentials V .

Proof of Theorem 1.1. It follows from Proposition 1 for θ∗ = θR and Theorem 3.1.

Proof of Theorem 1.2. It follows from Proposition 1 for θ∗ = θm and Theorem
3.2.

3.1. Proof of Theorem 3.1. From now on if P is a point in M, ϕ(s;P ) denotes
the solution of (13) such that ϕ(0;P ) = P . In a similar way ϕ(τ ;P ) denotes a
solution of (9) when the variables r, v, θ, u are used.

We shall use the following notation for different sections in M. Pm, PR and
Pb will denote the sets of points in M such that θ = θm, θ = θR and θ = θb
respectively. V0 will denote the set of points in M such that v = 0. The flow
is transversal to Pm and PR except at the equilibria and at the points of the
homothetic orbits. Moreover, it is transversal to V0 except at the points of the
curve defined by u2 = V (θ) when variables (r, v, θ, u) are used, or equivalently
w2 = f(θ) after the regularization of a and b-collisions. In fact, on V0, using (9) we
obtain that dv

dτ < 0 if u2 < V (θ) and, dv
dτ > 0 otherwise.

Given two sections P1 and P2, we denote by T1,2 : P1 7→ P2 the Poincaré map
defined in the following way: if P ∈ P1 then T1,2(P ) = ϕ(τ̂ ;P ) where τ̂ = min{τ >
0 |ϕ(τ ;P ) ∈ P2} if it exists. As usual, in this case we name ϕ(τ̂ ;P ) the first
intersection of the orbit with P2.

To prove Theorem 3.1 we shall take an arc of points Γ ⊂ Sm with w > 0 and
we shall prove that forward in time, Γ remains in the region w > 0 until it reaches
Pb, in such a way that Γ̂ := TR,b ◦ Tm,R(Γ) is a continuous curve in Pb which has

endpoints with v > 0 and v < 0 respectively. Therefore, Γ̂ has a point with v = 0
giving rise to the symmetrical periodic orbit. In this way we obtain that there exists
a point Pop ∈ Sm and sop > 0 such that ϕ(sop;Pop) ∈ Sb, and ϕ(s;Pop) is contained
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in the region w > 0 for any 0 < s < sop. Then, ϕ(s;Pop) is periodic with period, in
s, equal to 4sop.

To define the arc Γ we shall study the behaviour ofW u,1
loc (P+(θL)) for θL ≤ θ ≤ θm

and u > 0. This is done in the Lemma 3.3.
In the Lemma 3.4 we study the Poincaré map Tm,R. We remark that going from

Pm to PR, θm < θ < θR, and the orbits in the region u > 0 can go to u < 0.
However we shall see in that Lemma that for points in Γ, the orbit can not cross
u = 0 before reaching PR. To prove that we shall construct a two dimensional
surface Σ̂ which prevents that points of Γ cross u = 0 with v ≤ 0. The condition
(20) will be used to prove this fact when v > 0.

The passage from PR to Pb will be obtained after Lemma 3.5. In fact this Lemma
has been stated in a general setting in order to be also used in the proof of Theorem
3.2.

Lemma 3.3. Let V (θ) be a potential satisfying the assumptions A.1 and A.2, with
three critical points at θL < θm < θR and assume that (19) is satisfied.

Then, for any point P ∈W u,1
loc (P+(θL)) with r > 0, there exists

τ(P ) := min{τ > 0 |ϕ(τ ;P ) ∈ V0 ∪ Pm}

and u(τ) > 0 for any 0 < τ ≤ τ(P ).

Moreover, let K be the first intersection of W u,1
loc (P+(θL)) with V0 ∪ Pm. Then

K is a continuous curve and for any point P ∈ K with θ 6= θL, the coordinate u
satisfies

0 < u <
√

V (θR) <
√

V (θm). (33)

Proof. The proof is based in the same idea used in [11] for the isosceles problem.
To prove the lemma we only need to consider orbits in the region θL ≤ θ ≤ θm. So,
in order to simplify the computations we shall use the variables (r, v, θ, u). Let be

R1 := {(r, v, θ, u) ∈ M| v ≥ 0, θL ≤ θ ≤ θm, u ≥ 0}.

First we prove that the only way that an orbit with r > 0 can exit R1 is through
V0 ∪ Pm.

It is clear that an orbit in R1 with r > 0 can not exit this region through
r = 0 because the total collision manifold C is invariant. Also, it can not leave R1

through the lines θ = θL or θ = θm on u = 0, unless the orbit be an homothetic one.
Moreover, if we restrict to u = 0, from (9) we get du

dτ = V ′(θ) > 0 for θL < θ < θm
and so, the orbits enter to R1. On the other hand, if θ = θL and u > 0, the
third equation in (9) gives dθ

dτ = u > 0 and the orbits can not exit R1 through this
boundary. Therefore, the only way to exit R1 is through V0 ∪ Pm.

Now we shall see that for any point P ∈ R1 with u > 0, r > 0, the orbit ϕ(τ ;P )
eventually leaves R1 for positive time. Indeed, as far as the orbit remains in R1,
dθ
dτ = u > 0 and so, θ(τ) is a bounded increasing function. Assume that ϕ(τ ;P )
remains in R1 for any positive time τ . Then there exists lim θ(τ) as τ → ∞,
and u(τ) → 0 as τ → ∞. This implies that ϕ(τ ;P ) should approach u = 0,
θ = θm. However, ϕ(τ ;P ) can not tend to the equilibrium P+(θm) because the
stable invariant manifold of that point is contained in C. Therefore, ϕ(τ ;P ) should
approach the homothetic orbit at θ = θm which leaves R1 at some positive time.
Then the same is true for ϕ(τ ;P ) and we get a contradiction.
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The local analysis near P+(θL) shows that W u,1
loc (P+(θL)) ⊂ R1. All the orbits

of W u,1
loc (P+(θL)) with r > 0 eventually leave R1 through V0 ∪ Pm defining some

curve in V0 ∪ Pm. Let us look at the endpoints of that curve.
One of the endpoints is the intersection point, HL, of the homothetic orbit at

θ = θL with V0. Using the Remark 2, W u,1
loc (P+(θL)) near the homothetic one,

intersect transversally V0 at some point close to HL with θ > θL and u > 0 (see
also Figure 6).

On the other hand, the flow on C is gradient-like with respect to v so, the ω−limit
set of W u,1

C
(P+(θL)) is the equilibrium point P+(θm). We know that, restricted to

C, P+(θm) is an attractor. If the eigenvalues (11) are complex, the orbit tends to

P+(θm) spiraling and then, W u,1
C

(P+(θL)) intersect transversally Pm at some point

with v > 0 and u > 0. The same behaviour occurs for nearby orbits ofW u,1
loc (P+(θL))

with r > 0. If the eigenvalues are real, W u,1
C

(P+(θL)) can enter P+(θm) without
crossing the section Pm. In this case, from Remark 1 we have that nearby orbits in
W u,1
loc (P+(θL)) with r > 0 can leave the region R1 through the section V0.
We recall that the flow is transversal to V0 except at the points of the curve

u2 = V (θ). The inequalities (33) imply that K has no points in that curve and so,

in R1, W
u,1
loc (P+(θL)) intersect V0 transversally.

Now we shall prove (33). From (9) we have that in R1

du

dθ
≤ V ′(θ)

u

if u > 0. By integrating this inequality on the orbits of W u,1(P+(θL)) until they
reach V0 ∪ Pm, we obtain

u2(θ) ≤ 2

∫ θ

θL

V ′(θ)dθ ≤ 2

∫ θm

θL

V ′(θ)dθ = 2(V (θm) − V (θR))

where V (θR) = V (θL) has been used. The condition (19) implies that

u2(θ) < V (θR) < V (θ) < V (θm)

for any θL < θ ≤ θm.

After Lemma 3.3, if P ∈ W u,1
loc (P+(θL)) with r > 0, we have that ϕ(τ ;P ) ⊂ R1

for any τ ≤ τ(P ). So we can define (see Figure 6)

Σ := {ϕ(τ ;P ) |P ∈W u,1
loc (P+(θL)), τ ≤ τ(P )}. (34)

Assume that Σ intersects Pm (in particular this is true if the eigenvalues at
P+(θm) are complex). Then, adding the equilibrium P+(θL) to Σ we get a 2-

dimensional surface, Σ̂, which separates R1 in two components (see Figure 6). We

shall denote by D the point of Σ̂ ∩ Sm with a larger value of u, that is, D is the
nearest point to P0 =: C ∩ Sm in Σ̂ ∩ Sm. We note that the point D belongs to
W u,1(P+(θL)).

If the eigenvalues λ± at P+(θm) are real, then, for the flow restricted to C, P+(θm)

is an attracting node. Therefore it can occur that W u,1
C

(P+(θL)) tends to P+(θm)
without crossing Pm (see Remark 1) and the orbits of W u,1(P+(θL)) with r > 0

exit the region R1 through V0. In this case we define Σ̂ as the union of Σ, the two
equilibria P+(θm), P+(θL) and the set of points {(r, v, θ, u) ∈ M|v > 0, θ = θm, u =

0}. As before, Σ̂ separates R1 in two components but W u,1(P+(θL))∩V0 is a curve
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which approaches the point θ = θm, u = 0, so, we define D as that endpoint. We
remark that in this case, the point D belongs to the homothetic orbit.

Let Γ be the arc of points in Sm between P0 and P1, being P1 a point sufficiently
close to D in the segment DP0 (see Figure 6).

θ

u

v

P0

D
ΓθL

P+(θL)

P+(θm)

Σ̂

C

C

C

Wu,1
C

u=(V(θ))1/2

Figure 6. The surface Σ̂ for the n-pyramidal problem with n = 5,
µ = 5. The branch of the unstable manifold W u,1

C
(P+(θL)) has

been plotted until it reaches, spiraling, a small neighbourhood of
the equilibrium point P+(θm). Also the curve u =

√

V (θ) on V0

and the arc Γ ⊂ Sm have been plotted.

Lemma 3.4. Assume the hypotheses of Lemma 3.3 are satisfied and (20) holds.
Let us consider the Poincaré map Tm,R : Pm 7→ PR. Then, Tm,R(Γ) is a continuous
arc with endpoints in v < 0 and v > 0 respectively.

Proof. Let us introduce the following regions

R := {(r, v, θ, u) ∈ M| θm ≤ θ ≤ θR, u ≥ 0},
R2 := {(r, v, θ, u) ∈ R | v ≤ 0}.

Using the symmetry, W s,1(P−(θR)) = L2(W
u,1(P+(θL))). Moreover, L2(Σ̂) sepa-

rates R2 in two components, one of them containing the arc Γ. We shall prove that
for any point P in Γ, the orbit exits R2 through PR with v < 0 if P is sufficiently
close to D, and v > 0 if P is near P0.

Let P be a point in Γ such that the orbit enters to R2 for τ > 0 small enough.
This holds, for instance, if P is close to D. By construction, the orbit can not tend
to the equilibrium P−(θR) without leaving R2. Using similar arguments to the ones
in the proof of Lemma above, we have that the orbit of the point P must leave
the region R2. However, as far as the orbit of P remains in R2, the surface L2(Σ̂)
prevents the orbit to reach the section u = 0 with θm ≤ θ ≤ θR. In fact, for P ∈ Γ,
the only way to exit R2 is through PR or through V0. In the second case, this is
only possible at points of V0 with v(τ) increasing. Using (9) we have that the points
of V0 with positive u, such that dv/dτ ≥ 0 satisfy

√

V (θ) ≤ u ≤
√

2V (θ), θm ≤ θ < θR. (35)
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Claim 1: The points on V0 satisfying (35) leave the region R through PR with
u > 0.

Assume that the claim is true. Then for any point P ∈ Γ, there exists

τR(P ) = min{τ > 0 |ϕ(τ ;P ) ∈ PR} > 0

such that ϕ(τ ;P ) = (r(τ), v(τ), θ(τ), u(τ)) ∈ R and u(τ) > 0 for all 0 ≤ τ ≤ τR(P ).
The flow is gradient-like with respect to v on C. Then for points P ∈ Γ sufficiently

close to P0 ∈ C, we obtain v(τR(P )) > 0.
Assume that the point D belongs to W u,1(P+(θL)). Using the symmetry, we

have that D belongs to W s,1(P−(θR)). Therefore, if P ∈ Γ is sufficiently close to D,
ϕ(τ ;P ) enters R2 and follows ϕ(τ ;D) until it reaches a neighbourhood of P−(θR).
Using the local behaviour of the flow near the equilibrium P−(θR), we conclude that
ϕ(τ ;P ) reaches PR at some point with θ near θR and u > 0.

In the case that D belongs to the homothetic orbit, for a point P ∈ Γ sufficiently
close to D, ϕ(τ ;P ) enters R2, passes near the equilibrium point P−(θm) and it
should leave a neighbourhood of that equilibrium by following closely some orbit on
C with u > 0. Now it is sufficient to prove that for orbits on C going from a small
neighbourhood of P−(θm) until PR with u > 0, the point on PR has negative v. In
fact, we shall prove that the value of v at PR satisfies the following inequality

v ≤ −
√

2V (θm) cos ((θR − θm)/2) < 0. (36)

To prove (36) we restrict (9) to C. Using (10) dv
dτ = u2

2 and then, as far as u > 0

dv

dθ
=
u

2
=

1

2

√

2

(

V (θ) − v2

2

)

.

If θm ≤ θ ≤ θR, then V (θ) ≤ V (θm) and

dv

dθ
≤ 1

2

√

2V (θm)

(

1 − v2

2V (θm)

)

.

By integration from θ = θm until θ = θR on some orbit emanating from the point
P−(θm) where v = −

√

2V (θm) we get easily (36).
Using the continuity of solutions with respect to initial conditions and the transver-

sality of the flow on PR ∩ {u > 0}, we have that Tm,R(Γ) is a continuous arc in PR
with endpoints in v < 0 and v > 0 respectively.

To prove the claim 1 we consider a point Pi = (ri, vi, θi, ui) ∈ V0 with θm ≤ θi <
θR, vi = 0 and

√

V (θi) ≤ ui ≤
√

2V (θi). (37)

First we obtain a bound of v(τ) for the orbit of Pi. We recall that h < 0. Then,
from (9) and (10)

dv

dτ
=
u2

2
+ rh ≤ u2

2
.

Hence, if u > 0 we get

dv

dθ
≤ u

2
≤ 1

2

√

2V (θ) ≤ 1

2

√

2V (θm), θm ≤ θ ≤ θR,

where (10) has been used to derive u ≤
√

2V (θ). By integrating this inequality we
get

v(θ) ≤ (θ − θi)

2

√

2V (θm) ≤ (θ − θm)

2

√

2V (θm).
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Then, as far as u(τ) > 0, the inequality above holds and then the last equation in
(9) gives

du

dτ
= −vu

2
+ V ′(θ) ≥ −u(θ − θm)

√

2V (θm)

4
+ V ′(θ).

Let us consider the autonomous planar vector field

dθ

dτ
= u, (38)

du

dτ
= −u(θ − θm)

√

2V (θm)

4
+ V ′(θ),

in the region

D := {(θ, u) | θm ≤ θ ≤ θR, u ≥ 0}.
In order to prove the claim 1 it is sufficient to prove that the orbit of (38) through
a point (θi, ui) ∈ D with ui satisfying (37), leaves D through θ = θR with u > 0.

The system (38) has two equilibria in D at the points (θm, 0), (θR, 0). The lin-
earization of the vector field at (θR, 0) has eigenvalues

µ± =

√

2V (θm)

8

(

−(θR − θm) ±
√

(θR − θm)2 + 32
V ′′(θR)

V (θm)

)

with eigenvectors (1, µ±). As V ′′(θR) > 0 we have µ+ > 0, µ− < 0 and so, (θR, 0)
is a saddle point. Let us consider in D the curve, γ, defined by

u = f̂(θ) :=

√

V (θm)

θR − θm
(θR − θ), θm ≤ θ ≤ θR

and the region

D1 := {(θ, u) ∈ D | 0 ≤ u ≤ f̂(θ)}.
Claim 2: The curve u =

√

V (θ) for θm ≤ θ ≤ θR has a unique intersection point
with γ at θ = θm (see Figure 7).

theta

u

Figure 7. The vector field (38) and the curve γ in D for the
pyramidal problem with n = 3, µ = 0.5. We plot θ, θm ≤ θ ≤ θR,
in the horizontal axis and the coordinate u, 0 ≤ u ≤

√

2V (θm), in

the vertical one. The graphs of u =
√

V (θ) and u =
√

2V (θ) are
plotted using grey (magenta) lines.
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To prove claim 2, we only need to check that f̂(θ) <
√

V (θ) for θm < θ < θR, or
equivalently,

V (θm)

θR − θm
<

V (θ)

θR − θ
. (39)

We introduce the function g(θ) = V (θ)/(θR − θ). Then

dg

dθ
=

h(θ)

(θR − θ)2
, where h(θ) = V ′(θ)(θR − θ) + V (θ).

We write (20) in the following way

G(θ) =
1

V (θm)

(

V (θm)

θR − θm
+ 2V ′(θ)

)

− (θ − θm)

2

√

2(θR − θ)

θR − θm
> 0, θm ≤ θ ≤ θR.

Then
V (θm)

θR − θm
+ 2V ′(θ) > 0.

Using this inequality and (19) we obtain

h(θ) > −V (θm)

2

(θR − θ)

(θR − θm)
+ V (θ) ≥ −V (θm)

2
+ V (θ) >

V (θR)

4
> 0 .

Therefore, g(θ) is an increasing function if θm < θ < θR and (39) holds and claim
2 is proved.

On the points of γ, the scalar product of the vector field (38) and the gradient
vector of γ gives

−uf̂ ′(θ) − u(θ − θm)

√

2V (θm)

4
+ V ′(θ)

Now it is easy to check that the expression above is equal to

V (θm)

2
G(θ) ,

where G(θ) is defined in (20). If G(θ) > 0, then the points of γ are exit points of D1

for the flow defined by (38). Therefore for points (θi, ui) satisfying (37), the orbit
leaves D through θ = θR with u ≥ 0. However the local stable invariant manifold
of the equilibrium point (θR, 0) is contained in the region D1. Therefore the orbit
of a point (θi, ui) does not tend to the equilibrium and so, at the intersection with
θ = θR, one has u > 0. This ends the proof of claim 1 and, hence, of Lemma 3.4.

Remark 6. If point D belongs to W s,1(P−(θR)), by taking P ∈ Γ sufficiently close
toD, Tm,R(Γ) has an endpoint close enough to P−(θR) with u > 0 and ϕ(τ ;P ) leaves

a neighbourhood of P−(θR) by following W u,1
C

(P−(θR)). Using the Proposition 1
with θ∗ = θR, ϕ(τ ;P ) intersects Pb at some point with v < 0. Otherwise we
have seen that ϕ(τ ;P ) reaches PR with v satisfying (36). A simple computation
shows that in this case, also (32) holds. Using Remark 4, we conclude that ϕ(τ ;P )
intersects Pb at some point with v < 0.

Lemma 3.5. Let V (θ) be a potential satisfying the assumption A.1, and θ∗ a non-
degenerate critical point of V such that V ′(θ) > 0 if θ∗ < θ < θb. Let P =
(ri, vi, θi, wi) ∈ M be a point with θi = θ∗, wi > 0. Then, there exists

ŝ := min{s > 0 |ϕ(s;P ) ∈ Pb}
such that w(s) > 0 for all 0 ≤ s < ŝ, where ϕ(s;P ) = (r(s), v(s), θ(s), w(s)).
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Proof. Let be

R := {(r, v, θ, w) ∈ M| θ∗ ≤ θ ≤ θb, w ≥ 0}.
Using (13) we have that θ(s) is an increasing function as far as w > 0. So, ϕ(s;P ) ∈
int(R) for s > 0 small enough.

It is clear that θ∗ is a minimum of V (θ). Then the equilibria P±(θ∗) are saddle
points. The local study of that equilibria shows that ϕ(s;P ) can not reach total
collision without going out of R. In fact, the only points in R such that the orbit
goes to total collision without leaving R, are the ones of the homothetic orbit with

θ = θ∗. On the other hand, if w = 0 we get from (13) that ẇ = f(θ)
V ′(θ)

V (θ)
> 0 for

θ∗ < θ < θb. Then the only way to leave the region R is through Pb.
We shall use coordinates r ≥ 0, v ∈ R in Pb. Notice that Pb is not bounded.

Using (13) on θ = θb we have θ̇ = 0 and θ̈ = ẇ = f ′(θb) < 0, that is, if θ(ŝ) = θb
for some finite ŝ > 0, then θ(s) has a maximum at s = ŝ. In this case, it is easy to
prove that v(ŝ) and r(ŝ) are bounded. In fact, using (13) we obtain

v̇ ≤
√

W (θ) ≤ k0, θ∗ ≤ θ ≤ θb

for some positive constant k0, and v(s) ≤ v(0) + k0s. Then v(ŝ) <∞. Moreover

ṙ

r
= vF (θ) ≤ k1(v(0) + k0s),

where k1 is a bound of F (θ). Then

r(ŝ) ≤ r(0) exp

(

k1v(0)ŝ+
k1k0

2
ŝ2
)

<∞.

To prove the existence of ŝ we shall proceed by contradiction. Assume that
ϕ(s;P ) ∈ int(R) for any s > 0. In particular, w(s) > 0 for all s > 0 and θ(s) is a
bounded increasing function. Then

lim
s→∞

θ(s) = θb and lim
s→∞

θ̇(s) = 0.

First, we shall prove that v(s) has an upper bound, that is, there exists a constant
vM > 0 such that

v(s) ≤ vM , for all s > 0. (40)

Using (13) and (14) we write

v̇ = hr
f(θ)
√

W (θ)
+ (hr − v2

2
)
f(θ)
√

W (θ)
+
√

W (θ) = hr
f(θ)
√

W (θ)
+ w2

√

W (θ)

2f(θ)
. (41)

We recall that h < 0 and hence

v̇ ≤ w2

√

W (θ)

2f(θ)

and as far as w > 0

dv

dθ
≤ w

√

W (θ)

2f(θ)
≤
√

V (θ)

2
(42)

where the last inequality follows using that w ≤
√

2f(θ) (see (14)) and the definition
of W (θ). Using the assumption A.1 we can write

V (θ) ≤ c

sin(θb − θ)
, θ∗ < θ < θb,
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for some positive constant c. Now we integrate (42)

v(θ) ≤ vi +

∫ θ

θi

√

V (θ)

2
dθ.

The integral in the inequality above is convergent as θ goes to θb. Therefore v(s)
has an upper bound.

Let us introduce ρ := |h|r + v2/2. Using (13), (41) and (40) we obtain

ρ̇ = vw2

√

W (θ)

2f(θ)
≤ vMw

2

√

W (θ)

2f(θ)
.

Then from w ≤
√

2f(θ) we obtain

dρ

dθ
≤ vMw

√

W (θ)

2f(θ)
≤ vM

√

V (θ)

2
.

As before, this inequality implies that ρ(s) has an upper bound and then, r(s)
and |v(s)| are bounded, that is, there exist constants rM > 0, vM > 0 such that
r(s) ≤ rM and |v(s)| ≤ vM for all s ≥ 0.

To get a contradiction we write

v̇ = F (θ)

(

2hr − v2

2

)

+
√

W (θ) ≥ F (θ)

(

2hrM − v2
M

2

)

+
√

W (θ).

Let c0 be a constant such that
√

W (θ) ≥ c0 > 0, for θ∗ ≤ θ ≤ θb. We recall that
F is a continuous function of θ and F (θb) = 0. Therefore if s > s0, s0 sufficiently
large we have

v̇ ≥ −ε+
√

W (θ) ≥ −ε+ c0 >
c0
2
> 0

for some ε > 0 small enough. Using the inequality above we obtain

v(s) > v(s0) +
c0
2

(s− s0)

which is a contradiction with the fact that |v(s)| ≤ vM for all s ≥ 0.

Remark 7. As additional information we note that if an orbit ϕ(s;P ) goes to Pb,
the variable ρ introduced in the proof of the Lemma 3.5 is bounded. Using (14) we
can write

w2 = 2f(θ)

(

1− ρ
f(θ)

W (θ)

)

.

Then, if z := θb− θ > 0 is small enough we have that w = k0
√
z(1+O(z)) for some

constant k0 > 0. Therefore ż = −w = −k0
√
z(1 + O(z)). The integration of this

equation shows easily that the time s to reach Pb is finite.

To finish the proof of Theorem 3.1 we consider the arc of points Γ defined af-
ter Lemma 3.3. Using Lemma 3.4, Tm,R(Γ) is a continuous arc in PR which has
endpoints Tm,R(P0) ∈ C and Tm,R(P1) with v > 0 and v < 0 respectively. Using
Lemma 3.5 with θ∗ = θR we have that the orbit through Tm,R(P0) intersects Pb at
some point with v > 0. Furthermore, the orbit through Tm,R(P1) intersects Pb at
some point with v < 0 (see Remark 6). Therefore TR,b ◦ Tm,R(Γ) is a continuous
arc in Pb which has endpoints with v > 0 and v < 0 respectively, so, it has a point
with v = 0.
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3.2. Proof of Theorem 3.2. The proof follows the same steps as the one of
Theorem 3.1. However we only need to consider the Poincaré map Tm,b from sec-
tion Pm to Pb. We introduce the points, P0 ∈ C, with coordinates (r, v, θ, w) =

(0, 0, θm,
√

2f(θm)), and P1 ∈ M, (r, v, θ, w) = (r1, 0, θm, w1) with w1 > 0 and
small enough. We shall denote by Γ the arc of points in Sm between P0 and P1.
It is clear that the orbit through P0 is contained in C and it intersects Pb at some
point with v > 0. However, if P1 is sufficiently close to the homothetic orbit, then
ϕ(s;P1) enters a small neighbourhood of the equilibrium P−(θm) and it leaves it

following W u,1
C

(P−(θm)). The Proposition 1 implies that ϕ(s;P1) intersects Pb with
v < 0. Using Lemma 3.5 with θ∗ = θm we have that Tm,R(Γ) is a continuous arc
in Pb which has a point with v = 0. In this way we obtain the existence of a
symmetrical“Schubart-like” periodic orbit in this case.

4. Some examples. In this section we study some examples of subproblems of the
n-body problem which reduce to two degrees of freedom. For all of them the center
of masses is assumed to be fixed at the origin. Moreover we only consider negative
energy levels. In fact, due to the homogeneity, it is enough to consider h = −1.

4.1. The n-pyramidal problem. Let us consider the n-pyramidal problem de-
fined in the Introduction. Using coordinates q1, q2, the motion of the masses is
described by the following Hamiltonian system

H(q,p) =
1

2
pTA−1p− U(q), A = diag(1, µ/(n+ µ)),

U(q1, q2) =
Sn
4q1

+
µ

√

q21 + q22
, Sn =

n
∑

k=2

1

sin lk
, (43)

where lk = (k − 1)π/n. The variables r, θ introduced in (2) are related to q1, q2 in
the following way

q1 = r cos θ, q2 =

√

n+ µ

µ
r sin θ.

Then the potential (43) is equal to V (q) = V (θ)/r where

V (θ) =
Sn

4 cos θ
+

µ
√

1 + (n/µ) sin2 θ
, −π/2 < θ < π/2, (44)

It is clear that V satisfies the assumptions A.1 and A.2 with θa = −π/2 and
θb = π/2.

Lemma 4.1. 1. If 2 ≤ n < 473, then V (θ) has 3 non-degenerate critical points,
a maximum at θ = 0 and two minima at ±θR, where

tan2 θR =
µ

n+ µ

(

(

4n

Sn

)2/3

− 1

)

. (45)

2. If n ≥ 473, then V (θ) has a unique non-degenerate critical point at θ = 0.

Proof. It is easy to check that the solutions of V ′(θ) = 0 in (−π/2, π/2) are θ = 0
and ±θR, with θR satisfying (45). So, we only need to prove that Sn/(4n) < 1 if
n < 473 and, Sn/(4n) > 1 if n ≥ 473. In [7] (Lemma 1) an asymptotic expansion for
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n Sn/4n F (n)
2 0.12500000000000000 0.12499630655842160
3 0.19245008972987526 0.19244992012126177
4 0.23927669529663688 0.23927667710807045
5 0.27527638409423470 0.27527638093453236
15 0.45089776896032865 0.45089776895981726
25 0.53226020510510395 0.53226020510509538
35 0.58582851712693898 0.58582851712693856
45 0.62583348544207622 0.62583348544207633

Table 1. Some values of Sn/4n and F (n)

Sn is given. Moreover the authors give the following formula which has a relative
error less than 10−16 for n ≥ 47

Sn
4

≈ n

2π

(

γ + log
2n

π

)

− π

144n
+

7π3

86400n3
− 31π5

7620480n5
:= Ãn, (46)

where γ ≈ 0.5772156649... is the Euler-Mascheroni constant. In fact, (46) gives
a sufficient good approximation even for n ≥ 2. Table 1 shows Sn

4n numerically

computed in front of F (n) := Ãn

n for some values of n, 2 ≤ n ≤ 45.
It is easy to check that F (n) is an increasing function of n. Moreover F (472) =

0.9999086486.... and F (473) = 1.000245484.... In particular Sn/(4n) 6= 1 for any
integer n ≥ 2. This proves the existence of the critical points in both cases 1. and
2. Moreover they are non-degenerate

V ′′(0) = n

(

Sn
4n

− 1

)

6= 0, V ′′(θR) =
3(n+ µ)Sn

4(µ+ n sin2 θR)

sin2 θR
cos3 θR

6= 0.

After Lemma 4.1, if 2 ≤ n < 473 there exist three equilibrium on C with v < 0

L−(v, θ, w) = (−
√

2V (θR),−θR, 0), M−(v, θ, w) = (−
√

2V (θR), θR, 0),

E−(v, θ, w) = (−
√

2V (0), 0, 0),

and the symmetrical ones L+,M+, E+ with v > 0. If n ≥ 473 only E−,+ remains.
We note that E−,+ corresponds to a planar configuration with n masses in the
vertices of a regular polygon and the mass µ in the center. Moreover, at M−,+ the
masses are in a pyramidal configuration where the basis is a regular n-gon. At L−,+

the pyramid is inverted.

Proof of Theorem 1.3. We shall prove that (5), (6) and (7) are satisfied.
A simple computation shows that

cos(θb − θ)V̂ (θ) − sin(θb − θ)V̂ ′(θ) =
(n+ µ) sin θ

(1 + (n/µ) sin2 θ)3/2
> 0, θ ∈ [θR, π/2].

Then (6) holds.
To prove (5), we write

V (θ) = n

(

zn
cos θ

+
δ

(1 + δ−1 sin2 θ)1/2

)

(47)
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where zn = Sn/(4n) and δ = µ/n. Then

3V (θR) − 2V (0) = nF(zn; δ)

where

F(z; δ) := 3
√

h(z; δ)(z + δz1/3) − 2z − 2δ, h(z; δ) =
1 + δz−2/3

1 + δ
.

We assume 2 ≤ n < 473, then 1/8 ≤ zn < 1 (see the proof of Lemma 4.1). A simple
computation shows that F(1/8; δ) > 0 for any δ > 0. Furthermore,

∂F(z; δ)

∂z
= −2 + 3

√

h(z; δ) > 0, if z < 1, δ > 0.

Then, F(zn; δ) > 0 for any 1/8 ≤ zn < 1 and δ > 0, and (5) is satisfied for
2 ≤ n < 473.

Now we prove (7). The function G in (7) reduces to

G(θ; δ) =
1

θR
− θ√

2

√

1 − θ

θR
+ 2

V ′(θ)

V (0)
.

Notice that G depends on the parameters δ and n. However, to our purposes, it is
sufficient to remark the dependence on δ. For 0 ≤ θ ≤ θR we have

θ√
2

√

1 − θ

θR
≤ c1θR

where c1 =
√

2/3/3.
Moreover, if 0 ≤ θ ≤ θR,

V ′(θ) = n sin θ

(

zn
cos2 θ

− cos θ

(1 + δ−1 sin2 θ)3/2

)

≥ − n sin θ cos θ

(1 + δ−1 sin2 θ)3/2
.

From (45) and using zn ≥ 1/8,

tan2 θR =
δ

1 + δ
(z−2/3
n − 1) ≤ 3δ

1 + δ
.

Then

θR ≤ g(δ), g(δ) = arctan

√

3δ

1 + δ
and we get

G(θ; δ)≥ 1

θR
−c1θR−

2

(zn+δ)

sin θ cos θ

(1+δ−1 sin2θ)3/2
≥ 1

θR
−c1θR−

16

(1+8δ)

sin θ cos θ

(1+δ−1 sin2 θ)3/2
.

Let be

h1(θ; δ) :=
16 sin θ cos θ

(1 + δ−1 sin2 θ)3/2
.

We introduce y = sin2 θ and then we can write

h1(θ; δ) = 16
√

h2(y; δ), h2(y; δ) =
y(1 − y)

(1 + δ−1y)3
.

Let us fix δ > 0. For 0 ≤ y ≤ 1, h2(y; δ) has an absolute maximum at y = y1(δ) =

δ + 1 −
√

(δ + 1)2 − δ. Then for any 0 ≤ θ ≤ θR

h1(θ; δ)

1 + 8δ
≤ 16

1 + 8δ

√

h2(y1(δ); δ) := H(δ).

It is not difficult to check that H(0) = 0, limδ→∞H(δ) = 0 and H(δ) has a maxi-

mum at δ = (−2 +
√

22)/24.
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Now we can reduce to study a function of one variable

G(θ; δ) ≥ R(δ) −H(δ),

where R(δ) = 1/g(δ) − c1g(δ) is a positive decreasing function of δ for δ > 0. The
function R(δ) − H(δ) has an absolute minimum at δmin = 0.4992352186751065...
(computed using an ad hoc program in PARI) and

G(θ; δ) ≥ R(δmin) −H(δmin) > 0.

This ends the proof.

4.2. The 2N-Planar problem. Let us consider n = 2N , N ≥ 2, equal masses
m1 = m2 = . . . = mn = m, in the plane. Using polar coordinates (r, θ), let Lj
j = 1, . . . , n be the half line which start at the origin defined by θ = θj where
θ1 = π/n and θj = θj−1 +π/N , j = 2, . . . , n. We put a first mass m1 in the infinite
sector bounded by Ln and L1. A second mass m2 is placed in the second sector,
bounded by L1 and L2, and symmetric to m1 with respect to L1. In a similar way
we put m3 in the third sector symmetrical to m2 with respect to L2. We proceed in
the same way for the rest of the masses (see Figure 8). By taking suitable velocities
the masses preserve these symmetries for all t and so it is sufficient to know the
motion of the first mass to describe the motion of the system. We note that in
this particular configuration, besides the total collision at the origin, m1 can only
collide with m2 and mn on the half lines L1 and Ln respectively. In fact, taking
into account all the masses, they correspond to N simultaneous binary collisions.

m1

m2

m3m4

m5

m6

m7
m8 m9

m10

q1

q2

L1

L3

L5

L7 L9

Figure 8. A schematic representation of the case n = 2N for N = 5.

It is not restrictive to assume m = 1. Then the motion of m1 is described by a
Hamiltonian system defined by

H(q,p) =
1

2
pTp− U(q), U(q1, q2) = 2

n
∑

k=2

1

r1k
(48)

where q = (q1, q2) is the position of m1, r1k is the distance from m1 to mk. We note
that the singularities due to binary collisions correspond to r12 = 0 and r1n = 0
respectively.

Using polar coordinates q1 = r cos θ, q2 = r sin θ, for −π/n ≤ θ ≤ π/n we get

r1k = 2r sin lk, if k is odd,

r1k = 2r sin(lk − θ), if k is even.
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where lk = π(k − 1)/n, and

V (θ) = SN +

N
∑

j=1

1

sin(l2j − θ)

=
1

sin(π/n− θ)
+

1

sin(π/n+ θ)
+ SN +

N−1
∑

j=2

1

sin(l2j − θ)
, (49)

where SN =

N
∑

j=2

1

sin(π(j − 1)/N)
. In the case N = 2, SN = 1 and we take the

sum in (49) equal to zero. We note that sin(l2j − θ) > 0 for −π/n ≤ θ ≤ π/n, if
2 ≤ j ≤ N − 1.

Lemma 4.2. For any n ≥ 4, V (θ) defined in (49) satisfies the assumptions A.1 and
A.2 and it has a unique non-degenerate critical point in the interval (−π/n, π/n),
at θ = 0.

Proof. Using the following identity we obtain easily that V (θ) is an even function

N−1
∑

j=2

1

sin(l2j − θ)
=

[N/2]
∑

j=2

Fj(θ) +
is

cos θ

where is = 0 if N is even, is = 1 if N is odd and,

Fj(θ) =
1

sin(l2j − θ)
+

1

sin(l2j + θ)
.

Then V ′(0) = 0. Furthermore, we can write

V ′(θ) =

N
∑

j=1

cos(l2j − θ)

sin2(l2j − θ)
, V ′′(θ) =

N
∑

j=1

1 + cos2(l2j − θ)

sin3(l2j − θ)
.

Then V ′′(θ) > 0 for any θ ∈ (−π/n, π/n) and so, V (θ) has a unique non-degenerate
critical point at θ = 0.

We note that if θ = 0, the masses are at the vertices of a regular polygon.

Theorem 4.3. For any n ≥ 4, n = 2N , the 2N -Planar problem has a “Schubart-
like” periodic orbit.

Proof. We only need to check the condition (8) and apply Theorem 1.2.
If n ≥ 6, we have

V̂ (θ) = SN +

N−1
∑

j=2

1

sin(l2j − θ)
.

Then we get

cos(θb − θ)V̂ (θ) − sin(θb − θ)V̂ ′(θ) = SN cos(π/n− θ) +
N−1
∑

j=2

sin(l2j − π/n)

sin2(l2j − θ)
> 0,

for θ ∈ [0, π/n], and (8) is satisfied. If n = 4, V̂ (θ) = SN , and (8) reduces to
SN cos(π/n− θ) > 0 for any θ ∈ [0, π/n].
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We remark that the existence of the “Schubart-like” periodic orbit for n = 4 was
proved in [8] using a different method. In the same paper, the authors also compute
numerically that orbit for other values of n.

4.3. The double polygonal problem. We consider n-equal masses m1 = m2 =
. . . = mn = m equally spaced in a circle of radius q1 centered at the origin, and
n additional masses µ1 = µ2 = . . . = µn = m equally spaced in a second circle
of radius q2 but rotated an angle π/n with respect to the masses m1, . . . ,mn. We
shall assume that each mass is moving on a straight line in such a way that the
configuration of the masses is always equal to two regular polygons (see Figure 9).
So, the 2n masses can collapse at the origin giving rise to total collision. However,
the n masses on a polygon can collide while the others remain at a positive distance
of the origin. So, two additional singularities are found depending on the polygon
which collapses to the origin.

m

m

q1

q2

Figure 9. The masses for the double polygonal problem with n = 6.

It is not restrictive to take m = 1. Moreover with a suitable change of time, the
motion is described by the Hamiltonian

H(q,p) =
1

2
pTp − U(q),

U(q) =
Sn
4

(

1

q1
+

1

q2

)

+

n
∑

k=1

1

rk
, (50)

where rk = (q21 + q22 − 2q1q2ck)
1/2, ck := cos l2k, lk = (k − 1)π/n and Sn defined in

(43). Let be q1 = r cos θ, q2 = r sin θ. Then U(q) = V (θ)/r where

V (θ)=
Sn
4

(

1

cos θ
+

1

sin θ

)

+
n
∑

k=1

1

σk
, σk=(1 − ck sin(2θ))1/2, 0<θ<π/2. (51)

We note that θ = 0 corresponds to a n-collision of the masses µi and θ = π/2 to a
n-collision of the masses mi. Trivially V (θ) satisfies the assumption A.2.

Lemma 4.4. If n = 2, the potential (51) has a unique non-degenerate critical point
at θm = π/4. Otherwise, V (θ) has three non-degenerate critical points θL < θm <
θR, where θR ∈ (π/4, arctan(2)).

Proof. The case n = 2 is trivial because V (θ) reduces to

V (θ) =
1

4 cos θ
+

1

4 sin θ
+ 2. (52)
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Let us consider n ≥ 3. Then

V ′(θ)=
Sn

4 cos θ

(

tan θ− 1

tan2 θ

)

+cos(2θ)

n
∑

k=1

ck
σ3
k

= Sn cos(2θ)(−h(θ) + gn(θ)), (53)

where

h(θ) :=
1 + sin θ cos θ

sin2(2θ)(sin θ + cos θ)
, gn(θ) :=

1

Sn

n
∑

k=1

ck
σ3
k

.

Using the symmetry, it is sufficient to prove that V (θ) has a unique critical point
in the interval (π/4, π/2). Clearly V ′(π/4) = 0. Other critical points must satisfy
the following equation

gn(θ) = h(θ). (54)

For π/4 < θ < π/2, h(θ) is a positive increasing function. Furthermore we can write

gn(θ) =
1

Sn

(

2Bn(θ) −
is

(1 + sin(2θ))3/2

)

, Bn(θ) :=

[n/2]
∑

k=1

ck
σ3
k

, (55)

where is = 0 is n is even and, is = 1 if n is odd. By derivation with respect to θ

B′

n(θ) = 3 cos(2θ)

[n/2]
∑

k=1

c2k
σ5
k

< 0, g′n(θ) < 0, π/4 < θ < π/2

and gn(π/2) = 1
Sn

∑n
k=1 ck = 0. Notice that Bn(π/2) = 0 if n is even and Bn(π/2) =

1/2 if n is odd. Then, gn and Bn are positive decreasing functions of θ. We conclude
that (54) has at most one solution in the interval (π/4, π/2).

If n = 3, we compute directly from (55)

g3(π/4) =
21

8
√

6
>

3

2
√

2
= h(π/4).

For n ≥ 4, it is not difficult to prove that

Bn(θ) =

[n/4]
∑

k=1

ckF (ck, θ), if n is even,

Bn(θ) >

[n/4]
∑

k=1

ckF (ck, θ), if n is odd,

where

F (x, θ) :=
1

(1 − x sin(2θ))3/2
− 1

(1 + x sin(2θ))3/2
.

Another useful expression for F is the following

F (x, θ) =
2u(3 + u2)

(1 − u2)3/2[(1 + u))3/2 + (1 − u))3/2]
, u := x sin(2θ). (56)

We note that F (x, θ) > 0 if π/4 < θ < π/2, and 0 < x ≤ 1. Let us fix π/4 < θ <
π/2. It is easy to check that d

dxF (x, θ) > 0 if 0 ≤ x ≤ 1. Moreover 0 < ck ≤ c1 =
cos(π/n) < 1, if 1 ≤ k ≤ [n/4]. Then

Bn(θ) > c1F (c1, θ)

and

gn(θ) >
1

Sn

(

2c1F (c1, θ) −
1

(1 + sin(2θ))3/2

)
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Then using (56) and taking into account that c1 ≥ 1/
√

(2) for n ≥ 4 we get

gn(π/4) >
1

Sn2
√

2

(

n34c21(3 + c21)

π3
− 1

)

≥ 1

Sn2
√

2

(

7n3

π3
− 1

)

> h(π/4).

Therefore, for any n ≥ 3, (54) has a unique solution θR ∈ (π/4, π/2).
Using (53)

V ′′(θ) = −2Sn sin(2θ)[−h(θ) + gn(θ)] + Sn cos(2θ)[−h′(θ) + g′n(θ)].

Then

V ′′(π/4)=−2Sn[−h(π/4)+gn(π/4)]<0, V ′′(θR)=Sn cos(2θR)[−h′(θR)+g′n(θR)]>0

and the critical points are non-degenerate.
Let us fix θ ∈ (π/4, π/2). For 1 ≤ k ≤ [n/2], we have |ck| ≤ c1 cos(π/n). Then

gn(θ) ≤
2

Sn
Bn(θ) ≤

n

Sn

c1
σ3

1

.

Using (46), we obtain gn(θ) → 0 as n→ ∞. Therefore, θR → π/4 as n→ ∞.

In order to prove that θR < arctan(2) =: θ̂, it is not difficult, using rough

estimates, to obtain that h(θ̂) > gn(θ̂) for n large enough. For small values of n we
check numerically the condition. In the Figure 10 we plot θR for small values of n.
The maximum corresponds to n = 7.
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 0.95

 0.98

 1.01

 5  10  15

θR

log(n)

Figure 10. Left: The critical point θR for 4 ≤ n ≤ 100. Right:
Values of θR as a function of log(n) for the two n-gons problem.
Numerical exploration for large n give evidence that θR − π/4 be-

haves as O
(

1/
√

log(n)
)

.

Theorem 4.5. For n = 2, the double polygonal problem has a “Schubart-like”
periodic orbit.

Proof. We apply Theorem 1.2. Using (52) and taking V̂ (θ) = 2 the left hand part
of (8) reduces to 2 sin θ and then (8) is trivially satisfied.

For n ≥ 3 one has to check the conditions (5), (6) and (7) in order to apply the
Theorem 1.1.
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The condition (6) is trivially satisfied for any n ≥ 3. In fact, using that V̂ (θ) =
∑n
k=1 1/σk, we obtain

sin θV̂ (θ) − cos θV̂ ′(θ) =
n
∑

k=1

1

σ3
k

(sin θ − ck cos θ).

If θ ∈ [π/4, π/2] then

sin θ − ck cos θ ≥ cos θ(1 − ck) > 0

and the condition (6) holds for any n ≥ 3.
The inequalities (5) and (7) are more cumbersome. Using rough estimates one can

prove that they hold for small values of n. However, we shall illustrate numerically
the behaviour of the quantities involved in (5) and (7).

First, (5) becomes

3V (θR) − 2V (θm)

= Sn

(

3

4 cos θR
+

3

4 sin θR
−
√

2

)

+

n
∑

k=1

(

3

(1−ck sin(2θR))1/2
− 2

(1 − ck)1/2

)

= Sn

(

3

4 cos θR
+

3

4 sin θR
−
√

2

)

+2

[n/2]
∑

k=1

(

3

(1−ck sin(2θR))1/2
− 2

(1−ck)1/2
)

+is

(

3

(1 + sin(2θR))1/2
−
√

2

)

,

where is = 0 if n is even and is = 1 if n is odd. After the proof of Lemma 4.4
we know that θR goes to π/4 as n goes to infinity. Then, if n is large enough, (5)
is satisfied. In Figure 11 we plot the left hand side of (5) for 3 ≤ n ≤ 50. The
numerics suggests that it is a positive increasing function of n.
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Figure 11. The left hand side of (5) for 3 ≤ n ≤ 50 .

The condition (7) becomes

G(θ) =
1

θR − π/4
− (θ − π/4)

2

√

2(θR − θ)

θR − π/4
+ 2

V ′(θ)

V (π/4)
> 0.

Plots of the function G(θ) for different values of n are given in the Figure 12. They
show that G has a minimum value in the interval (π/4, θR) which decreases as n
increases. For n ≥ 34 the minimum of G becomes negative and then the condition
(7) is not satisfied.
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Figure 12. Left: The function G for n = 4, . . . , 10. The minima
decrease when n increases. The values of the function are large
(> 26.91821) for n = 3 and, hence, they are not shown. Right:
The function G for n = 32, 33, 34 and 35. For n ≤ 33 the minimum
is positive.

However we recall that Theorem 1.1 gives sufficient conditions for the existence
of a “Schubart-like” periodic orbit. It can happen that the positivity of G(θ) in
(7) is not a necessary condition. As an illustration of this fact we have computed
without any problem periodic orbits of the double polygonal problem for values of
n up to 1000. Figure 13 shows the (θ, w) and (θ, v) projections of the these periodic
orbits for n = 10, 100 and 1000.
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Figure 13. “Schubart-like” periodic orbits in the two n-gons case.
From left to right the values of n are 10, 100 and 1000. Note that
the plots are quite similar in the (θ, w) variables, both in shape
and size, while in (θ, v) the shape is similar but the vertical scale
changes when increasing n.
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