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Abstract

Non-integrability criteria, based on differential Galois theory and requiring the
use of higher order variational equations (VEy), are applied to prove the non-
integrability of the Swinging Atwood’s Machine for values of the parameter which
can not be decided using first order variational equations (VE;).

1 Introduction and statement of results

The Swinging Atwood’s Machine (SAM for short) is a two-degrees-of-freedom Hamilto-
nian system derived from the well-known simple Atwood’s machine. We refer to [11]
and references therein for a derivation of the equations, even in the case that the effect
of pulleys is considered. Historical and experimental results can be found in the same
reference.

The Hamiltonian of the system is
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where p is a mass ratio, g > 1 in the domain of interest. Other physical parameters have
been normalised by taking suitable units.

We are interested on the integrability or non-integrability of (1). In general, we can
consider a Hamiltonian system
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where H is assumed to be real analytic on some domain Q of R?**. We consider the
extension to a complex domain Q of C2n.

If 2 = {q,p} € C2" we consider solutions z(¢) with t € D c C. The image of D by x
is a Riemann surface R.

We shall consider integrability in the Liouville-Arnol’d sense:

Definition 1. A Hamiltonian system is integrable if and only if there exist n first integrals
f1s fo, -+, fu independent almost everywhere and in involution. Usually it is taken f, = H.
In general the functions fi, fa, ..., fn will be considered meromorphic in a neighbourhood
of a given solution x(t).



The standing problem is to find necessary conditions for integrability, or, equivalently,
sufficient conditions for non-integrability.

Integrable Hamiltonian systems have, in some sense, well ordered dynamics, while non-
integrable ones are associated to some amount of chaos. Eventually the chaotic dynamics
can be confined to the complex phase space without showing up in the real one (see, e.g.
[7]). A chaotic behaviour implies lack of predictability, i.e., a sensitive dependence to
initial conditions.

Several criteria follow from the so-called Morales-Ramis theory, which includes classical
results by Ziglin [13]. The results summarized here are contained in [4, 5]. See also [3] for
all the necessary background and technical details.

Consider the m-dimensional ODE & = f(z) and let x(¢) be a solution. The first
variational equations (VE;) along xz(t) are given by £A4 = Df(z(t))A and we consider
the initial condition A(ty) = Id, where xq = x(to) is a regular point of f and Df. If we
take closed paths on the Riemann surface R with base point g, one can associate to each
path the corresponding monodromy matrix, that is the matrix A at the end of the path.
The set of all these matrices form the monodromy group.

More generally, we can consider any linear ODE

© A1) = BOA®). 2
We assume that the entries of B belong to some field of functions K. Let & ; be the
elements of a fundamental matrix of (2). Let L be the extension K(&11,&12, -, &mm)s
which is trivially a differential field. Consider the Galois group G =Gal(L | K), that is
the group of automorphisms of L leaving the basic field K invariant. It is an algebraic
group. Then the following result is obtained.

Theorem 1. (Morales-Ramis) Under the assumptions above if a Hamiltonian is integrable
in a neighbourhood of R then the identity component G° of the Galois group of the first
order variational equations VE, along R is commutative.

The identity component is taken using Zariski’s topology. We also recall that the
Galois group coincides with the Zariski closure of the monodromy group.

A delicate example of application of Theorem 1 can be seen in [8]. See also [6] for
a long, but not exhaustive, list of examples where this theorem has been used to detect
non-integrability.

Concerning SAM problem the following result was proved in [2] using Ziglin’s theory

Theorem 2. The Hamiltonian system defined by (1) is non-integrable if p # p, where

Mpzler’pGN,pZ?-

Furthermore the case p = 2, p, = 3 is known to be integrable [12].

In the “degenerate” cases u = 1, p > 2 the variational equations VE; give nothing
against integrability. Note that the value of j, tends to 1 as p — oco. On the other
hand, for these exceptional cases a Poincaré section reveals that the system is far from
integrable (see Figure 1). For uy = 3 the integrable structure is clearly seen. Other values,
like g = 3/2, g = 5/4, us = 15/13, ug = 21/19, display large chaotic zones. However,
when p, is close to 1, as happens for p large, the only hint on non-integrability comes
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from the presence of tiny chains of islands. For instance, for p = 62, u, = 1953/1951
additional explorations, see Figure 2, show the existence of chains of islands of periods
31,32 and 62 very close to the boundary of the domain (compared to the size of the
domain). In all cases one has taken a level of energy H = 1/(2(1 + u)) so that an orbit
on the invariant plane § = py = 0 passing through (r,p,) = (0, 1) is the boundary of the
domain of definition of the Poincaré map.

Figure 1: Poincaré sections of (1) through 6 = 0 (mod 27), py > 0 on the energy level
H =1/(2(1 + u)). Due to the symmetry only the upper part is shown in (r,p,). From
left to right and top to bottom p = p, for p = 2,3,4,5, 6,62 are shown.

To produce the plots in Figure 1 one has taken a few initial points on a grid in (7, p,)
and 1000 Poincaré iterates have been computed from each one of them.

The fact that G° is commutative for u = p,, p > 2 and, hence, there is nothing against
integrability, suggests to try to detect non-integrability at higher order. The theoretical
support is given as follows (see [9]).
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Figure 2: Magnification of a small domain of Figure 1, with more initial points, to show
the existence of islands of periods 31,32 and 62.

Let ¢(t,x9) be the solution of & = f(z(t)) with ¢(tg,x9) = xo. We consider as
fundamental solutions of the k-th order variational equations, VE;, based on xy, the
string of maps (¢ (1), 0@ (t),..., ™ (t)) such that

o(t,y0) = o(t, o) + oM () (yo — 1) 4+ .. + W () (yo — 20)" + . . .,

i.e., the coefficients of the k-jet. Obviously (!)(¢) is a solution of the first order VE=VE}.
The o) (t) satisfy linear non-homogeneous ODE. The initial conditions are

oV =1d, oWt =0 for k> 1. (3)

See [6] for explicit versions in terms of components. For further use we introduce the nota-
tion X, Tiks Tiskykas Lisk ko kss - - - 10T the components of # and the first, second, third, ...

derivatives with respect to the initial conditions. Divided by the corresponding factorial

> (p)a
3:13181% :

they give the components of p(t), eV (t), p@(t), p®)(t),. ... For instance z4.1 33 =

Note that once ¢ is available, all p*) are obtained by quadratures.

The equation for ¢*), k > 1 depends in a nonlinear way of o) for j < k, but, for any
k, the equations for the entries of the ¢ can be made linear by introducing additional
variables (products of entries) which also satisfy linear ODE (see [6]).

Hence, one can introduce the k-th order Galois group G}, as the Galois group associated
to the linearized version of the variational equations up to order k. We can also introduce
the k-th order monodromy as the monodromy obtained with the linearized version of the
VEj. The information it gives is equivalent to the information obtained by transporting
the jet up to order k. That is, starting at the point xy + £ at time ¢y one has

p(t;ito, zo + &) = Z a;(t)€ + O(|¢]**),

0<ljI<k

where j is a multiindex and the a; coefficients are m-dimensional vectors if = is m-
dimensional. The jet Zogmgk a;(t1)€? when we return to zo moving along a closed path
7 from ¢y to 1 with v(t9) = y(t1) = xo, can be seen as the k-th order monodromy along ~y
with base point g, to be denoted as M,'. The composition of jets like M, using different
paths v forms a group, to be denoted simply as M}, which is a natural generalisation of
the monodromy group. Again the Zariski closure of My is Gy,.

Then, for any k£ > 1 the following extension of Theorem 1 holds:
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Theorem 3. (/6]) Under the assumptions above if the Hamiltonian is integrable in a
neighbourhood of R then for any k > 1 the identity component (Gy)° of Gy is commutative.

This result gives rise to non-integrability criteria to all orders. Note that these criteria
can depend strongly on the reference solution z(¢) and on the paths v taken on it. In
general it is not true that if these necessary criteria are satisfied for all k € N the system
is integrable. The problem of finding sufficient conditions for integrability remains open.

The main purpose of that paper is to use Theorem 3 to prove
Theorem 4. The degenerated cases p = i, p > 2 of the SAM are non-integrable.

The result will follow from the non-commutativity of (G3)° that it is proved using
suitable paths along a solution on the invariant plane 8 = py = 0.

As explained in [9] the first step will be to take two closed paths, that in present case
are denoted as v, and 7_, such that they are in (G1)°. As it will be seen in the proof
of Theorem 4 the VE; on the plane § = py = 0 decouple in the (r,p,) and the (6, py)
variables. As the subproblem in (r,p,) variables is integrable one should only take care
of VE; in the (0, py) variables. Lemma 1 in [9] gives sufficient conditions to have M]"
and M7? in (G;)°. Then it follows that M;" and M;” are in (Gy)° (eventually one has to
replace the Riemann surface R by a “subsurface” R') and the lack of commutativity for
k = 3 is enough to prove Theorem 4. See Lemma 2 in [9] for additional details.

We can interpret that result in terms of jet transport. After transporting along I'
the initial variations £ we recover, & at first order, zero at second order and something
different from zero at third order. In fact, we do not claim that the second order terms are
zero, despite we have a strong evidence by explicit symbolic computation for low values
of p (up to several thousands). But there are definitely, third order terms different from
Zero.

Additional examples on the use of higher order variational equations to detect non-
integrability and methodological aspects to deal with these problems can be found in [9].

While a big effort has been undertaken to compute the monodromy for many linear
differential equations, the authors are not aware of a similar effort concerning higher order
monodromy, that is, the properties of the transport of jets of arbitrary order.

In general no explicit solution is known for an arbitrary Hamiltonian. But assume we
are able to find, numerically, two paths ¢, s, such that MI’D 7 are in (G;)°, and we can

compute M;fj,j = 1,2 along them. Then
(M M) = (M) o (M) ™ o M o M, (4)

should be trivial, that is, equal to the identity to order k if the system is integrable. If it
does not hold and we can rigorously prove that this is still true when we account for the
numerical errors, then non-integrability is proved.

A systematic approach to check numerically for non-integrability in an efficient way,
based on Theorem 3, illustrations concerning the SAM and a variety of additional exam-
ples can be found in [10]. This numerical information has been very useful to suggest the
approach to be taken for the proof of Theorem 4.



2 Sketch of the proof of Theorem 4 and first steps.

Guided by numerical results (see [10]) we confine our theoretical study to third order
variational equations. It will be proved that this is enough to detect non-integrability.

We shall use the following notation. If v, are two closed paths on a Riemann surface
R then ¢ o v will denote the path obtained by following first v and then . Similar for
a larger number of paths. A path traveled in reversed direction will be denoted as ~~!.
Furthermore we shall also use the same notation, say v, for a closed path on a Riemann
surface R lying on the (complex) phase space and for the corresponding temporal arc in
the domain of definition D of x(t). The meaning will be clear from the context.

The proof proceeds in several steps:

e Selection of a simple, regular, solution to (1) which has two singularities associated
to the variational equations.

e Second step is the selection of a suitable path I', which is obtained from the compo-
sition of simple paths v, and v_ around the singularities. More concretely, we shall
take I' = y-' o~y 'oy_o~,. Then the commutator (M} )~' o (M) Lo M} o M]*,
of the form (4), is simply represented as M, .

This is a key point because other choices can lead to more involved computations.

One checks that M]* and M;~ are in (G1)°. From this it follows that M,* and
M~ are in (Gy,)° for a suitable Riemann surface, see [9].

e The solutions of the variational equations for the different orders (equivalent to the
coefficients of the jet) satisfy symmetry relations as a function of ¢ and some of
them are identically zero. The transport of the third order jet along ', M, can
be expressed from the coefficients of the transport of the jet along v, and several
additional integrals. For the computation of integrals along paths in complex time
one has to take into account that, if the paths start, say, at ¢ = 0 they can return to
the same value of ¢ with a different determination of the function to be integrated.
This is examined in detail.

e At that point we claim that some of the coefficients in M, " are zero and some are
different from zero. Then a part of M} can be computed and this is enough to prove
Theorem 4.

Let us write the Hamiltonian vector field for (1) in the form & = f(z) and let
(21, 22, x3,24) = (r,0,pr,p9) and f;, i = 1,...,4 be the components of f.
A simple, regular, solution to (1) on the invariant plane xo = x4 = 0, is given by

SHES

B =)= (1-12), 5()=00)=0, z5(t)=p.(O)=(1-p)t, #:()=ps(t)=0, (5)
where a = p? + p — 2 and from now on we shall use simply p instead of y, but keeping in
mind that only the values corresponding to integer p are considered. Note that r(£1) = 0.
The solution (5) is somewhat arbitrary, because the initial value of the radius x;(0),
assuming z3(0) = 0, can be any positive number. If we scale z;(0) by v then r(+v) = 0.
The derivatives of variable i of orders (ji, 2, j3, j4) With respect to (xy, z2, x3,x4) scale



like p"(D=21=53=31 where n(1) = 2,n(2) = 0,n(3) = 1,n(4) = 3. The effect of the scaling
will be seen in [10], where it is used to enhance the numerical difficulties.
The solutions of the first variational equations associated to the variables (z1,x3) are

also elementary
(omi oo )= (o 7). ©

On the other hand, the first variational equations associated to the (zs,x4) variables are

i < x2;2<t) 1’2;4@) ) — ( 0 T_2<t> ) < x2;2(t) x2;4(t) ) (7)
dt \ wap(t) 4a(t) —r(t) 0 Tap(t) waa(t) )
All the other entries of the VE; are identically zero.

Typically we shall use a notation like x;.x, (t), Zik, £, (t), - . . to denote the functions as
depending on ¢, while @k, , ik, &y, - . - Will denote the values at the end of a path which
will be clear from the context.

While (5) is not introducing any singularity, (7) does at r = 0. Note that the solution
through r = 0 is non-physical. But this is irrelevant for the proof on the non-integrability.

This fact suggests to take the following paths: Let v, (resp. 7_) be a closed path
starting, in the temporal domain, at ¢ = 0 and going around ¢, = 1 (resp. t- = —1)
clockwise. It is convenient to take each of the paths symmetrical with respect to the real
axis. The full path will be I' = ~4~1 o %:1 o 7vy_ o4, as mentioned. The initial conditions
are taken from (5) with ¢ = 0. The symmetries associated to the four paths involved in I'
will play a relevant role, but other parts of the proof require an explicit knowledge of the
transport of the jet to third order along 7, .

Figure 3 sketches a possible model for the paths v, and the complete path T'.

0.25
H B
G E o A C
0 L 4
F D
0.25
-0.5 0 0.5

Figure 3: Sketch of the path to be used as model for I'. In the time domain I' is OABC-

DAOEFGHEOADCBAOEHGFEO. The paths v,,7- or OABCDAO, OEFGHEO, are
traveled clockwise. Note that each path is symmetrical with respect to the real axis.

It is clear that there is freedom in the definition of the basic paths v, and v_. One could
take one of them clockwise and the other counterclockwise. But with present definition
we have that v_ is obtained by changing the sign of ~,. Furthermore the path y~' o 7;1
is the complex conjugate of y7_ o~v,. As a consequence it will be seen that one can recover
all the necessary information from the transport along ..
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For the proof of Theorem 4 we shall show that VE; gives the identity along I, then
VE, is zero (with one eventual exception, see Remark 1) and some of the elements in VE;3
are different from zero.

Using the solution (5) one can compute the coefficients of the variational equations
which are different from zero along it:

fia=Q+u)"" fou=a1 fap = —m1,
fara==207"  fazo =1, fasaa =237°, fan2 = —1, (8)
fonna = Gy, fa14 = —6a7", Ja222 = 71,

where f; i, fikikos fier ko ks denote derivatives of f; in the obvious way and we have not
written the symmetric terms. All the functions in (8) are even in ¢.

Next two lemmas follow easily from inspection of the equations, their symmetries
(locally, around ¢ = 0), the variational equations, the form of the coefficients (8) and the
initial conditions (3).

Lemma 1. The parity of an element T;, Tk, Tisky ko> Tiski ko ks» o 1t 15 not identically zero,
s the same as the parity of

P =#{i,ky,... ks € {3,4}},
where s denotes the order of the variationals.

Lemma 2. The elements of the form xi.k, iy, Tisky ko ks Which are not identically zero satisfy
the following condition: The cardinality of the set {k; € {2,4}} must be non-zero and to
have parity different from the parity of 1.

The rule applies also to higher order derivatives. This gives, for instance, that from
the total of 140 elements in the jets to order 3 of the four image variables (including order
0), only 55 are not identically zero. For large order, simple combinatorial computations
show that the fractions of identically zero and non-identically zero elements tend to be
the same. All this holds also for p € R, p > p,, = (V/17 — 1)/2, that is, for all values of p
such that p, > 0.

Before dealing with statements about some coefficients being zero or non-zero at the
end of vy, we should discuss the effect of the parity of p. The following proposition will
be proved in Section 3.

Proposition 1. Let ®,(t) be the solution of (7) which is the identity at t = 0. Then at
the end of the path ~, it has the form

<(1] SL’;;4) for p odd and < 1 (1)> for p even,

Ty;2

where the respective coefficients To.4, x40 are non-zero and purely imaginary. M]™*, M~
belong to (G1)°. Moreover, at the end of y_ o vy,, ®y becomes the identity.

From now on, we shall concentrate on the case p odd, the proofs being the same
for the case p even, taking into account that symmetry.



After Lemma 1, the only second order variables not identically zero are the following
ones

Tino(t), Tioa(t), wia4(t), 1=1,3, 9)
Tj12(t), Tia4(t), xj03(t), xj34(t), Jj =24 (10)

Proposition 2. Assume p is odd. The following coefficients are zero after going along I':
xi;Q’Q,xi;274, f07" 7= ]_, 3, l‘j;172,l‘j;174, ZL‘j;273, f07" ] = 2,4, cmd GZSO l‘3;474, ZL‘4;374.
The proof of Proposition 3 will be given in Section 4.

Remark 1. Lemma 2 and Proposition 2 prove that all the elements of the second order
variationals along I' are zero, except x1.44 and xo.34. If some of these elements is different
from zero Theorem 4 would be proved. However, there is a strong numerical evidence that
they are also zero at the end of T' (see [10]). The proof of that is rather cumbersome,
so we prefer to concentrate on third order variationals whose analytical computation is
independent of the fact that x1.44 and x9.34 are zero or non-zero. One should also mention
that some of the relations in Proposition 2 follow from the symplectic character of the jet
transport.

Remark 2. An alternative and essentially equivalent approach for the proof of Theorem
4 can be the computation of the transport of the jet to order 3 (or of a sufficient part of it)
along v4,v-, 711 and y~' by using the symmetries which relate the jet transported along
vy to the other ones. Then the transport of the jet along I' is obtained by composition.

Next proposition ends the proof of Theorem 4.

Proposition 3. Assume p is odd. After the transport along I the coefficients x2.994 and
Ta44 are real and non-zero.

The proof of Proposition 3 will be given in Section 4.

Remark 3. Numerical evidence that several other coefficients of the third order jet are
zero at the end of v, is reported in [10]. In fact, the only coefficients which are not zero
after the transport along I', beyond the identity at order 1, seem to be T2.994 = —Ta244
and x9,4 44 0 the case p odd and, symmetrically, x4.222 and T2094 = —Ta;244 n the case
p even, except in the integrable case p = 2. But none of these evidences will be used in

the proof.

3 Study of first order variational equations.

The first thing we need is the solution of (7). Let us write as (§,7) the components of a
column of the solution to (7). The system &(t) = r=2(¢)n(t), n(t) = —r(t)é(t) becomes

(1= 2)E(t) — 4t€(t) + a&(t) =0, (11)
recalling a = p> +p — 2. The singularities at t = £1 are clear from (11). From a solution
£(t) we obtain n(t) = r2(t)é(t). Equation (11) is a special case of the hypergeometric
equation with integer parameters.

We look for two fundamental solutions of (11) & (t),&2(t). Except by scaling factors,
to have the identity matrix at ¢ = 0, they can be selected as follows:



e {i(t) is a polynomial of degree p — 1, even if p is odd and odd if p is even. It is
normalized in such a way that & (1) = 1. Then using (11) it satisfies that {(1) = a/4.
Except by a scaling factor it coincides with the Jacobi polynomial Plfi’ll)(t), that is,

p—1

1
1 —¢t2dtp!
around ¢ = 0 is of the form

(0O o1 N 2

- e t°) fi dd
G Pt LT

(=1~

T pl/)2 t+ O(tg) fOI' p even.

it is proportional to ((1 — 3P ) With this normalization the expansion

(12)

Using Stirling’s formula (and taking into account the error!) the absolute value of

the leading coefficients can be bounded from above by (pfl)w /(p+1) and z%’

respectively.

e & (t) contains singularities and it is of the form

) = | ~(a+2) Qo1 +1) ~ (L~ )&(0) + ¥(0)] +a0. (13
where 1(t) = _fsf(tt)w being s(t) = 1 for p even, s(t) =t for p odd. Furthermore

g(t) is the unique polynomial solution of degree p — 2 of the equation

g 60 _160-s0)

(1=t —==(t) — 4t@(t) +ag(t) = (2a + 4) (

dt? dt dt 1—¢?

In fact, it is immediate to check that &»(¢) is a solution of (7) if and only if, g(¢) is a
solution of (14). Using the normalization &;(1) = 1 and the parity of & () one has
that t&,(t) — s(t) = (1 —*)Q(t) for some polynomial Q(t) of degree p — 2 which has
the same parity as p. Then, a unique polynomial solution of (14) can be determined.

e A fundamental matrix is obtained by taking

&(t) &(t) . &(t) &(b) ‘
(i i) ot (350 50 wpovn (15

We note that due to the normalization used for &, as shown in (12), the matrices
above become diagonal at ¢t = 0. Therefore to pass from (15) to the usual normaliza-
tion for the fundamental matrix, that is, the identity at t = 0, one has to multiply
(15) by some constant diagonal matrix, C, different for p odd and p even (this is
irrelevant for the proofs, but affects the numerical computations as shown in [10]).
In particular, if p is odd we obtain

( :cng(t) a.4(t) ) _ ( cr&i(t) exa(t) ) (16)

cim(t) cama(t)

for some constants ¢y, cs.
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Proof of Proposition 1. Assume p is odd. One has to check that at the end of v, 2.4
is non-zero and purely imaginary. According to (13) if we start at ¢ = 0, when returning
to it after the loop -, the only changes are due to the determination of log(1 — ¢), which
changes by —2mi. Hence, the value of x4 at the end of 4 is, except by normalizing
factors, equal to —3(a + 2) x (27i) x &(0) which is # 0 according to (12). In a similar
way after the loop _ the change is due to the determination of log(1 + ¢) which cancels
the one introduced by log(1 — ). So, we get the identity for ®, after traveling along
v_ o ;. Furthermore, starting at ¢ = 0, both M]" and M|~ are unipotent. Hence, they
are in (G1)? according to Lemma 1 in [9]. In the case p even, the proof follows similar
steps. 0

4 Study of second and third order variational equa-
tions

The variables in (9) satisfy the following equations

. 1 . 1 . 1
T1.22 = —1+ux3;2,2, L1;24 = —1+“$3;2,4, T1;4,4 = —1+“!E3;4,4a
(17)

T3.092 = —Ds, T34 = — D, T3.44 = —Dy,

where
Dy(t) i= w5,5(t) — 2r(t)d5,(t), Dalt) 1= a3,(t) — 2r(t)a54(t),

Du(t) := x0(t)2,4(t) — 2r(t) 0 (t)T2.4(2).

In a similar way, the variables in (10) involve the functions Dy (t), D4(t) and Dy,(t). The
equations are given in appendix 1.

The proof of Propositions 2 and 3 require the computation of some integrals along
the path 7_ o v,. In what follows, given a function f and a concrete determination f(0)
at t = 0, we shall denote by f,(z) the values it takes along 7, or along v_ when it
changes in a continuous way from ¢ = 0, and by f_(z) the values it takes along ~v_ after
traveling along v, and returning to ¢ = 0, taking into account possible changes in the
determination. Assume that f_(z) = f4(z) + f(2) for some f(z). Then fw-cw f(2)dz is

equal to — f% f(=2)dz if f.(z) is an even function (locally, around ¢ = 0), and it is equal
to QIW fe(z)dz — fw f(=2)dz if f(2) is odd.

Proof of Proposition 2. It is clear that Dy(t) involves only the functions r(t), & (t), & ().
So, it is a polynomial. Moreover we recall that z1.3(t) =¢/(1 + u). Then

/ Dy(t)dt = 0, / 213(t)Ds(t)dt = 0

Y

along any closed path . Therefore at the end of I' we have ;20 =0 for ¢ =1,3. In a
similar way 412 = 0 and 24,23 = 0 (see appendix 1).
Let us consider Dy, (t). First we shall prove that

/ Dy (t)dt = 0.

11



Using the normalization & (1) = 1 and £(1) = a/4 a simple computation shows that (see
(13), (15) and (16))

Dus(t) = — 5 (a+2)(log(L +1) — log(1 — £)) Da(t) + ht), (18)
1
where h(t) is a polynomial. We shall write Dy(t) = 2¢2k(t) where

() = 5800 — - (1~ PE (). (19)

1
Lemma 3. The following identity holds: / k(t)dt = 0.
0

Proof. Using integration by parts, (11) and (12) we have

| (Ge0-1a-2ew)a-
| 580 —a-méamani+ [ Lol - -2

/01 (%gf(m é {—%éf(t) + %ﬂgl(t)&(t)D dt = % /01(1 — e (DE(H)dt = 0.

Last equality follows because ; is an orthogonal polynomial in [—1, 1] with respect to the
weight 1 — ¢2, hence, orthogonal to & and the product of both polynomials is an even
function. .

Let K(t) be the primitive of k(t) such that K(0) = 0. Notice that after Lemma 3,
K (1) = 0. Now we shall apply the following result

Lemma 4. Let g be a holomorphic function in a simply connected domain containing
v+ and let G be a primitive of g. Then fw g(t)log(l — t)dt = 2w i(G(1) — G(0)) =
2 ifol g(t)dt.

Using Lemmas 3 and 4 we have

/ log(1 — £)Dy(t)dt — 262 / log(1 — )k(t)dt = 0

T+ T+

and then from (18), fw Dy (t)dt = 0.
The following expressions are easily obtained

Du-(1) = Daree(t) = wi2 (a+2)Da(t),

2
c c
Dy-(t) = Duy(t)— 27ric—2(a +2)Dy 4 (t) — wQC—g(a +2)*Do(t),  (20)
1 1
t Co (a+2)
213(0Dar (1) = ——Dara(t) — mi2 22Dy 1),
0P (0) = T Duns(t) - i iy
where Dy 1 (t) and D, 1 (t) are odd and even functions respectively. We recall also that
Ds(t) is an even function. Therefore,

Y-+ Y=+ Y-+

12



reduce to linear combinations of fw Dy (t)dt, f Dy(t)dt and f tDy(t)dt which are equal
to zero.

Furthermore v~' o 7;1 is the complex conjugate of v_ o~v,. Moreover, we know that
log(1 4+ t) — log(1 — t) does not change determination after traveling through v_ o ~,.
Then, the same is true for Dy, Dy and 1,3D);. Therefore fr D, fr D, and fr 213D
are all zero.

Using (17), (43) and (44) (see appendix 1) we get that after traveling along I', the
following elements are zero

L1;2,4; 13;2,45 T3;4,45 T2;1,25 L2;2,3, L21,4, Ld;1,4; T4;34-
This ends the proof of Proposition 2. .
Proof of Proposition 3. We begin with the differential equations

To224(t) = 172 () Ta204(t) — 203 (t) (2042 ()2 1,2,4(F) 4 122.2(8) Taa) (1),

(21)
Ta224(t) = =7 (1) T2224() — 2T22(t)21,2.4(8) — T2a (O)T122,2() + 7 (1) 25,5(H) 254 (2).
After traveling along ~v_ o v, we get, using Proposition 1
T2224 = / (21,0,2(t)Da(t) + 221,04(t) Daa (t) — r(t)a55(t)a5,4(1))dlt, (22)
Y- oY+

where 21.92(t), z1.2.4(t), are the solutions of (17) with initial conditions x1,22(0) = 0 and
21,24(0) = 0. In a similar way we get

Ta244 = / (—27124 () Das () — 21,44(t) Da(t) + 1) (£)23,4(t) )t (23)

To prove Proposition 3, it is sufficient to prove that the integrals in (22) and (23) are real
and different from zero. From (22) and (23)

Ean24+ Tanas = / (1102(0)Da(t) — Traa(t)Da(t)) . (24)
y—ov+

On the other hand, using (17), a simple computation shows that

T1,22(1)Da(t) — w1,44(8)Da(t) = i[(—xm,z (t)23,44(t) + T1.44(8)T3,22(2)].

dt
We recall that, if p is odd, x1.02(t) and z322(¢) are polynomials equal to zero at ¢ = 0.
This implies that the primitive involved in (24) becomes null at both ends. Therefore
T9.224 + Ta2a4 = 0 and it is sufficient to consider xg.5 2 4.
We claim that the following relations hold (see appendix 2 for the proofs)

1
/ F(B)ado (D) () dt = 25 A3 (a + 2 / r(5)EX(s)ds. (25)
Y07+ 0
(a+ 2
/ T1,2.2(1)Da(t) :/ T1.04(t)Dy(t) = 87°clch T / K?*(s)ds (26)
y-ov+ y-ov+
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Therefore we obtain the following real expression for x9.994

1Ly

1
1 1
) — 247232 22/ T RK?(H) — — (1 =N | dt.
T2:22.4 mcicy(a+ 2) N (t) 12a( )EL(t)

Next lemma ends the proof of Proposition 3.
Lemma 5. The following inequality holds for any p > 2

2= [ | K0 - G0 - 2o

This lemma will be proved in the next section. We recall that & (¢) and K(t) are
polynomials of degrees p — 1 and 2p — 1, respectively. So, for a given p, not too large, one
can compute exactly the value of Z. To illustrate some of the difficulties that appear to
prove that Z > 0, for arbitrary p > 2, we show first a couple of plots. Let us introduce

dt > 0.

L 1

ho= [ TR Od L= [ -l i )
both integrands being non-negative everywhere. Figure 4 left shows, for a moderate value
p =9, the function &y, i.e., the Jacobi polynomial Pg1 1 with the normalization introduced
, Ela(l — t3)&H(t) after multiplication by a
suitable constant to make them visible. One can observe that the dominant contributions
to the integrals come from a narrow domain close to ¢ = 1. We shall see in the proof that
this domain is O(a™!) and it is essential for the proof. On the right part of the figure we
display the ratio R(p) = L.t/ L as a function of log(a(p)) up to p = 3162, the first value
of p for which a(p) > 107, recalling a(p) = p? + p — 2. The computations are done exactly
(using PARI) in rational arithmetic; some fractions require lots of digits. For instance,
the integral in Z multiplied by 1 + pu, requires up to 4273 digits in the numerator and
up to 4293 in the denominator for p up to 3162. Values of R(p) for small p are shown
in Table 1. One checks that for p = 2 the ratio is 1: both integrals are equal and cancel.
One can also observe that R(p) behaves almost linearly as a function of log(a(p)). A fit
suggests R(p) =~ a + Blog(a(p)) with f = 3/4. We shall comment on this behaviour in
Remark 6.

1
in Section 3 and also the functions —— K?(t)
1+
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0.6
0.4
0.2 + 1 | Nﬁ
° N

-0.2 I 1 1 | 0 | . . .
0 0.25 0.5 0.75 1 0 4 8 12 16

Figure 4: Left: The solution & for p = 9 and the corresponding integrands in (27)
multiplied by 5 x 10*. The largest one is the term in K?. Right: The ratio R(p) vs

log(a(p)).

R(p) p R(p)
1 11 22759394912 /5308411131
2 12 16777562286,/3791260061
172/67 13 1301661512339/285994227707
663,223 14 3937129140486,/843537994141
3952/1201 15 69209389132017/14494323713237

711763/200413 16 717917637801596207/147261612942021091
9537221/2527823 | 17 | 41008730304053787586/8253073211613057511
99832/25177 18 | 105957929821568901427/20952458480229302251
404790839/97889959 | 19 | 91823182181213244502/17863603738874767317

S © 0~ DU wW N

—_

Table 1: The ratio R(p) = Lis/ g for small values pf p.

15



5 Proof of lemma 5.

Before proving (27) we sketch the steps to be followed.

e First we look at the limit behaviour of & (¢) near t = 1 as p goes to infinity. A
suitable scaling shows that they tend to the J; Bessel function.

e We introduce to = 1 — 4s5/a € [0, 1] where so will be selected as a rational number
close to the second positive zero of J;. Then we write

1 1
1 1
Z > —K*(t)dt — 1—t? =
| ma- [ - et
1Y) — ( uog}ff (&) + I[tg2ht1 (€1)), (28)
where LE;’”*](&) denotes the integral I..;, but with the integration restricted to the
interval [t*,¢**]. The notation L[lght (&1) has a similar meaning.

e The integrals on [0, 5] and [to, 1] are bounded using different approximations of &;.

Lemma 6. Under the change of variables t = 1 — 4s/a the functions & (t), which depend
on p, tend to a limit function f(s) in any compact domain of the form s € [0, ss] when
p — oo. Furthermore the limit function satisfies f(s) = J1(v/8s)/v/2s, where J; denotes
the Bessel function of first order.

Proof. We recall that & () is a polynomial solution of (11) of degree p — 1, which has
been normalised so that &;(1) = 1. The change of variables ¢ = 1 — 4s/a leads to the

equation ,
d d
(s Zs ) df; + (2 — s ) d& +26 =0, &(0) =1, (29)

where we denote the new dependent variable as & (s). Letting a — oo we obtain, for
bounded values of s,
af df

s—5+2—-+2f=0, f(0)=1, (30)

ds? ds
where we denote as f the limit function. Let & (s) = > . bns", by = 1 and f(s) =

1a
> 50 fns™, fo = 1 be the expansions of & and f around s = 0. From (29) and (30) we
obtain the recurrences
2(1 —n(n+3)/a) ool = 2
(n+1)(n+2) " T (e D(n+2)

frs (31)

bn—l—l = -

both of them to be compared later. In particular f, = n'((_rLQJZZ)' Introducing 0 = v/8s it is

immediate to identify f(s) = Ji(c)/v/2s. O

Note that ¢ = 0 corresponds to s = a/4. Now we select a fixed value of s, for
instance close to the second positive zero of f, S..cona = 929/151. We take the value of s
as s3 = 929/151 and then t5 = 1 — 4s5/a, depends on a. From now on we shall consider
p > 5 in order to have ¢, € [0, 1].

Let us consider first the integrals in (28) on [t2, 1] and use the change t = 1 — 4s/a
introduced in Lemma 6. To simplify formulas, we shall keep the same notation &;(s) for
the function &; expressed in terms of the variable s.
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The 1dea is to approximate & by the expansion to order 16 of f, that is f (s) =
SO0, fas™ To bound the error we note that from (31) it follows that |f(s) — f(s)| and
\df /ds(s) — df /ds(s)| can be bounded in [0, s5] by | fir| max{si”, 17516} < 5x 10712 =: ¢.
In a similar way, if we introduce & (s) = Y10 b,s", we get |&(s) — &(s)| < € and
|dé1/ds(s) — d€;/ds(s)| < e;. Furthermore, it is clear that & is a polynomial of degree 16
in s and of degree 15 in o' with rational coefficients. So, we can write & (s) — f(s) =
Zk La *Qx(s) for some polynomials Q(s) that can be computed using (exact) rational

arithmetic. For p > 3162 we get
E1(s) — f(s)] < 1.9 x 1077
The same bound holds for |€/(s) — f’(s)| where ' denotes d/ds. Then, for s € [0, s3],

dé,

) - Fol<2x 107 me By,

< e. (32)

Moreover, the following inequalities, to be used in the next lemmas, are trivial for 0 <
s < 89

lES ST ES

s’f?” <1, (33)
)f’+s fl—f ‘;—fsz (34)

|§L f2+s

Using the variable s we can write
8 [ 2s 8 [ s
e = ooy [ (122 ) s < o [ seltonis = e
0

and

8la—2) / h [ / (6w — (1 - 2u/a>sa<u>2>du] Cds = 1899c,).

a

L&) =
We write some inequahties:

,f;hs (&) < Tand (@) < T () + 76 — Tl (I, (35)
i) = L&:fﬂ<f> 150 (&) = 187 (D). (36)
where I*(f) and J*(f) are defined as the corresponding I*(&;) and J*(&;) replacing & by
f.
Lemma 7. With the notation introduced before, the following bounds hold

A1) > M, BTSN < M,

right

where M; and M, can be taken equal to 0.55555 and 0.13310 respectively.

Proof. A symbolic manipulator (PARI) has been used to compute the integrals above
using (exact) rational arithmetic. The values obtained, displaying only the first 10 decimal
digits, are 0.5555528023... and 0.1330950485... . 0
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Lemma 8. The differences of integrals using & and f are bounded as follows:

| J2 ) — TR < 02x 107 = E,,

A1) — IV < 05x107% = E,.

Proof. We write &,(s) = f(s) 4 6(s). Using (32) we have |§(s)| < € for s € [0, 55]. Then

the inequalities (33) give, even using very rough estimates,

s s 8 1 B
Jr[loghf](f ) — Jr[loghf](fﬂ < 35 <(4e+662 4 4€¥)sy + 56483) <0.2x107%
a
For the left integral we write

1:f2t 1 (gl) 13%82 ( )| 1 - 2/0’

Kse) = [

and similar for K(s; f).
As before, using &(s) = f(s) 4+ d(s) and & (s) = f'(s) + &'(s), with |3(s)|,|0"(s)] < €
for s € [0, s5] in K(s;&1), we get

K(s;&1) = K(s; f) + A(s),

/K §1ds—/K

i~ u(t - 20/ (G0 ) ] du

where

where e /O {Qéf P (1 _ %) (26'f + (&) )] du.

Therefore

2, 3S2 8
|11:ft1 ( ) Il[g% }(f)| - 5(1 - 2/(1)

/OSQ(QA(S)K(S; )+ A(s)*)ds

Moreover using (34) we obtain
A < [ (214w
0

| (@217 + ) du < 2es 4 (s+ 5) |
0

1— %“' (2¢|f'| + 62)) du <

Then we obtain the bound

§2 4 83 84 83 84 85 B
/0 A(s)?ds < S€ 253+ 4é® (3 +§2)+e4 <§2+ZQ+2_8) <2x 107" = A,

In a similar way we get |K(s; f)| < s for s € [0, s5] and

> 7 2 3, o253 5 4 _
| K (s; [)A(s)]| < 3652 +e€ 3 + = g )< 0.311 x 107 =: A,.
0
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Finally we obtain

A1) = 197 < 8(1=2/a)(2A9 + Ay) < 0.5 x 1073,

O

Let us consider now I”ght (&1). The following lemma provides an approximation for &;
in [O, tg]
Lemma 9. In the interval [0,ts] the function & (t) is bounded by

1.69
vp—1(p+1)

Proof. Let us introduce the new variables z and ¢ in (11) as

RIGIES (1=, (37)

At =&t) (1—22)"", o) = (n + ;) (g - arccos(t)) , (38)

where n = p — 1 (see the beginning of Section 3). From (38) it follows

d=_ _ 3
a0~ e ~ (2n+3)2cos2(0/(n +3/2))’

and introducing polar coordinates z = Rcos(v),y = Rsin(v) and ¢ = v — 6 we reach the
simple system

fl_? = S Rsin(2(6 + 9))h(6), ‘;—‘g = S h(O)(1 + cos(2(6 + ¢), (39)

where Ry := R(t = 0) = |£(0)[, if we assume p odd. For p even some sin, cos functions
are exchanged and then Ry = |&(0)/(n+ 3/2)|. In any case, ¢q := o(t = 0) is taken as 0
or 7 in order to have Ry cos(pg) = &£1(0) if p is odd, and Ry cos(pe) = —£,(0)/(n + 3/2),
if p is even.

The equations (39) provide immediately

Roexp(—B(0)/2) < R(0) < Roexp(B(0)/2), —B(0) < »(0) — o < B(0), (40)
where

3/2 6
< =: A,
n+3./1_¢ < /31%s,

B(0) = /0 h(r)dr — 2363 tan(8/(n + 3/2)) <

where we used to = 1 — 4ss/a.
Now we recover & (t) = R(t) cos(¢ + 0)(1 — t2)73/4. Then

&) < R()(1—17) 7%/ < Ryexp(A/2)(1 — 12)/1,

Using the bounds given in (12), for [£,(0)] and |£;(0)], for odd and even p respectively, we
get

& (@) < Mm exp(A/2)(1 — 2)73/

and (37) follows easily. O
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Remark 4. Using also a rough bound from dy/df as given in (40) we obtain variations
of ¢ bounded by 0.107, when expressing ¢ as a function of t. It is also clear that for any
fized t, away from 1, one has bounds O(a~'/?). Better estimates on R, ¢ and therefore on
&1, can be obtained using averaging to study the behaviour of the solutions of (39). See
also remark 6.

Remark 5. The proof of Lemma 9 can be easily extended to arbitrary Gegenbauer poly-
nomials C\) (see [1] for definition and properties), by introducing £(t)(1 — t2)/2,0 =
(n+ «a)(7/2 — arccos(t)).

Lemma 10. The following bound holds for all p > 3162

311006 < 0.01382 =: R,.

Proof. From Lemma 9 one has to bound

702 71 1.69 L
rlght (fl) /0 12a <\/m<p+ 1)) (1 t ) dt.

1 t
Using that < 1.00032a 2 holds for p > 3162, the integral [ >(1 —t*)~2dt
8 G TGy v gl Jo 1 =)
1/ 2t 1+t
= - 2 5 + log + and the explicit value t; = 1 — 4s5/a, the lemma follows
4\1—15 11—t
easily. O

Finally, from (28), (35), (36) and the above lemmas we can write
a*Z>M —E — (R, +M,+E,)>04.

This ends the proof of Proposition 3 and therefore finishes the proof of Theorem 4. [

Remark 6. In fact, the neglected mtegml Il[eﬁ (&1) has an important (positive) contribu-
[tQ 1

tion to Z in the sense that the ratio Leﬂ (fl)/[leﬂ (&1) tends to oo when p — oo.

To give some idea about the claim above, let us replace s3 by s,, = A with a fixed value
A >> 1 and, hence, A << a for a large enough. Then we replace ty by t,, = 1 — 4s,,/a.
We can derive an approximation for & (¢) in [0, ¢,,] by using the same variables introduced
in the proof of Lemma 9. Now |p(6) — ¢(0)| < A,, where A, = 6/v/5124 = O(A~Y/?) as
follows from (40). In a similar way R(0) = Ro(1 + O(A~Y2)) for t € [0, t,,].

Then we obtain the approximations

€1(t) = Ry cos(pg) cos(A)(1 — t2)73/4 ~ is\/ga_?’/4 cos()(1 — t3)~3/4,
T

where we recall § = (n+ 3/2)(n/2 — arccos(t)) and i is the sign of the dominant term in
€1(s) (see (12)). The factor cos(f) has to be replaced by sin(#) for p even. We assume p
odd in what follows.

Introducing 1 = 6/(n + 3/2) we obtain the following approximation

&1 () = s \/Ea:s/‘*(COS(@/))):S/2 cos((n + 3/2)1).

T
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Using 1 as independent variable the function k introduced in (19) becomes, up to some

constant 1

k() = 503/2(@08(1/1))*3(608((” +3/2)¥))*~ (41)

52 g (cos()) 2 sin (1) cos((n + 3/2)) — (n + g)(cos(w))::’./? sin((n + 3/2))

As n is large, when we integrate (41) one can replace (cos((n + 3/2)%))? and (sin((n +
3/2)1))? by the average value 1/2 and sin((n + 3/2)) cos((n + 3/2)v) by zero. Fur-
thermore, if A is large enough, one can neglect the square of the first term inside [*]?
in front of the square of the second one. Summarizing, we can approximate k(i) by
—(1/4)a=*(cos(v)) .

Let x = § — . Then up to some constant, the left integral LBfm](gl), can be written
(up to some constant) as

2
1 w/2 w/2 d 1 w/2 2
</ (7u))2> sin(x)dx = = = Xy (42)
X

8a? O(a—1/2) sin(u 8a® Jo(a-1/2) sinx

The dominant contribution to (42) comes from the domain x = O(a~'/?) and it is imme-
diate that the result is O(log(a)). This proves the remark. Note that this also explains
the results displayed in Figure 4 right. We do not state this result as a Proposition be-
cause, for shortness, the bounds of the errors in the application of averaging are not made
explicit.

6 Conclusions

We have presented a very simple mechanical system for which, for some exceptional values
of a mass ratio, a theoretical proof of non-integrability has defeated the methods available
up to now. A new approach, based on the use of higher order variational equations
introduced in [6] or, equivalently, on the jet transport along a suitable chosen path in
complex time, allows to establish the desired non-integrability result. The proof involves
the use of different singularities and, hence, some amount of global information.

Appendix 1

For completeness in this appendix we give explicitly the second variational equations for
the variables which appear in (10).

1.2(1)

2(1)

4(?) :

4(t) = —r(t)wo1.4(t) — 224(2),
oi2,3(t) = 772 () Tas23(t) — 207 () 1,3(t) Taa(t),
T 3(t) = —r(t)T22,3(t) — 213(1)T22(1),
o34(t) = 172 () za3a(t) — 207 () w1,3(t) T2 (t),
Ta34(t) = —r(t)zo34(t) — T1,3(t)724(2)



Using Proposition 1, we obtain the following values after traveling along v_ o v,

T2;1,2 :/ Dy (t)dt, T2;1,4 :/ Dy (t)dt,
Y07+ Y—OV4
(43)
L4;1,2 :/ —D;y(t)dt, T4:1,4 :/ —Dy(t)dt,
Y-°7+ Y—oy+
T2;2,3 = / x1,3<t)DM<t)dt7 £2;3,4 = / x1;3<t)D4(t)dt,
Y-07+ Y—oy4
(44)
T4;2,3 :/ —1‘1;3(t)D2(t)dt, T4;3 .4 :/ —1‘1;3(t)DM(t)dt,
Y=-07+ Y—ov4+

Appendix 2

In this appendix we give the details for the proof of (25) and (26). Using the notation
introduced in Section 4 we get, & _(t) = & 4(t) — mi(a + 2)&1(¢), and

r(& (& () = (&M (8) + m(a+ 2)r()§1 (1) (—2i+(t) — m(a + 2)&i(1)),

where 7()£7(1)€5 , (t) is an even function of ¢. Then

/ FOEDEW)dt = —n(a +2) / P )E () [~2ib (—) — m(a + 2)E(—1))dt

= —27i(a + 2)/ r(t)E (), (t)dt = —Ti(a + 2)2/ log(1 — t)r(t)&(t)dt.

Now using Lemma 4 we obtain the following identity, proving claim (25) in Section 4

/ r(t)EX(H)E (t)dt = 2n°(a + 2)2/0 r(t)EXt)dt.

Let us consider now the first integral in (26). From (20) we obtain

2

.C c
.T1;2,2(t)lD47,<t) = 1’1;272(15)ID47+(15)—27T lc_2(a+2)x1;2,2<t>lDM7+(t)_6_37'('2(01‘1‘2)2.1’1;272@)2)2(15)7
1 1

where 1.02(t)Dy 1 (t) is an even function. Then

/ 1a(®)Da(t) = 2712 (a + 2) / T1aa(—t) Dy + (—t)dt

—o74 “ Y+
02

+—§7T2(a + 2)2 / ZL‘1;272(—t)D2(—t)dt.
&l T+

The second integral above is equal to zero because x1.02(t) and Dy(t) are polynomials.
Using (18) and Lemma 4

C
[ mioatDustdt = 22 +2) [ miaalt)Dalt) log(1 — )it =
Y+ €1 T+

Co

—((l + 2)77'1/01 ZL‘1;272(t)D2(t)dt

8]
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Taking into account that Dy(t) = 2c¢ik(t) and

2c3 !
1‘1;2,2(0 = = 1+p K(S)ds
0

we obtain

2 1
/ xl;m(t)DM,Jr(t)dt:47Tic:1502<a+ ) / K?(t)dt. (45)
L+p Jo

Y+

Therefore we obtain finally

22(B)Da(t) = 87222 /K%dt
[ meatomun =srad O [

—ov+

This proves the required expression for the first integral in (26).
In a similar way it is not difficult to see that

/Y _Ov+x1;274(t)DM(t) N iZ—i(a +2) { A + 122(0)Dar i () + /y + o a(DDs () dt]

Now we use an argument similar to the one used to prove that the expression in (24) is
zero. From

T122(t)Dur(t) — 21,24(t)Da(t) = %[—xl;zz(t)xs;zzl(t) + 21,24 () 3,2,2()]

it follows

| @12aDust) - i t1De(e))dt =0

T+

and, hence,

/ o a(O)Du(t) = —27i%2(a + 2) / 12 2(t)Dar 4 ()t

074 “ Y+

which proves the second part of (26) using (45).
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