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Abstract

Non-integrability criteria, based on differential Galois theory and requiring the
use of higher order variational equations (VEk), are applied to prove the non-
integrability of the Swinging Atwood’s Machine for values of the parameter which
can not be decided using first order variational equations (VE1).

1 Introduction and statement of results

The Swinging Atwood’s Machine (SAM for short) is a two-degrees-of-freedom Hamilto-
nian system derived from the well-known simple Atwood’s machine. We refer to [11]
and references therein for a derivation of the equations, even in the case that the effect
of pulleys is considered. Historical and experimental results can be found in the same
reference.

The Hamiltonian of the system is

H =
1

2

(

p2r
1 + µ

+
p2θ
r2

)

+ r(µ− cos θ), (1)

where µ is a mass ratio, µ > 1 in the domain of interest. Other physical parameters have
been normalised by taking suitable units.

We are interested on the integrability or non-integrability of (1). In general, we can
consider a Hamiltonian system

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

where H is assumed to be real analytic on some domain Ω of R2n. We consider the
extension to a complex domain Ω̂ of C2n.

If x = {q, p} ∈ C2n we consider solutions x(t) with t ∈ D̂ ⊂ C. The image of D̂ by x
is a Riemann surface R.

We shall consider integrability in the Liouville-Arnol’d sense:

Definition 1. A Hamiltonian system is integrable if and only if there exist n first integrals
f1, f2, . . . , fn independent almost everywhere and in involution. Usually it is taken f1 = H.
In general the functions f1, f2, . . . , fn will be considered meromorphic in a neighbourhood
of a given solution x(t).
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The standing problem is to find necessary conditions for integrability, or, equivalently,
sufficient conditions for non-integrability.

Integrable Hamiltonian systems have, in some sense, well ordered dynamics, while non-
integrable ones are associated to some amount of chaos. Eventually the chaotic dynamics
can be confined to the complex phase space without showing up in the real one (see, e.g.
[7]). A chaotic behaviour implies lack of predictability, i.e., a sensitive dependence to
initial conditions.

Several criteria follow from the so-called Morales-Ramis theory, which includes classical
results by Ziglin [13]. The results summarized here are contained in [4, 5]. See also [3] for
all the necessary background and technical details.

Consider the m-dimensional ODE ẋ = f(x) and let x(t) be a solution. The first
variational equations (VE1) along x(t) are given by d

dt
A = Df(x(t))A and we consider

the initial condition A(t0) = Id, where x0 = x(t0) is a regular point of f and Df . If we
take closed paths on the Riemann surface R with base point x0, one can associate to each
path the corresponding monodromy matrix, that is the matrix A at the end of the path.
The set of all these matrices form the monodromy group.

More generally, we can consider any linear ODE

d

dt
A(t) = B(t)A(t). (2)

We assume that the entries of B belong to some field of functions K. Let ξi,j be the
elements of a fundamental matrix of (2). Let L be the extension K(ξ1,1, ξ1,2, ..., ξm,m),
which is trivially a differential field. Consider the Galois group G =Gal(L | K), that is
the group of automorphisms of L leaving the basic field K invariant. It is an algebraic
group. Then the following result is obtained.

Theorem 1. (Morales-Ramis) Under the assumptions above if a Hamiltonian is integrable
in a neighbourhood of R then the identity component G0 of the Galois group of the first
order variational equations VE1 along R is commutative.

The identity component is taken using Zariski’s topology. We also recall that the
Galois group coincides with the Zariski closure of the monodromy group.

A delicate example of application of Theorem 1 can be seen in [8]. See also [6] for
a long, but not exhaustive, list of examples where this theorem has been used to detect
non-integrability.

Concerning SAM problem the following result was proved in [2] using Ziglin’s theory

Theorem 2. The Hamiltonian system defined by (1) is non-integrable if µ 6= µp where

µp = 1 +
4

p2 + p− 4
, p ∈ N, p ≥ 2.

Furthermore the case p = 2, µp = 3 is known to be integrable [12].

In the “degenerate” cases µ = µp, p > 2 the variational equations VE1 give nothing
against integrability. Note that the value of µp tends to 1 as p → ∞. On the other
hand, for these exceptional cases a Poincaré section reveals that the system is far from
integrable (see Figure 1). For µ2 = 3 the integrable structure is clearly seen. Other values,
like µ3 = 3/2, µ4 = 5/4, µ5 = 15/13, µ6 = 21/19, display large chaotic zones. However,
when µp is close to 1, as happens for p large, the only hint on non-integrability comes
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from the presence of tiny chains of islands. For instance, for p = 62, µp = 1953/1951
additional explorations, see Figure 2, show the existence of chains of islands of periods
31,32 and 62 very close to the boundary of the domain (compared to the size of the
domain). In all cases one has taken a level of energy H = 1/(2(1 + µ)) so that an orbit
on the invariant plane θ = pθ = 0 passing through (r, pr) = (0, 1) is the boundary of the
domain of definition of the Poincaré map.
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Figure 1: Poincaré sections of (1) through θ ≡ 0 (mod 2π), pθ > 0 on the energy level
H = 1/(2(1 + µ)). Due to the symmetry only the upper part is shown in (r, pr). From
left to right and top to bottom µ = µp for p = 2, 3, 4, 5, 6, 62 are shown.

To produce the plots in Figure 1 one has taken a few initial points on a grid in (r, pr)
and 1000 Poincaré iterates have been computed from each one of them.

The fact that G0 is commutative for µ = µp, p > 2 and, hence, there is nothing against
integrability, suggests to try to detect non-integrability at higher order. The theoretical
support is given as follows (see [9]).
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Figure 2: Magnification of a small domain of Figure 1, with more initial points, to show
the existence of islands of periods 31,32 and 62.

Let ϕ(t, x0) be the solution of ẋ = f(x(t)) with ϕ(t0, x0) = x0. We consider as
fundamental solutions of the k-th order variational equations, VEk, based on x0, the
string of maps (ϕ(1)(t), ϕ(2)(t), . . . , ϕ(k)(t)) such that

ϕ(t, y0) = ϕ(t, x0) + ϕ(1)(t)(y0 − x0) + . . .+ ϕ(k)(t)(y0 − x0)
k + . . . ,

i.e., the coefficients of the k-jet. Obviously ϕ(1)(t) is a solution of the first order VE=VE1.
The ϕ(k)(t) satisfy linear non-homogeneous ODE. The initial conditions are

ϕ(1) = Id, ϕ(k)(t0) = 0 for k > 1. (3)

See [6] for explicit versions in terms of components. For further use we introduce the nota-
tion xi, xi;k, xi;k1,k2, xi;k1,k2,k3, . . . for the components of x and the first, second, third, . . .
derivatives with respect to the initial conditions. Divided by the corresponding factorial

they give the components of ϕ(t), ϕ(1)(t), ϕ(2)(t), ϕ(3)(t), . . . . For instance x4;1,3,3 =
∂3(ϕ)4
∂x1∂x23

.

Note that once ϕ(1) is available, all ϕ(k) are obtained by quadratures.
The equation for ϕ(k), k > 1 depends in a nonlinear way of ϕ(j) for j < k, but, for any

k, the equations for the entries of the ϕ(j) can be made linear by introducing additional
variables (products of entries) which also satisfy linear ODE (see [6]).

Hence, one can introduce the k-th order Galois group Gk as the Galois group associated
to the linearized version of the variational equations up to order k. We can also introduce
the k-th order monodromy as the monodromy obtained with the linearized version of the
VEk. The information it gives is equivalent to the information obtained by transporting
the jet up to order k. That is, starting at the point x0 + ξ at time t0 one has

ϕ(t; t0, x0 + ξ) =
∑

0≤|j|≤k

aj(t)ξ
j +O(|ξ|k+1),

where j is a multiindex and the aj coefficients are m-dimensional vectors if x is m-
dimensional. The jet

∑

0≤|j|≤k aj(t1)ξ
j when we return to x0 moving along a closed path

γ from t0 to t1 with γ(t0) = γ(t1) = x0, can be seen as the k-th order monodromy along γ
with base point x0, to be denoted as Mγ

k . The composition of jets like Mγ
k using different

paths γ forms a group, to be denoted simply as Mk, which is a natural generalisation of
the monodromy group. Again the Zariski closure of Mk is Gk.

Then, for any k ≥ 1 the following extension of Theorem 1 holds:
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Theorem 3. ([6]) Under the assumptions above if the Hamiltonian is integrable in a
neighbourhood of R then for any k ≥ 1 the identity component (Gk)

0 of Gk is commutative.

This result gives rise to non-integrability criteria to all orders. Note that these criteria
can depend strongly on the reference solution x(t) and on the paths γ taken on it. In
general it is not true that if these necessary criteria are satisfied for all k ∈ N the system
is integrable. The problem of finding sufficient conditions for integrability remains open.

The main purpose of that paper is to use Theorem 3 to prove

Theorem 4. The degenerated cases µ = µp, p > 2 of the SAM are non-integrable.

The result will follow from the non-commutativity of (G3)
0 that it is proved using

suitable paths along a solution on the invariant plane θ = pθ = 0.

As explained in [9] the first step will be to take two closed paths, that in present case
are denoted as γ+ and γ−, such that they are in (G1)

0. As it will be seen in the proof
of Theorem 4 the VE1 on the plane θ = pθ = 0 decouple in the (r, pr) and the (θ, pθ)
variables. As the subproblem in (r, pr) variables is integrable one should only take care
of VE1 in the (θ, pθ) variables. Lemma 1 in [9] gives sufficient conditions to have Mγ1

1

and Mγ2
1 in (G1)

0. Then it follows that Mγ1
k and Mγ2

k are in (Gk)
0 (eventually one has to

replace the Riemann surface R by a “subsurface” R′) and the lack of commutativity for
k = 3 is enough to prove Theorem 4. See Lemma 2 in [9] for additional details.

We can interpret that result in terms of jet transport. After transporting along Γ
the initial variations ξ we recover, ξ at first order, zero at second order and something
different from zero at third order. In fact, we do not claim that the second order terms are
zero, despite we have a strong evidence by explicit symbolic computation for low values
of p (up to several thousands). But there are definitely, third order terms different from
zero.

Additional examples on the use of higher order variational equations to detect non-
integrability and methodological aspects to deal with these problems can be found in [9].

While a big effort has been undertaken to compute the monodromy for many linear
differential equations, the authors are not aware of a similar effort concerning higher order
monodromy, that is, the properties of the transport of jets of arbitrary order.

In general no explicit solution is known for an arbitrary Hamiltonian. But assume we
are able to find, numerically, two paths ψ1, ψ2, such that M

ψj

1 are in (G1)
0, and we can

compute M
ψj

k , j = 1, 2 along them. Then

[Mψ1

k ,Mψ2

k ] = (Mψ2

k )−1 ◦ (Mψ1

k )−1 ◦Mψ2

k ◦Mψ1

k , (4)

should be trivial, that is, equal to the identity to order k if the system is integrable. If it
does not hold and we can rigorously prove that this is still true when we account for the
numerical errors, then non-integrability is proved.

A systematic approach to check numerically for non-integrability in an efficient way,
based on Theorem 3, illustrations concerning the SAM and a variety of additional exam-
ples can be found in [10]. This numerical information has been very useful to suggest the
approach to be taken for the proof of Theorem 4.
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2 Sketch of the proof of Theorem 4 and first steps.

Guided by numerical results (see [10]) we confine our theoretical study to third order
variational equations. It will be proved that this is enough to detect non-integrability.

We shall use the following notation. If γ, ψ are two closed paths on a Riemann surface
R then ψ ◦ γ will denote the path obtained by following first γ and then ψ. Similar for
a larger number of paths. A path traveled in reversed direction will be denoted as γ−1.
Furthermore we shall also use the same notation, say γ, for a closed path on a Riemann
surface R lying on the (complex) phase space and for the corresponding temporal arc in
the domain of definition D̂ of x(t). The meaning will be clear from the context.

The proof proceeds in several steps:

• Selection of a simple, regular, solution to (1) which has two singularities associated
to the variational equations.

• Second step is the selection of a suitable path Γ, which is obtained from the compo-
sition of simple paths γ+ and γ− around the singularities. More concretely, we shall
take Γ = γ−1

− ◦γ−1
+ ◦γ− ◦γ+. Then the commutator (M

γ−
k )−1 ◦ (Mγ+

k )−1 ◦Mγ−
k ◦Mγ+

k ,
of the form (4), is simply represented as MΓ

k .

This is a key point because other choices can lead to more involved computations.

One checks that M
γ+
1 and M

γ−
1 are in (G1)

0. From this it follows that M
γ+
k and

M
γ−
k are in (Gk)

0 for a suitable Riemann surface, see [9].

• The solutions of the variational equations for the different orders (equivalent to the
coefficients of the jet) satisfy symmetry relations as a function of t and some of
them are identically zero. The transport of the third order jet along Γ, MΓ

3 , can
be expressed from the coefficients of the transport of the jet along γ+ and several
additional integrals. For the computation of integrals along paths in complex time
one has to take into account that, if the paths start, say, at t = 0 they can return to
the same value of t with a different determination of the function to be integrated.
This is examined in detail.

• At that point we claim that some of the coefficients in M
γ+
3 are zero and some are

different from zero. Then a part ofMΓ
3 can be computed and this is enough to prove

Theorem 4.

Let us write the Hamiltonian vector field for (1) in the form ẋ = f(x) and let
(x1, x2, x3, x4) = (r, θ, pr, pθ) and fi, i = 1, . . . , 4 be the components of f .

A simple, regular, solution to (1) on the invariant plane x2 = x4 = 0, is given by

x1(t)=r(t)=
1

a

(

1−t2
)

, x2(t)=θ(t)=0, x3(t)=pr(t)=(1−µ)t, x4(t)=pθ(t)=0, (5)

where a = p2+ p− 2 and from now on we shall use simply µ instead of µp, but keeping in
mind that only the values corresponding to integer p are considered. Note that r(±1) = 0.
The solution (5) is somewhat arbitrary, because the initial value of the radius x1(0),
assuming x3(0) = 0, can be any positive number. If we scale x1(0) by ν

2 then r(±ν) = 0.
The derivatives of variable i of orders (j1, j2, j3, j4) with respect to (x1, x2, x3, x4) scale
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like νn(i)−2j1−j3−3j4 , where n(1) = 2, n(2) = 0, n(3) = 1, n(4) = 3. The effect of the scaling
will be seen in [10], where it is used to enhance the numerical difficulties.

The solutions of the first variational equations associated to the variables (x1, x3) are
also elementary

(

x1;1(t) x1;3(t)
x3;1(t) x3;3(t)

)

=

(

1 t/(1 + µ)
0 1

)

. (6)

On the other hand, the first variational equations associated to the (x2, x4) variables are

d

dt

(

x2;2(t) x2;4(t)
x4;2(t) x4;4(t)

)

=

(

0 r−2(t)
−r(t) 0

)(

x2;2(t) x2;4(t)
x4;2(t) x4;4(t)

)

. (7)

All the other entries of the VE1 are identically zero.

Typically we shall use a notation like xi;k1(t), xi;k1,k2(t), . . . to denote the functions as
depending on t, while xi;k1 , xi;k1,k2, . . . will denote the values at the end of a path which
will be clear from the context.

While (5) is not introducing any singularity, (7) does at r = 0. Note that the solution
through r = 0 is non-physical. But this is irrelevant for the proof on the non-integrability.

This fact suggests to take the following paths: Let γ+ (resp. γ−) be a closed path
starting, in the temporal domain, at t = 0 and going around t+ = 1 (resp. t− = −1)
clockwise. It is convenient to take each of the paths symmetrical with respect to the real
axis. The full path will be Γ = γ−1

− ◦ γ−1
+ ◦ γ− ◦ γ+, as mentioned. The initial conditions

are taken from (5) with t = 0. The symmetries associated to the four paths involved in Γ
will play a relevant role, but other parts of the proof require an explicit knowledge of the
transport of the jet to third order along γ+.

Figure 3 sketches a possible model for the paths γ± and the complete path Γ.
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Figure 3: Sketch of the path to be used as model for Γ. In the time domain Γ is OABC-
DAOEFGHEOADCBAOEHGFEO. The paths γ+, γ− or OABCDAO, OEFGHEO, are
traveled clockwise. Note that each path is symmetrical with respect to the real axis.

It is clear that there is freedom in the definition of the basic paths γ+ and γ−. One could
take one of them clockwise and the other counterclockwise. But with present definition
we have that γ− is obtained by changing the sign of γ+. Furthermore the path γ−1

− ◦ γ−1
+

is the complex conjugate of γ− ◦γ+. As a consequence it will be seen that one can recover
all the necessary information from the transport along γ+.
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For the proof of Theorem 4 we shall show that VE1 gives the identity along Γ, then
VE2 is zero (with one eventual exception, see Remark 1) and some of the elements in VE3

are different from zero.

Using the solution (5) one can compute the coefficients of the variational equations
which are different from zero along it:

f1;3 = (1 + µ)−1, f2;4 = x−2
1 , f4;2 = −x1,

f2;1,4 = −2x−3
1 , f3;2,2 = −1, f3;4,4 = 2x−3

1 , f4;1,2 = −1,
f2;1,1,4 = 6x−4

1 , f3;1,4,4 = −6x−4
1 , f4;2,2,2 = x1,

(8)

where fi,k1, fi,k1,k2, fi,k1,k2,k3 denote derivatives of fi in the obvious way and we have not
written the symmetric terms. All the functions in (8) are even in t.

Next two lemmas follow easily from inspection of the equations, their symmetries
(locally, around t = 0), the variational equations, the form of the coefficients (8) and the
initial conditions (3).

Lemma 1. The parity of an element xi, xi;k1 , xi;k1,k2, xi;k1,k2,k3, if it is not identically zero,
is the same as the parity of

P = #{i, k1, . . . , ks ∈ {3, 4}},

where s denotes the order of the variationals.

Lemma 2. The elements of the form xi;k1,k2, xi;k1,k2,k3 which are not identically zero satisfy
the following condition: The cardinality of the set {kj ∈ {2, 4}} must be non-zero and to
have parity different from the parity of i.

The rule applies also to higher order derivatives. This gives, for instance, that from
the total of 140 elements in the jets to order 3 of the four image variables (including order
0), only 55 are not identically zero. For large order, simple combinatorial computations
show that the fractions of identically zero and non-identically zero elements tend to be
the same. All this holds also for p ∈ R, p > pm = (

√
17− 1)/2, that is, for all values of p

such that µp > 0.

Before dealing with statements about some coefficients being zero or non-zero at the
end of γ+ we should discuss the effect of the parity of p. The following proposition will
be proved in Section 3.

Proposition 1. Let Φ2(t) be the solution of (7) which is the identity at t = 0. Then at
the end of the path γ+ it has the form

(

1 x2;4
0 1

)

for p odd and

(

1 0
x4;2 1

)

for p even,

where the respective coefficients x2;4, x4;2 are non-zero and purely imaginary. M
γ+
1 ,M

γ−
1

belong to (G1)
0. Moreover, at the end of γ− ◦ γ+, Φ2 becomes the identity.

From now on, we shall concentrate on the case p odd, the proofs being the same
for the case p even, taking into account that symmetry.
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After Lemma 1, the only second order variables not identically zero are the following
ones

xi;2,2(t), xi;2,4(t), xi;4,4(t), i = 1, 3, (9)

xj;1,2(t), xj;1,4(t), xj;2,3(t), xj;3,4(t), j = 2, 4. (10)

Proposition 2. Assume p is odd. The following coefficients are zero after going along Γ:

xi;2,2, xi;2,4, for i = 1, 3, xj;1,2, xj;1,4, xj;2,3, for j = 2, 4, and also x3;4,4, x4;3,4.

The proof of Proposition 3 will be given in Section 4.

Remark 1. Lemma 2 and Proposition 2 prove that all the elements of the second order
variationals along Γ are zero, except x1;4,4 and x2;3,4. If some of these elements is different
from zero Theorem 4 would be proved. However, there is a strong numerical evidence that
they are also zero at the end of Γ (see [10]). The proof of that is rather cumbersome,
so we prefer to concentrate on third order variationals whose analytical computation is
independent of the fact that x1;4,4 and x2;3,4 are zero or non-zero. One should also mention
that some of the relations in Proposition 2 follow from the symplectic character of the jet
transport.

Remark 2. An alternative and essentially equivalent approach for the proof of Theorem
4 can be the computation of the transport of the jet to order 3 (or of a sufficient part of it)
along γ+, γ−, γ

−1
+ and γ−1

− by using the symmetries which relate the jet transported along
γ+ to the other ones. Then the transport of the jet along Γ is obtained by composition.

Next proposition ends the proof of Theorem 4.

Proposition 3. Assume p is odd. After the transport along Γ the coefficients x2;2,2,4 and
x4;2,4,4 are real and non-zero.

The proof of Proposition 3 will be given in Section 4.

Remark 3. Numerical evidence that several other coefficients of the third order jet are
zero at the end of γ+ is reported in [10]. In fact, the only coefficients which are not zero
after the transport along Γ, beyond the identity at order 1, seem to be x2;2,2,4 = −x4;2,4,4
and x2;4,4,4 in the case p odd and, symmetrically, x4;2,2,2 and x2;2,2,4 = −x4;2,4,4 in the case
p even, except in the integrable case p = 2. But none of these evidences will be used in
the proof.

3 Study of first order variational equations.

The first thing we need is the solution of (7). Let us write as (ξ, η) the components of a
column of the solution to (7). The system ξ̇(t) = r−2(t)η(t), η̇(t) = −r(t)ξ(t) becomes

(1− t2)ξ̈(t)− 4tξ̇(t) + aξ(t) = 0, (11)

recalling a = p2 + p− 2. The singularities at t = ±1 are clear from (11). From a solution
ξ(t) we obtain η(t) = r2(t)ξ̇(t). Equation (11) is a special case of the hypergeometric
equation with integer parameters.

We look for two fundamental solutions of (11) ξ1(t), ξ2(t). Except by scaling factors,
to have the identity matrix at t = 0, they can be selected as follows:
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• ξ1(t) is a polynomial of degree p − 1, even if p is odd and odd if p is even. It is
normalized in such a way that ξ1(1) = 1. Then using (11) it satisfies that ξ̇(1) = a/4.

Except by a scaling factor it coincides with the Jacobi polynomial P
(1,1)
p−1 (t), that is,

it is proportional to
1

1− t2
dp−1

dtp−1

(

(1− t2)p
)

. With this normalization the expansion

around t = 0 is of the form

(−1)(p−1)/2

2p−1

(

p− 1
(p− 1)/2

)

2

p+ 1
+O(t2) for p odd,

(−1)(p−2)/2

2p−1

(

p
p/2

)

t+O(t3) for p even.

(12)

Using Stirling’s formula (and taking into account the error!) the absolute value of

the leading coefficients can be bounded from above by
√

8
(p−1)π

/(p + 1) and
√

8
pπ
,

respectively.

• ξ2(t) contains singularities and it is of the form

ξ2(t) =

[

−1

2
(a+ 2) (log(1 + t)− log(1− t)) ξ1(t) + ψ(t)

]

+ g(t), (13)

where ψ(t) = − 2s(t)

1− t2
, being s(t) = 1 for p even, s(t) = t for p odd. Furthermore

g(t) is the unique polynomial solution of degree p− 2 of the equation

(1− t2)
d2g

dt2
(t)− 4t

dg

dt
(t) + ag(t) = (2a+ 4)

(

dξ1(t)

dt
− tξ1(t)− s(t)

1− t2

)

. (14)

In fact, it is immediate to check that ξ2(t) is a solution of (7) if and only if, g(t) is a
solution of (14). Using the normalization ξ1(1) = 1 and the parity of ξ1(t) one has
that tξ1(t)− s(t) = (1− t2)Q(t) for some polynomial Q(t) of degree p− 2 which has
the same parity as p. Then, a unique polynomial solution of (14) can be determined.

• A fundamental matrix is obtained by taking

(

ξ1(t) ξ2(t)
η1(t) η2(t)

)

if p odd,

(

ξ2(t) ξ1(t)
η2(t) η1(t)

)

if p even. (15)

We note that due to the normalization used for ξ1, as shown in (12), the matrices
above become diagonal at t = 0. Therefore to pass from (15) to the usual normaliza-
tion for the fundamental matrix, that is, the identity at t = 0, one has to multiply
(15) by some constant diagonal matrix, C, different for p odd and p even (this is
irrelevant for the proofs, but affects the numerical computations as shown in [10]).
In particular, if p is odd we obtain

(

x2;2(t) x2;4(t)
x4;2(t) x4;4(t)

)

=

(

c1 ξ1(t) c2 ξ2(t)
c1 η1(t) c2 η2(t)

)

(16)

for some constants c1, c2.

10



Proof of Proposition 1. Assume p is odd. One has to check that at the end of γ+, x2;4
is non-zero and purely imaginary. According to (13) if we start at t = 0, when returning
to it after the loop γ+ the only changes are due to the determination of log(1− t), which
changes by −2π i. Hence, the value of x2;4 at the end of γ+ is, except by normalizing
factors, equal to −1

2
(a + 2) × (2π i) × ξ1(0) which is 6= 0 according to (12). In a similar

way after the loop γ− the change is due to the determination of log(1 + t) which cancels
the one introduced by log(1 − t). So, we get the identity for Φ2 after traveling along
γ− ◦ γ+. Furthermore, starting at t = 0, both M

γ+
1 and M

γ−
1 are unipotent. Hence, they

are in (G1)
0 according to Lemma 1 in [9]. In the case p even, the proof follows similar

steps. �

4 Study of second and third order variational equa-

tions

The variables in (9) satisfy the following equations

ẋ1;2,2 =
1

1+µ
x3;2,2, ẋ1;2,4 =

1
1+µ

x3;2,4, ẋ1;4,4 =
1

1+µ
x3;4,4,

ẋ3;2,2 = −D2, ẋ3;2,4 = −DM , ẋ3;4,4 = −D4,

(17)

where
D2(t) := x22;2(t)− 2r(t)ẋ22;2(t), D4(t) := x22;4(t)− 2r(t)ẋ22;4(t),

DM(t) := x2;2(t)x2;4(t)− 2r(t)ẋ2;2(t)ẋ2;4(t).

In a similar way, the variables in (10) involve the functions D2(t),D4(t) and DM(t). The
equations are given in appendix 1.

The proof of Propositions 2 and 3 require the computation of some integrals along
the path γ− ◦ γ+. In what follows, given a function f and a concrete determination f(0)
at t = 0, we shall denote by f+(z) the values it takes along γ+ or along γ− when it
changes in a continuous way from t = 0, and by f−(z) the values it takes along γ− after
traveling along γ+ and returning to t = 0, taking into account possible changes in the
determination. Assume that f−(z) = f+(z) + f̂(z) for some f̂(z). Then

∫

γ−◦γ+
f(z)dz is

equal to −
∫

γ+
f̂(−z)dz if f+(z) is an even function (locally, around t = 0), and it is equal

to 2
∫

γ+
f+(z)dz −

∫

γ+
f̂(−z)dz if f+(z) is odd.

Proof of Proposition 2. It is clear that D2(t) involves only the functions r(t), ξ1(t), ξ̇1(t).
So, it is a polynomial. Moreover we recall that x1;3(t) = t/(1 + µ). Then

∫

γ

D2(t)dt = 0,

∫

γ

x1;3(t)D2(t)dt = 0

along any closed path γ. Therefore at the end of Γ we have xi;2,2 = 0 for i = 1, 3. In a
similar way x4;1,2 = 0 and x4;2,3 = 0 (see appendix 1).

Let us consider DM(t). First we shall prove that

∫

γ+

DM(t)dt = 0.

11



Using the normalization ξ1(1) = 1 and ξ̇(1) = a/4 a simple computation shows that (see
(13), (15) and (16))

DM(t) = − c2
2c1

(a+ 2)(log(1 + t)− log(1− t))D2(t) + h(t), (18)

where h(t) is a polynomial. We shall write D2(t) = 2c21k(t) where

k(t) :=
1

2
ξ21(t)−

1

a
(1− t2)ξ̇21(t). (19)

Lemma 3. The following identity holds:

∫ 1

0

k(t)dt = 0.

Proof. Using integration by parts, (11) and (12) we have
∫ 1

0

(

1

2
ξ21(t)−

1

a
(1− t2)ξ̇21(t)

)

dt =

∫ 1

0

1

2
ξ21(t)dt−

1

a
(1− t2)ξ̇1(t)ξ1(t)|10 +

∫ 1

0

1

a
ξ1(t)[(1− t2)ξ̈1(t)− 2tξ1(t)]dt=

∫ 1

0

(

1

2
ξ21(t)+

1

a

[

−a
2
ξ21(t) +

1− t2

2
ξ1(t)ξ̈1(t)

])

dt =
1

2a

∫ 1

0

(1− t2)ξ1(t)ξ̈1(t)dt = 0.

Last equality follows because ξ1 is an orthogonal polynomial in [−1, 1] with respect to the
weight 1 − t2, hence, orthogonal to ξ̈1 and the product of both polynomials is an even
function. �.

Let K(t) be the primitive of k(t) such that K(0) = 0. Notice that after Lemma 3,
K(1) = 0. Now we shall apply the following result

Lemma 4. Let g be a holomorphic function in a simply connected domain containing
γ+ and let G be a primitive of g. Then

∫

γ+
g(t) log(1 − t)dt = 2π i(G(1) − G(0)) =

2π i
∫ 1

0
g(t)dt.

Using Lemmas 3 and 4 we have
∫

γ+

log(1− t)D2(t)dt = 2c21

∫

γ+

log(1− t)k(t)dt = 0

and then from (18),
∫

γ+
DM(t)dt = 0.

The following expressions are easily obtained

DM,−(t) = DM,+(t)− π i
c2
c1
(a+ 2)D2(t),

D4,−(t) = D4,+(t)− 2π i
c2
c1
(a+ 2)DM,+(t)− π2 c

2
2

c21
(a+ 2)2D2(t), (20)

x1;3(t)DM,−(t) =
t

1 + µ
DM,+(t)− π i

c2
c1

(a+ 2)

1 + µ
tD2(t),

where DM,+(t) and D4,+(t) are odd and even functions respectively. We recall also that
D2(t) is an even function. Therefore,

∫

γ−◦γ+

DM(t)dt,

∫

γ−◦γ+

D4(t)dt and

∫

γ−◦γ+

x1;3DM(t)dt

12



reduce to linear combinations of
∫

γ+
DM(t)dt,

∫

γ+
D2(t)dt and

∫

γ+
tD2(t)dt which are equal

to zero.
Furthermore γ−1

− ◦ γ−1
+ is the complex conjugate of γ− ◦ γ+. Moreover, we know that

log(1 + t) − log(1 − t) does not change determination after traveling through γ− ◦ γ+.
Then, the same is true for DM ,D4 and x1;3DM . Therefore

∫

Γ
DM ,

∫

Γ
D4 and

∫

Γ
x1;3DM

are all zero.
Using (17), (43) and (44) (see appendix 1) we get that after traveling along Γ, the

following elements are zero

x1;2,4, x3;2,4, x3;4,4, x2;1,2, x2;2,3, x2;1,4, x4;1,4, x4;3,4.

This ends the proof of Proposition 2. �.

Proof of Proposition 3. We begin with the differential equations

ẋ2;2,2,4(t) = r−2(t)x4;2,2,4(t)− 2r−3(t)(2x4;2(t)x1;2,4(t) + x1;2,2(t)x4;4)(t),

ẋ4;2,2,4(t) = −r(t)x2;2,2,4(t)− 2x2;2(t)x1;2,4(t)− x2;4(t)x1;2,2(t) + r(t)x22;2(t)x2;4(t).
(21)

After traveling along γ− ◦ γ+ we get, using Proposition 1

x2;2,2,4 =

∫

γ−◦γ+

(x1;2,2(t)D4(t) + 2x1;2,4(t)DM(t)− r(t)x22;2(t)x
2
2;4(t))dt, (22)

where x1;2,2(t), x1;2,4(t), are the solutions of (17) with initial conditions x1;2,2(0) = 0 and
x1;2,4(0) = 0. In a similar way we get

x4;2,4,4 =

∫

γ−◦γ+

(−2x1;2,4(t)DM(t)− x1;4,4(t)D2(t) + r(t)x22;2(t)x
2
2;4(t))dt. (23)

To prove Proposition 3, it is sufficient to prove that the integrals in (22) and (23) are real
and different from zero. From (22) and (23)

x2;2,2,4 + x4;2,4,4 =

∫

γ−◦γ+

(x1;2,2(t)D4(t)− x1;4,4(t)D2(t))dt. (24)

On the other hand, using (17), a simple computation shows that

x1;2,2(t)D4(t)− x1;4,4(t)D2(t) =
d

dt
[(−x1;2,2(t)x3;4,4(t) + x1;4,4(t)x3;2,2(t)].

We recall that, if p is odd, x1;2,2(t) and x3;2,2(t) are polynomials equal to zero at t = 0.
This implies that the primitive involved in (24) becomes null at both ends. Therefore
x2;2,2,4 + x4;2,4,4 = 0 and it is sufficient to consider x2;2,2,4.

We claim that the following relations hold (see appendix 2 for the proofs)

∫

γ−◦γ+

r(t)x22;2(t)x
2
2;4(t)dt = 2π2c21c

2
2(a + 2)2

∫ 1

0

r(s)ξ41(s)ds. (25)

∫

γ−◦γ+

x1;2,2(t)D4(t) =

∫

γ−◦γ+

x1;2,4(t)DM(t) = 8π2c21c
2
2

(a+ 2)2

1 + µ

∫ 1

0

K2(s)ds (26)

13



Therefore we obtain the following real expression for x2;2,2,4

x2;2,2,4 = 24π2c21c
2
2(a+ 2)2

∫ 1

0

[

1

1 + µ
K2(t)− 1

12a
(1− t2)ξ41(t)

]

dt.

Next lemma ends the proof of Proposition 3.

Lemma 5. The following inequality holds for any p > 2

Z :=

∫ 1

0

[

1

1 + µ
K2(t)− 1

12a
(1− t2)ξ41(t)

]

dt > 0.

This lemma will be proved in the next section. We recall that ξ1(t) and K(t) are
polynomials of degrees p− 1 and 2p− 1, respectively. So, for a given p, not too large, one
can compute exactly the value of Z. To illustrate some of the difficulties that appear to
prove that Z > 0, for arbitrary p > 2, we show first a couple of plots. Let us introduce

Ileft =

∫ 1

0

1

1 + µ
K2(t) dt, Iright =

∫ 1

0

1

12a
(1− t2)ξ41(t) dt, (27)

both integrands being non-negative everywhere. Figure 4 left shows, for a moderate value
p = 9, the function ξ1, i.e., the Jacobi polynomial P 1,1

8 with the normalization introduced

in Section 3 and also the functions
1

1 + µ
K2(t),

1

12a
(1− t2)ξ41(t) after multiplication by a

suitable constant to make them visible. One can observe that the dominant contributions
to the integrals come from a narrow domain close to t = 1. We shall see in the proof that
this domain is O(a−1) and it is essential for the proof. On the right part of the figure we
display the ratio R(p) = Ileft/Iright as a function of log(a(p)) up to p = 3 162, the first value
of p for which a(p) > 107, recalling a(p) = p2+ p− 2. The computations are done exactly
(using PARI) in rational arithmetic; some fractions require lots of digits. For instance,
the integral in Z multiplied by 1 + µ, requires up to 4 273 digits in the numerator and
up to 4 293 in the denominator for p up to 3 162. Values of R(p) for small p are shown
in Table 1. One checks that for p = 2 the ratio is 1: both integrals are equal and cancel.
One can also observe that R(p) behaves almost linearly as a function of log(a(p)). A fit
suggests R(p) ≈ α + β log(a(p)) with β = 3/4. We shall comment on this behaviour in
Remark 6.
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Figure 4: Left: The solution ξ1 for p = 9 and the corresponding integrands in (27)
multiplied by 5 × 104. The largest one is the term in K2. Right: The ratio R(p) vs
log(a(p)).

p R(p) p R(p)
2 1 11 22759394912/5308411131
3 2 12 16777562286/3791260061
4 172/67 13 1301661512339/285994227707
5 663/223 14 3937129140486/843537994141
6 3952/1201 15 69209389132017/14494323713237
7 711763/200413 16 717917637801596207/147261612942021091
8 9537221/2527823 17 41008730304053787586/8253073211613057511
9 99832/25177 18 105957929821568901427/20952458480229302251
10 404790839/97889959 19 91823182181213244502/17863603738874767317

Table 1: The ratio R(p) = Ileft/Iright for small values pf p.
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5 Proof of lemma 5.

Before proving (27) we sketch the steps to be followed.

• First we look at the limit behaviour of ξ1(t) near t = 1 as p goes to infinity. A
suitable scaling shows that they tend to the J1 Bessel function.

• We introduce t2 = 1− 4s2/a ∈ [0, 1] where s2 will be selected as a rational number
close to the second positive zero of J1. Then we write

Z >

∫ 1

t2

1

1 + µ
K2(t) dt−

∫ 1

0

1

12a
(1− t2)ξ41(t) dt =

I
[t2,1]
left (ξ1)− (I

[0,t2]
right (ξ1) + I

[t2,1]
right (ξ1)), (28)

where I
[t∗,t∗∗]
left (ξ1) denotes the integral Ileft but with the integration restricted to the

interval [t∗, t∗∗]. The notation I
[t∗,t∗∗]
right (ξ1) has a similar meaning.

• The integrals on [0, t2] and [t2, 1] are bounded using different approximations of ξ1.

Lemma 6. Under the change of variables t = 1− 4s/a the functions ξ1(t), which depend
on p, tend to a limit function f(s) in any compact domain of the form s ∈ [0, sf ] when
p → ∞. Furthermore the limit function satisfies f(s) = J1(

√
8s)/

√
2s, where J1 denotes

the Bessel function of first order.

Proof. We recall that ξ1(t) is a polynomial solution of (11) of degree p − 1, which has
been normalised so that ξ1(1) = 1. The change of variables t = 1 − 4s/a leads to the
equation

(

s− 2

a
s2
)

d2ξ1
ds2

+

(

2− 8

a
s

)

dξ1
ds

+ 2ξ1 = 0, ξ1(0) = 1, (29)

where we denote the new dependent variable as ξ1(s). Letting a → ∞ we obtain, for
bounded values of s,

s
d2f

ds2
+ 2

df

ds
+ 2f = 0, f(0) = 1, (30)

where we denote as f the limit function. Let ξ1(s) =
∑

n≥0 bns
n, b0 = 1 and f(s) =

∑

n≥0 fns
n, f0 = 1 be the expansions of ξ1 and f around s = 0. From (29) and (30) we

obtain the recurrences

bn+1 = −2(1− n(n+ 3)/a)

(n+ 1)(n+ 2)
bn, fn+1 = − 2

(n+ 1)(n+ 2)
fn, (31)

both of them to be compared later. In particular fn = (−2)n

n!(n+1)!
. Introducing σ =

√
8s it is

immediate to identify f(s) = J1(σ)/
√
2s. �

Note that t = 0 corresponds to s = a/4. Now we select a fixed value of s, for
instance close to the second positive zero of f , ssecond ≈ 929/151. We take the value of s
as s2 = 929/151 and then t2 = 1 − 4s2/a, depends on a. From now on we shall consider
p ≥ 5 in order to have t2 ∈ [0, 1].

Let us consider first the integrals in (28) on [t2, 1] and use the change t = 1 − 4s/a
introduced in Lemma 6. To simplify formulas, we shall keep the same notation ξ1(s) for
the function ξ1 expressed in terms of the variable s.
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The idea is to approximate ξ1 by the expansion to order 16 of f , that is f̃(s) =
∑16

n=0 fns
n. To bound the error we note that from (31) it follows that |f(s) − f̃(s)| and

|df/ds(s)− df̃/ds(s)| can be bounded in [0, s2] by |f17|max{s172 , 17s162 } < 5× 10−12 =: ǫ1.
In a similar way, if we introduce ξ̃1(s) =

∑16
n=0 bns

n, we get |ξ1(s) − ξ̃1(s)| < ǫ1 and

|dξ1/ds(s)− dξ̃1/ds(s)| < ǫ1. Furthermore, it is clear that ξ̃1 is a polynomial of degree 16
in s and of degree 15 in a−1 with rational coefficients. So, we can write ξ̃1(s) − f̃(s) =
∑15

k=1 a
−kQk(s) for some polynomials Qk(s) that can be computed using (exact) rational

arithmetic. For p ≥ 3 162 we get

|ξ̃1(s)− f̃(s)| < 1.9× 10−7.

The same bound holds for |ξ̃′1(s)− f̃ ′(s)| where ′ denotes d/ds. Then, for s ∈ [0, s2],

|ξ1(s)− f̃(s)| < 2× 10−7 =: ǫ,

∣

∣

∣

∣

∣

dξ1
ds

(s)− df̃

ds
(s)

∣

∣

∣

∣

∣

< ǫ. (32)

Moreover, the following inequalities, to be used in the next lemmas, are trivial for 0 ≤
s ≤ s2

s
∣

∣

∣
f̃
∣

∣

∣
≤ 1, s

∣

∣

∣
f̃ 2
∣

∣

∣
≤ 1, s

∣

∣

∣
f̃ 3
∣

∣

∣
≤ 1, (33)

∣

∣

∣
f̃
∣

∣

∣
+ s

∣

∣

∣

∣

∣

df̃

ds

∣

∣

∣

∣

∣

≤ 1, f̃ 2 + s
df̃

ds

2

≤ 1. (34)

Using the variable s we can write

I
[t2,1]
right (ξ1) =

8

3a3

∫ s2

0

s

(

1− 2s

a

)

ξ41(s)ds <
8

3a3

∫ s2

0

sξ41(s)ds =: J
[0,s2]
right (ξ1)

and

I
[t2,1]
left (ξ1) =

8(a− 2)

a4

∫ s2

0

[
∫ s

0

(ξ1(u)
2 − u(1− 2u/a)ξ′1(u)

2)du

]2

ds =: I
[0,s2]
left (ξ1).

We write some inequalities:

I
[t2,1]
right (ξ1) ≤ J

[0,s2]
right (ξ1) ≤ J

[0,s2]
right (f̃) + |J [0,s2]

right (ξ1)− J
[0,s2]
right (f̃)|, (35)

I
[t2,1]
left (ξ1) ≥ I

[0,s2]
left (f̃)− |I [t2,1]left (ξ1)− I

[0,s2]
left (f̃)|, (36)

where I∗∗ (f̃) and J
∗
∗ (f̃) are defined as the corresponding I∗∗ (ξ1) and J

∗
∗ (ξ1) replacing ξ1 by

f̃ .

Lemma 7. With the notation introduced before, the following bounds hold

a3I
[0,s2]
left (f̃) > Ml, a3J

[0,s2]
right (f̃) < Mr,

where Ml and Mr can be taken equal to 0.55555 and 0.13310 respectively.

Proof. A symbolic manipulator (PARI) has been used to compute the integrals above
using (exact) rational arithmetic. The values obtained, displaying only the first 10 decimal
digits, are 0.5555528023... and 0.1330950485... . �
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Lemma 8. The differences of integrals using ξ1 and f̃ are bounded as follows:

a3|J [0,s2]
right (ξ1)− J

[0,s2]
right (f̃)| < 0.2× 10−4 =: Er,

a3|I [t2,1]left (ξ1)− I
[0,s2]
left (f̃)| < 0.5× 10−3 =: El.

Proof. We write ξ1(s) = f̃(s) + δ(s). Using (32) we have |δ(s)| < ǫ for s ∈ [0, s2]. Then
the inequalities (33) give, even using very rough estimates,

|J [0,s2]
right (ξ1)− J

[0,s2]
right (f̃)| ≤ 8

3a3

(

(4ǫ+ 6ǫ2 + 4ǫ3)s2 +
1

2
ǫ4s22

)

< 0.2× 10−4.

For the left integral we write

|I [t2,1]left (ξ1)− I
[0,s2]
left (f̃)| = 8

a3
(1− 2/a)

∣

∣

∣

∣

∫ s2

0

K(s; ξ1)
2ds−

∫ s2

0

K(s; f̃)2ds

∣

∣

∣

∣

,

where

K(s; ξ1) :=

∫ s

0

[

ξ1(u)
2 − u(1− 2u/a)

(

dξ1
du

(u)

)2
]

du

and similar for K(s; f̃).
As before, using ξ1(s) = f̃(s) + δ(s) and ξ′1(s) = f̃ ′(s) + δ′(s), with |δ(s)|, |δ′(s)| < ǫ

for s ∈ [0, s2] in K(s; ξ1), we get

K(s; ξ1) = K(s; f̃) + A(s),

where

A(s) =

∫ s

0

[

2δf̃ + δ2 − u

(

1− 2u

a

)

(2δ′f̃ ′ + (δ′)2)

]

du.

Therefore

|I [t2,1]left (ξ1)− I
[0,s2]
left (f̃)| = 8

a3
(1− 2/a)

∣

∣

∣

∣

∫ s2

0

(2A(s)K(s; f̃) + A(s)2)ds

∣

∣

∣

∣

.

Moreover using (34) we obtain

|A(s)| ≤
∫ s

0

(

2ǫ|f̃ |+ ǫ2 + u

∣

∣

∣

∣

1− 2u

a

∣

∣

∣

∣

(2ǫ|f̃ ′|+ ǫ2)

)

du ≤
∫ s

0

(

ǫ2(1 + u) + 2ǫ(|f̃ |+ u|f̃ ′|)
)

du ≤ 2ǫs+ ǫ2
(

s+
s2

2

)

.

Then we obtain the bound
∫ s2

0

A(s)2ds ≤ 4

3
ǫ2s32 + 4ǫ3

(

s32
3
+
s42
8

)

+ ǫ4
(

s32
3
+
s42
4
+
s52
20

)

< 2× 10−11 =: ∆1.

In a similar way we get |K(s; f̃)| ≤ s for s ∈ [0, s2] and

∫ s2

0

|K(s; f̃)A(s)| ≤ 2

3
ǫs32 + ǫ2

(

s32
3
+
s42
8

)

< 0.311× 10−4 =: ∆2.
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Finally we obtain

a3|I [t2,1]left (ξ1)− I
[0,s2]
left (f̃)| ≤ 8(1− 2/a)(2∆2 +∆1) < 0.5× 10−3.

�

Let us consider now I
[0,t2]
right (ξ1). The following lemma provides an approximation for ξ1

in [0, t2].

Lemma 9. In the interval [0, t2] the function ξ1(t) is bounded by

|ξ1(t)| <
1.69√

p− 1(p + 1)
(1− t2)−3/4. (37)

Proof. Let us introduce the new variables z and θ in (11) as

z(t) = ξ1(t)
(

1− t2
)3/4

, θ(t) =

(

n+
3

2

)

(π

2
− arccos(t)

)

, (38)

where n = p− 1 (see the beginning of Section 3). From (38) it follows

dz

dθ
= −y, dy

dθ
= z − h(θ)z, h(θ) =

3

(2n+ 3)2 cos2(θ/(n+ 3/2))
,

and introducing polar coordinates z = R cos(γ), y = R sin(γ) and ϕ = γ − θ we reach the
simple system

dR

dθ
= −1

2
R sin(2(θ + ϕ))h(θ),

dϕ

dθ
= −1

2
h(θ)(1 + cos(2(θ + ϕ))), (39)

where R0 := R(t = 0) = |ξ1(0)|, if we assume p odd. For p even some sin, cos functions
are exchanged and then R0 = |ξ̇1(0)/(n+ 3/2)|. In any case, ϕ0 := ϕ(t = 0) is taken as 0
or π in order to have R0 cos(ϕ0) = ξ1(0) if p is odd, and R0 cos(ϕ0) = −ξ̇1(0)/(n + 3/2),
if p is even.

The equations (39) provide immediately

R0 exp(−B(θ)/2) ≤ R(θ) ≤ R0 exp(B(θ)/2), −B(θ) ≤ ϕ(θ)− ϕ0 ≤ B(θ), (40)

where

B(θ) =

∫ θ

0

h(τ)dτ =
3/2

2n+ 3
tan(θ/(n+ 3/2)) ≤ 3/2

2n+ 3

t2
√

1− t22
<

6√
512s2

=: ∆,

where we used t2 = 1− 4s2/a.
Now we recover ξ1(t) = R(t) cos(ϕ+ θ)(1− t2)−3/4. Then

|ξ1(t)| ≤ R(t)(1− t2)−3/4 ≤ R0 exp(∆/2)(1− t2)−3/4.

Using the bounds given in (12), for |ξ1(0)| and |ξ̇1(0)|, for odd and even p respectively, we
get

|ξ1(t)| ≤
√

8/π
1

(p+ 1)
√
p− 1

exp(∆/2)(1− t2)−3/4

and (37) follows easily. �
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Remark 4. Using also a rough bound from dϕ/dθ as given in (40) we obtain variations
of ϕ bounded by 0.107, when expressing ϕ as a function of t. It is also clear that for any
fixed t, away from 1, one has bounds O(a−1/2). Better estimates on R,ϕ and therefore on
ξ1, can be obtained using averaging to study the behaviour of the solutions of (39). See
also remark 6.

Remark 5. The proof of Lemma 9 can be easily extended to arbitrary Gegenbauer poly-
nomials C

(α)
n (see [1] for definition and properties), by introducing ξ(t)(1 − t2)α/2, θ =

(n+ α)(π/2− arccos(t)).

Lemma 10. The following bound holds for all p > 3 162

a3
∣

∣

∣
I
[0,t2]
right (ξ1)

∣

∣

∣
< 0.01382 =: Rr.

Proof. From Lemma 9 one has to bound

∣

∣

∣
I
[0,t2]
right (ξ1)

∣

∣

∣
<

∫ t2

0

1

12a

(

1.69√
p− 1(p+ 1)

)4
(

1− t2
)−2

dt.

Using that
1

(p− 1)2(p+ 1)4
< 1.00032a−3 holds for p > 3 162, the integral

∫ t2
0
(1− t2)−2dt

=
1

4

(

2t2
1− t22

+ log

(

1 + t2
1− t2

))

and the explicit value t2 = 1 − 4s2/a, the lemma follows

easily. �

Finally, from (28), (35), (36) and the above lemmas we can write

a3Z ≥Ml −El − (Rr +Mr + Er) > 0.4 .

This ends the proof of Proposition 3 and therefore finishes the proof of Theorem 4. �.

Remark 6. In fact, the neglected integral I
[0,t2]
left (ξ1) has an important (positive) contribu-

tion to Z in the sense that the ratio I
[0,1]
left (ξ1)/I

[t2,1]
left (ξ1) tends to ∞ when p→ ∞.

To give some idea about the claim above, let us replace s2 by sm = A with a fixed value
A >> 1 and, hence, A << a for a large enough. Then we replace t2 by tm = 1 − 4sm/a.
We can derive an approximation for ξ1(t) in [0, tm] by using the same variables introduced
in the proof of Lemma 9. Now |ϕ(θ)−ϕ(0)| < ∆m where ∆m = 6/

√
512A = O(A−1/2) as

follows from (40). In a similar way R(θ) = R0(1 +O(A−1/2)) for t ∈ [0, tm].
Then we obtain the approximations

ξ1(t) ≈ R0 cos(ϕ0) cos(θ)(1− t2)−3/4 ≈ is

√

8

π
a−3/4 cos(θ)(1− t2)−3/4,

where we recall θ = (n+ 3/2)(π/2− arccos(t)) and is is the sign of the dominant term in
ξ1(s) (see (12)). The factor cos(θ) has to be replaced by sin(θ) for p even. We assume p
odd in what follows.

Introducing ψ = θ/(n+ 3/2) we obtain the following approximation

ξ1(ψ) ≈ is

√

8

π
a−3/4(cos(ψ))−3/2 cos((n + 3/2)ψ).
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Using ψ as independent variable the function k introduced in (19) becomes, up to some
constant

k(ψ) =
1

2
a−3/2(cos(ψ))−3(cos((n+ 3/2)ψ))2− (41)

a−5/2

[

3

2
(cos(ψ))−5/2 sin(ψ) cos((n+ 3/2)ψ)− (n +

3

2
)(cos(ψ))−3/2 sin((n+ 3/2)ψ)

]2

.

As n is large, when we integrate (41) one can replace (cos((n + 3/2)ψ))2 and (sin((n +
3/2)ψ))2 by the average value 1/2 and sin((n + 3/2)ψ) cos((n + 3/2)ψ) by zero. Fur-
thermore, if A is large enough, one can neglect the square of the first term inside [∗]2
in front of the square of the second one. Summarizing, we can approximate k(ψ) by
−(1/4)a−3/2(cos(ψ))−3.

Let χ = π
2
− ψ. Then up to some constant, the left integral I

[0,tm]
left (ξ1), can be written

(up to some constant) as

1

8a3

∫ π/2

O(a−1/2)

(

∫ π/2

χ

du

(sin(u))2

)2

sin(χ)dχ =
1

8a3

∫ π/2

O(a−1/2)

cos2 χ

sinχ
dχ. (42)

The dominant contribution to (42) comes from the domain χ = O(a−1/2) and it is imme-
diate that the result is O(log(a)). This proves the remark. Note that this also explains
the results displayed in Figure 4 right. We do not state this result as a Proposition be-
cause, for shortness, the bounds of the errors in the application of averaging are not made
explicit.

6 Conclusions

We have presented a very simple mechanical system for which, for some exceptional values
of a mass ratio, a theoretical proof of non-integrability has defeated the methods available
up to now. A new approach, based on the use of higher order variational equations
introduced in [6] or, equivalently, on the jet transport along a suitable chosen path in
complex time, allows to establish the desired non-integrability result. The proof involves
the use of different singularities and, hence, some amount of global information.

Appendix 1

For completeness in this appendix we give explicitly the second variational equations for
the variables which appear in (10).

ẋ2;1,2(t) = r−2(t)x4;1,2(t)− 2r−1(t)ẋ2;2(t),
ẋ4;1,2(t) = −r(t)x2;1,2(t)− x2;2(t),

ẋ2;1,4(t) = r−2(t)x4;1,4(t)− 2r−1(t)ẋ2;4(t),
ẋ4;1,4(t) = −r(t)x2;1,4(t)− x2;4(t),

ẋ2;2,3(t) = r−2(t)x4;2,3(t)− 2r−1(t)x1;3(t)ẋ2;2(t),
ẋ4;2,3(t) = −r(t)x2;2,3(t)− x1;3(t)x2;2(t),

ẋ2;3,4(t) = r−2(t)x4;3,4(t)− 2r−1(t)x1;3(t)ẋ2;4(t),
ẋ4;3,4(t) = −r(t)x2;3,4(t)− x1;3(t)x2;4(t).
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Using Proposition 1, we obtain the following values after traveling along γ− ◦ γ+

x2;1,2 =

∫

γ−◦γ+

DM(t)dt, x2;1,4 =

∫

γ−◦γ+

D4(t)dt,

(43)

x4;1,2 =

∫

γ−◦γ+

−D2(t)dt, x4;1,4 =

∫

γ−◦γ+

−DM(t)dt,

x2;2,3 =

∫

γ−◦γ+

x1;3(t)DM(t)dt, x2;3,4 =

∫

γ−◦γ+

x1;3(t)D4(t)dt,

(44)

x4;2,3 =

∫

γ−◦γ+

−x1;3(t)D2(t)dt, x4;3,4 =

∫

γ−◦γ+

−x1;3(t)DM(t)dt,

Appendix 2

In this appendix we give the details for the proof of (25) and (26). Using the notation
introduced in Section 4 we get, ξ2,−(t) = ξ2,+(t)− π i(a+ 2)ξ1(t), and

r(t)ξ21(t)ξ
2
2,−(t) = r(t)ξ21(t)ξ

2
2,+(t) + π(a + 2)r(t)ξ31(t)(−2 iξ2,+(t)− π(a+ 2)ξ1(t)),

where r(t)ξ21(t)ξ
2
2,+(t) is an even function of t. Then

∫

γ−◦γ+

r(t)ξ21(t)ξ
2
2(t)dt = −π(a + 2)

∫

γ+

r(−t)ξ31(−t)[−2 iξ2,+(−t)− π(a+ 2)ξ1(−t)]dt

= −2π i(a+ 2)

∫

γ+

r(t)ξ31(t)ξ2,+(t)dt = −π i(a+ 2)2
∫

γ+

log(1− t)r(t)ξ41(t)dt.

Now using Lemma 4 we obtain the following identity, proving claim (25) in Section 4
∫

γ−◦γ+

r(t)ξ21(t)ξ
2
2(t)dt = 2π2(a+ 2)2

∫ 1

0

r(t)ξ41(t)dt.

Let us consider now the first integral in (26). From (20) we obtain

x1;2,2(t)D4,−(t) = x1;2,2(t)D4,+(t)−2π i
c2
c1
(a+2)x1;2,2(t)DM,+(t)−

c22
c21
π2(a+2)2x1;2,2(t)D2(t),

where x1;2,2(t)D4,+(t) is an even function. Then
∫

γ−◦γ+

x1;2,2(t)D4(t) = 2π i
c2
c1
(a+ 2)

∫

γ+

x1;2,2(−t)DM,+(−t)dt

+
c22
c21
π2(a+ 2)2

∫

γ+

x1;2,2(−t)D2(−t)dt.

The second integral above is equal to zero because x1;2,2(t) and D2(t) are polynomials.
Using (18) and Lemma 4

∫

γ+

x1;2,2(t)DM,+(t)dt =
c2
2c1

(a+ 2)

∫

γ+

x1;2,2(t)D2(t) log(1− t)dt =

c2
c1
(a+ 2)π i

∫ 1

0

x1;2,2(t)D2(t)dt
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Taking into account that D2(t) = 2c21k(t) and

x1;2,2(t) = − 2c21
1 + µ

∫ t

0

K(s)ds

we obtain
∫

γ+

x1;2,2(t)DM,+(t)dt = 4π ic31c2
(a + 2)

1 + µ

∫ 1

0

K2(t)dt. (45)

Therefore we obtain finally

∫

γ−◦γ+

x1;2,2(t)D4(t) = 8π2c21c
2
2

(a + 2)2

1 + µ

∫ 1

0

K2(t)dt

This proves the required expression for the first integral in (26).
In a similar way it is not difficult to see that

∫

γ−◦γ+

x1;2,4(t)DM(t) = −π ic2
c1
(a+ 2)

[
∫

γ+

x1;2,2(t)DM,+(t) +

∫

γ+

x1;2,4(t)D2(t)dt

]

Now we use an argument similar to the one used to prove that the expression in (24) is
zero. From

x1;2,2(t)DM(t)− x1;2,4(t)D2(t) =
d

dt
[−x1;2,2(t)x3;2,4(t) + x1;2,4(t)x3;2,2(t)]

it follows
∫

γ+

(x1;2,2(t)DM(t)− x1;2,4(t)D2(t))dt = 0

and, hence,

∫

γ−◦γ+

x1;2,4(t)DM(t) = −2π i
c2
c1
(a+ 2)

∫

γ+

x1;2,2(t)DM,+(t)dt

which proves the second part of (26) using (45).
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