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Abstract

Under some non degeneracy conditions we give asymptotic formulae for the
stability parameter of a family of singular–limit Hill’s equation which depends
on three parameters. We use the blow up techniques introduced in [7]. The main
contribution of this paper concerns the study of the non degeneracy conditions. We
give a geometrical interpretation of them, in terms of heteroclinic orbits for some
related systems. In this way one can determine values of the parameters such that
the non degeneracy conditions are satisfied. As a motivation and application we
consider the vertical stability of homographic solutions in the three-body problem.

1 Introduction

Given α ∈ (0, 2) we consider the following Hill’s equations

ẍ − (λ1 + λ2g
α−2)x = 0, (1)

where λ1, λ2 ∈ R, λ2 6= 0, g = g(t; δ) is a periodic function that depends on a parameter
δ ∈ (0, δ0] with δ0 small enough, g(t; δ) > 0 for all t and g(0; δ) → 0 for δ → 0. Therefore, the
equation (1) has a singularity at t = 0 for δ = 0.

The purpose is to study the stability of (1) for small values of δ > 0 under some hypotheses
to be specified below.

There is an exhaustive bibliography on the topic of stability of Hill’s equation ([5]). The
main point of present paper lies in the fact that the family of periodic functions that we consider
approaches a singular limit. This is a natural problem which appears in some applications to
be described later.

Let U(z) = zαV (z) be a real function defined on an open interval (0, zb) where V (z) is an
analytic function for z > 0 such that

(A1) there exists za, 0 < za < zb, such that V (za) = 0, V (z) < 0 for all z ∈ (0, za) and
Vz(z) > 0 for all z ∈ (0, zb). (Vz(z) stands for the derivative of V (z) with respect to z.)

(A2) V (z) = γ + zsV1(z), with γ < 0, s > 2−α
2 , and V1(z) is an analytic function on an open

set J , J ⊃ [0, za].

Let us consider the conservative system

z̈ = −Uz(z), (2)

with U(z) satisfying (A1) and (A2). We denote the energy of (2) by

E =
ż2

2
+ U(z). (3)

We shall assume the following hypothesis for g(t; δ)
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(B) For δ > 0, g(t; δ) is the periodic solution of (2) on the energy level E = −δ such that
g(0; δ) = g0, ġ(0; δ) = 0 being g0 the minimum of g(t; δ).

Note that for δ > 0, g(t; δ) satisfying (B) is an even periodic function with period T =
T (δ) that tends to a finite value when δ goes to 0. Moreover, from (3) we have g0 =
(

δ

|γ|

)
1

α

(1 + O(δ
s
α )).

The motivation to study the equation (1) comes from a problem on Celestial Mechanics. The
planar three body problem with some homogeneous potential has the well known homographic
solutions. For these solutions the configuration of the bodies is preserved for all time. In [6] and
[7] the linear stability of these homographic solutions was studied after reducing the problem
to a four order linear nonautonomous system. However, if we consider the planar homographic
solutions in the spatial three body problem, the vertical stability is determined by an equation
of the type (1) (see [9]) where the related potential U(z) is the following one

U(z) = zα

(

− 1

α
+

z2−α

2

)

(4)

with α ∈ (0, 2). An important particular case is the Newtonian potential which corresponds to
(4) with α = 1. In this case, g(t; δ) = 1 − e cos t where δ = (1 − e2)/2 and e is the eccentricity
associated to the orbit.

We shall write the equation (1) as a first order system

ẋ = A(t)x, A(t) =

(

0 1
λ1 + λ2g

α−2 0

)

(5)

depending on three parameters, λ1, λ2 and δ. To simplify the notation the dependence on
these parameters will not be explicitly written if there is no confusion. We shall use the same
convention for all linear systems which appear in what follows and for their corresponding
monodromy matrices.

We note that system (5) is Hamiltonian, with Hamiltonian function

H(x1, x2, t) =
1

2

[

−(λ1 + λ2g
α−2)x2

1 + x2
2

]

, x = (x1, x2)
T .

Let Φ(t) be the fundamental matrix of system (5) such that Φ(0) = I, being I the identity
matrix. As usual, we define the stability parameter as tr = tr(Φ(T )) = µ + 1/µ where µ, 1/µ
are the eigenvalues of Φ(T ) (see [8]).

The following theorem gives us the asymptotic behaviour of tr as δ → 0. In this theorem,
we shall assume non degeneracy conditions in the sense that some coefficient is different from
zero. The meaning of this coefficient is that the dominant terms on the stability parameter are
the expected ones.

Theorem 1. Let us consider the system (5) where g(t; δ) satisfies the hypothesis (B) and

assume non degeneracy conditions. Let be λ̂ = γ (2−α)2

8 where γ is defined in (A2) and β =
√

1 − λ2

λ̂
. Assume λ2 6= 0 and λ2 6= λ̂. Then we have the following asymptotic behaviour for

the stability parameter when δ goes to 0

log |tr| = k1 −
2 − α

2α
β log δ (1 + o(1)) + . . . , if λ2 > λ̂,

tr = k2 + k3 cos

(

k4 −
2 − α

2α
β̂(1 + o(1)) log δ

)

+ . . . , if λ2 < λ̂.
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In the last case, β = β̂i. The coefficients kj , j = 1, . . . , 4 are constants with k3 6= 0, k2 +k3 < 0
and k2 − k3 > 0.

In the case λ2 > λ̂ (recalling that λ̂ < 0), for δ small enough we have that |tr| > 2, and
the system (5) is hyperbolic. If λ2 < λ̂, tr oscillates between k2 + k3 and k2 − k3 as δ tends
to zero. Then, depending on the values of k2 + k3 and k2 − k3, tr can cross the lines tr = −2
and tr = 2 infinitely many times for δ small enough. This would implies that infinitely many
intervals in δ where the system is elliptic alternate with infinitely many hyperbolic intervals.

We remark that in general, λ̂ depends on two parameters, that is λ̂(α, γ) < 0. However,

in the case (4), γ = −1/α and λ̂ = − (2−α)2

8α . According to the theorem, this is the critical
value of λ2 which separates oscillatory and exponential behaviour of tr. In particular, for the
Newtonian potential we get λ̂ = −1/8.

Theorem 1 can be applied to a particular family of Ince’s equations using the following
result.

Lemma 1. Let us consider the following Ince equation

(1 + a cos t)ÿ + b sin tẏ + (c + ad cos t)y = 0, (6)

where a, b, c and d are real parameters, b = 0 or b = −2a, and |a| < 1. Then (6) can be reduced
to the equation

ẍ −
(

λ1 +
λ2

1 + a cos t

)

x = 0 (7)

with λ1 = −d, λ2 = d − c if b = 0 and, λ1 = −d − 1, λ2 = d − c + 1 if b = −2a. Moreover, (6)
is the most general Ince equation that can be written as a Hill equation.

We shall give a proof of this lemma in the appendix 6. In fact, (7) is the equation obtained
using the homographic potential (4) with α = 1. Now we can apply theorem 1 to the equation
(6) with δ = (1 − a2)/2. We note that (6) depends on three parameters a, c and d and our
result applies for |a| ≈ 1. Moreover, in this case λ̂ = −1/8. In the plane of parameters (c, d),
λ2 = λ̂ defines a line d− c = −1/8 if b = 0 and d− c+1 = −1/8 if b = −2a. This line separates
oscillatory from exponential behaviour as |a| goes to 1, under non degeneracy conditions.

In section 2 we prove theorem 1 using the same techniques introduced in [7]. The idea is to
perform a blow up of the singularity which allows us to compute the dominant term of tr(Φ(T ))
as δ goes to 0, by using an appropriate approximation of Φ(T ) for δ small enough. Some values
of the parameters can cancel that dominant term and then our asymptotic formulae do not
hold. The nondegeneracy conditions are introduced in order to prevent this case. The precise
definition is postponed to the beginning of section 3 as definition 1, because it requires some
linear systems which are introduced in section 2. The rest of section 3 is devoted to the study of
the non degeneracy conditions. We shall see that they depend on the existence of heteroclinic
orbits in some related systems, in the sense that, if there are not heteroclinic orbits then, the
non degeneracy conditions are satisfied and the asymptotic formulae given in theorem 1 hold.
In the case of the homographic potential (4), we determine values of the parameters giving
rise to these heteroclinic orbits. We shall see that these values define some limit curves in
the (λ1, λ2)-plane as δ goes to zero. Furthermore, we have computed numerically tr for the
homographic potential with different values of α. Note that for general α, the solution g is
not available explicitly. Assume that α and δ are fixed. Then the curves tr= ±2 define the
stability and instability regions in the (λ1, λ2)-plane. In section 4 we show how these curves
tend to the ones defined by the heteroclinic orbits as δ goes to zero. In section 5 we study the
existence of collapsed gaps in the equation (7) for any value of e.
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2 Proof of theorem 1

Using the reversibility of the system, Φ(T ) can be written as

Φ(T ) = Φ−1(−T/2)Φ(T/2) = LΦ−1(T/2)LΦ(T/2) (8)

where L = diag(−1, 1).

In order to prove the theorem we shall work, for δ > 0, with a linear system without any
singularity. To this end, we introduce new variables defined by u = S(t)x, where S(t) =

diag(1, q), q = q(t; δ) defined as q := g
2−α

2 . We note that, for δ > 0, S(t) is non–singular for all
t. By introducing the new time τ via dt = qdτ , the new system is

u′ = B(τ)u, B(τ) = q(Ṡ + SA)S−1 =

(

0 1
λ2 + λ1q

2 q̇

)

, (9)

where ′ = d
dτ . We shall denote by T (δ), or simply by T , the period of g(t; δ) in the new time τ .

Let Ψ(τ) be the fundamental matrix of system (9) such that Ψ(0) = I. Then, Φ(t) =
S−1(t)Ψ(τ(t))S(0). As S(t) is T–periodic, we get that Φ(T ) = S−1(0)Ψ(T )S(0) and so, Φ(T )
and Ψ(T ) have the same eigenvalues. Using (8) it is easy to check that

Ψ(T ) = LΨ−1(T /2)LΨ(T /2). (10)

Our purpose is to obtain an expression of Ψ(T /2) for δ > 0 small enough in order to
compute the dominant terms of the trace of Ψ(T ). It turns out that the technique introduced
in [7] can be applied to our problem after some obvious modifications. In the rest of this section
we summarize the main steps of this technique and refer to [7] for the details.

We define Q = −(2 − α)g−α/2ġ = −(2 − α)q−α/(2−α) ġ where q = g(2−α)/2 as before. Then,
using the time τ , q(τ), Q(τ) is a solution of the following system











q′ = −1

2
qQ,

Q′ =
α

2(2 − α)
Q2 + (2 − α)q̂1−αUz(q̂),

(11)

where q̂ := q2/(2−α). From (3) we get that the system above has a first integral

E = q̂α

(

Q2

2(2 − α)2
+ V (q̂)

)

. (12)

The behaviour of the orbits of (11) is summarized in figure 1. On the level set E = 0 we distin-
guish two saddle points P± with (q,Q) = (0,±Qp), Qp = (2 − α)

√−2γ, and two heteroclinic
orbits γ0, γ+. The system (11) restricted to q = 0 does not depend on V (z) and it is easily
integrated. So we get for γ0, to be denoted as solution L1

qL1
(τ) ≡ 0, QL1

(τ) = −Qp tanh

(

α

2(2 − α)
Qpτ

)

.

Let us denote by qL2
(τ), QL2

(τ) the solution of the system (11) restricted to γ+ such that
QL2

(0) = 0. We note that this solution can not be obtained explicitly because it depends on
the potential V (z). However for the homographic potential (4) we get this solution explicitly
as

qL2
(τ) = qa/ cosh

(

2 − α

2
qaτ

)

, QL2
(τ) = Qp tanh

(

2 − α

2
qaτ

)

.
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Figure 1: Left: Phase portrait of (11) for α = 1 and U(z) = z(−1 + z/2). Right: An
illustration of the sections used in the proof.

Notice that qL2
(0) = z

(2−α)/2
a := qa.

We note that we are interested in the solutions of (11) near the heteroclinic cycle defined
by γ0, γ+ and the equilibria P±. More concretely, in the level E = −δ.

Given ǫ, ǫi, i = 0, . . . , 3, small enough, we define the following sections (see figure 1 right)

Σ0 = {(q,Q) | 0 < q < ǫ0, Q = 0}, Σ1 = {(q,Q) | 0 < q < ǫ1, Q = −Qp + ǫ},

Σ2 = {(q,Q) | q = ǫ, |Q + Qp| < ǫ2}, Σ3 = {(q,Q) | 0 < qa − q < ǫ3, Q = 0}.
For a fixed value of ǫ > 0, sufficiently small, we can take small enough ǫi for i = 0, . . . , 3, such
that the Poincaré maps P1 : Σ0 7→ Σ1, P2 : Σ1 7→ Σ2, and P3 : Σ2 7→ Σ3 be well defined. Figure
1 right shows an illustration of the sections to be used.

We denote by τL1
> 0 the time defined by QL1

(τL1
) = −Qp + ǫ, and sL2

> 0 such that
qL2

(−sL2
) = ǫ. Using the symmetry of (11) one has QL2

(sL2
) > 0. Note that τL1

and sL2
are

finite and independent of δ once ǫ is fixed.

For a fixed value of δ > 0 small enough, we consider the solution of (11) with E = −δ such
that (q(0), Q(0)) ∈ Σ0, q(0) = q0, the minimum of q(τ). Using the hypothesis (A2) and (12)

we get that q0 = q(0) = (δ/|γ|)(2−α)/(2α) (1 + O(δs/α)). Let τ1 be the smallest positive time
such that (q(τ1), Q(τ1)) ∈ Σ1. In a similar way we define τ2 such that (q(τ2), Q(τ2)) ∈ Σ2. It is
clear that τ1 and τ2 depend continuously on δ. Moreover τ1 → τL1

and T /2 − τ2 → sL2
when

δ → 0. We refer to [7] for the proof of the next lemma.

Lemma 2. Let ε > 0 be a fixed small enough value. Then, for any sufficiently small δ > 0 we
have

2

Qp + ε
log

(

ε

q(τ1)

)

≤ τ2 − τ1 ≤ 2

Qp − ε
log

(

ε

q(τ1)

)

. (13)

Furthermore, q(τ1) can be derived from (12) when Q = −Qp + ǫ, E = −δ. One easily
obtains

log

(

ǫ

q(τ1)

)

= −(2 − α)

2α
log δ (1 + o(1)) for δ → 0. (14)

5



System (9) can be written as

u′ = B(τ)u, B(τ) =

(

0 1
λ1q

2 + λ2 −Q/2

)

:= Ba(q(τ), Q(τ)). (15)

Let Ψ̃(τb, τa) be the transition matrix from τa to τb of system (9). Then, we can write

Ψ (T /2) = Ψ̃ (T /2, τ2) Ψ̃(τ2, τ1)Ψ̃(τ1, 0), (16)

where we recall that τ1, τ2 and T depend on δ. On the interval [τ2,T /2] it will be more
convenient to use a new time s = τ − T /2 similar to the time used along L2. Let Γ(s) be the
fundamental matrix of u′ = B(s + T /2)u (′ denotes here the derivative with respect to s) such
that Γ(0) = I. It is easy to check that

Ψ̃(T /2, τ2) = Γ−1(−s2) = LΓ−1(s2)L, s2 = T /2 − τ2.

Therefore
Ψ(T /2) = LΓ−1(s2)LΨ̃(τ2, τ1)Ψ̃(τ1, 0).

Our purpose is to approximate the transition matrices involved in Ψ(T ) by simpler ones.
Following [7] we introduce the limit systems

u′ = BL1
(τ)u, BL1

(τ) = Ba(0, QL1
(τ)), (17)

u′ = BL2
(τ)u, BL2

(τ) = Ba(qL2
(τ), QL2

(τ)) (18)

and define Z1(τ), Z2(τ) as the fundamental matrices of (17) and (18) respectively, such that
Z1(0) = I and Z2(0) = I. In the interval [τ1, τ2] we write

B(τ) = Ba(0,−Qp) + B1(τ), Ba(0,−Qp) =

(

0 1

λ2
Qp

2

)

, (19)

B1(τ) =

(

0 0
λ1q

2 −(Q + Qp)/2

)

.

We note that Ba(0,−Qp) has eigenvalues ρ± =
Qp

4 (1 ± β), being β =
√

1 − λ2

λ̂
. The corre-

sponding eigenvectors are (1, ρ±)T . We assume that λ2 6= λ̂, so ρ+ 6= ρ− and Ba(0,−Qp)
diagonalizes. Moreover for δ > 0 sufficiently small, Ψ̃(τ2, τ1) can be approximated by σPDP−1

(see [7]) where

σ = exp

(

Qp

4
(τ2 − τ1)

)

, P =

(

1 1
ρ+ ρ−

)

, D = diag(σβ , σ−β).

Therefore we can write

Ψ(T /2) = σLZ−1
2 (sL2

)LPDP−1Z1(τL1
)(I + ∆3) (20)

where ∆3 is a matrix depending on δ, ǫ and on the parameters λ1, λ2, α and γ. It has norm
‖∆3‖ = o(1) for δ → 0. By substituting (20) in (10) we get

Ψ(T ) = M(I + O), M = LE−1D−1XLX−1DE,
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where E = P−1Z1(τL1
) , X = P−1LZ2(sL2

) and O depends on δ and also on λ1, λ2, α and γ.
The dependence on ǫ cancels because the matrix Ψ(T ) is independent of the arbitrary choice
of ǫ. The norm ‖O‖ is o(1) for δ → 0. The important fact here is that the matrices E and
X do not depend on δ. Now the trace of M gives us a suitable approximation of the stability
parameter tr.

We introduce the following notation

E =

(

e1 e2

e3 e4

)

, X =

(

x1 x2

x3 x4

)

.

Then a simple computation shows that

trace(M) =
2(ρ+ − ρ−)2

d1d2
(2e1e2x3x4σ

2β + 2e3e4x1x2σ
−2β − (x1x4 + x2x3)(e1e4 + e2e3)) (21)

where d1 = detZ1(τL1
) 6= 0, d2 = detZ2(sL2

) 6= 0. Using Liouville theorem we can compute

d1 =

(

cosh

(

αQp

2(2 − α)
τL1

))(2−α)/α

, d2 =
qL2

(sL2
)

qa
=

ǫ

qa
.

Remark 1. If λ2 > λ̂, then ρ± ∈ R and it is clear that all the matrices involved in M are
real. If λ2 < λ̂, ρ± are conjugate complex numbers and β = β̂i. In this case one has Ē = FE,

X̄ = FX and D̄ = FDF , where F =

(

0 1
1 0

)

and the bar stands for complex conjugate.

Then M is also a real matrix and we get

trace(M) =
8(ρ+ − ρ−)2

d1d2
(Re(e1e2x3x4σ

2β̂i) − Re(x̄3x4)Re(e1ē2) ) (22)

It is clear that in the case λ2 > λ̂, the dominant term in (21) as δ goes to zero, is e1e2x3x4σ
2β

if and only if e1e2x3x4 6= 0. We recall from (14) that σ → ∞ as δ → 0. The non degeneracy
condition will be defined in order to ensure that this inequality holds.

To finish the proof of theorem 1 we shall assume e1e2x3x4 6= 0. If λ2 > λ̂ using (21) we
write

tr = c σ2β(1 + . . .), c =
4(ρ+ − ρ−)2

d1d2
e1e2x3x4 6= 0.

Notice that c does not depend on δ. Taking logarithms and using (14) we obtain

log |tr| = log |c| − β
(2 − α)

2α
log δ (1 + o(1)) + . . . .

In the case λ2 < λ̂, using (22)

tr = c1Re(c0σ
2β̂i) + c2 + . . . (23)

for some constants ci, i = 0, 1, 2. We introduce c3, c4 as c0 = c3e
c4i. Then

tr = c1c3 cos

(

c4 −
(2 − α)

2α
β̂ log δ (1 + o(1))

)

+ c2 + . . .

where

c1 =
8(ρ+ − ρ−)2

d1d2
= −

2Q2
pβ̂

2

d1d2
< 0, c2 = −c1|e1e2x3x4|A, c3 = |e1e2x3x4|,

for some A ∈ R, |A| < 1. In this case tr oscillates mainly between c2+c1c3 < 0 and c2−c1c3 > 0.
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3 The non degeneracy condition

In this section we shall study the non degeneracy condition and we look for the values of the
parameters α, λ1, λ2 such that the non degeneracy condition is satisfied. To do this we need
to know the behaviour of e1, e2, x3 and x4. These coefficients are related to the elements of
matrices Z1(τL1

) and Z2(sL2
), which are the fundamental matrices of (17) and (18) respectively.

To be more precise let v1(τ), v2(τ) be the solutions of (17) such that v1(0) = (1, 0)T and
v2(0) = (0, 1)T respectively. In a similar way, let w1(τ), w2(τ) be the solutions of (18) such
that w1(0) = (1, 0)T and w2(0) = (0, 1)T respectively. Then

ei =
1

ρ− − ρ+
< y−,vi(τL1

) >, xi+2 =
1

ρ− − ρ+
< y+,wi(sL2

) >, i = 1, 2

where y− = (ρ−,−1)T , y+ = (ρ+, 1)T and <,> stands for the scalar product. In order to
simplify the notation from now on we shall use vi,wi, i = 1, 2 to denote vi(τL1

) and wi(sL2
),

i = 1, 2 respectively. Therefore, the coefficient of σ2β in (21) is

4(ρ− − ρ+)2

d1d2
e1e2x3x4 =

4

d1d2(ρ− − ρ+)2

∏

i=1,2

‖vi‖‖wi‖ < y−,
vi

‖vi‖
>< y+,

wi

‖wi‖
> , (24)

where ‖ ‖ = ‖ ‖2. Notice that ‖vi‖ 6= 0, and ‖wi‖ 6= 0, for i = 1, 2.
We recall that the systems (17) and (18) are obtained from (15) by substituting (q,Q)

by (0, QL1
(τ)) and (qL2

(τ), QL2
(τ)) respectively. So, we consider (15) and we introduce polar

coordinates in (15) as u1 = r cos ϕ, u2 = r sin ϕ. Then

r′ = r sin ϕ

(

(λ1q
2 + λ2 + 1) cos ϕ − Q

2
sinϕ

)

, (25)

ϕ′ = (λ1q
2 + λ2) cos2 ϕ − Q

2
sinϕ cos ϕ − sin2 ϕ. (26)

We write vi(τ), wi(τ), i = 1, 2 using polar coordinates as vi(τ) = ri(τ)(cos ϕi(τ), sin ϕi(τ))
and wi(τ) = ri+2(τ)(cos ϕi+2(τ), sin ϕi+2(τ)) with ϕ1,3(0) = 0 and ϕ2,4(0) = π/2.

Moreover, if v(τ) denotes a solution of (15)

< y−,
v(τ)

‖v(τ)‖ >= ρ− cos ϕ(τ) − sin ϕ(τ), < y+,
v(τ)

‖v(τ)‖ >= ρ+ cos ϕ(τ) + sin ϕ(τ) (27)

To cancel (24) we must set to zero some of the factors <y−, vi

‖vi‖
> or <y+, wi

‖wi‖
>. The non

degeneracy conditions will be defined in terms of the limit behaviour of that factors.

Remark 2. If λ2 < λ̂, ρ± are complex numbers a ± bi with a 6= 0, b 6= 0. Now for any τ ,
ρ− cos ϕ(τ) − sin ϕ(τ) 6= 0 and ρ+ cos ϕ(τ) + sin ϕ(τ) 6= 0. We say that in this case the non
degeneracy condition is satisfied and, hence, (23) follows.

Definition 1. Assume λ2 > λ̂. We say that the non degeneracy conditions are satisfied if and
only if the following limits exist and

lim
τ→∞

< y−,
vi(τ)

‖vi(τ)‖ > 6= 0, for i = 1, 2 , (28)

lim
τ→∞

< y+,
wi(τ)

‖wi(τ)‖ > 6= 0, for i = 1, 2 . (29)
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Assume that (28) and (29) are satisfied. Then for any finite τ > 0 sufficiently large, (24) is
different from zero and the dominant term in (21) is the one corresponding to σ2β .

Lemma 3. Assume 0 < α < 2 and γ < 0.

(a) If λ2 > 0, then

lim
τ→∞

< y−,
vi(τ)

‖vi(τ)‖ >= (ρ− − ρ+) cos ϕ+ 6= 0 (30)

where ϕ+ = arctan(ρ+) for i = 1, 2, and the condition (28) is satisfied.

(b) If 2/3 ≤ α < 2 and λ̂(α; γ) < λ2 < 0, then (28) is satisfied.

(c) Assume α ≤ 2/3 and γ = −kαs(1 + O(α)) for some k > 0 and −2 < s < 2. Then there
exists a sequence {αk}k≥1 with α1 = 2/3, limk→∞ αk = 0, and for any αk there is a finite
sequence of λ2 values

λ̂(α; γ) = λ
(k)
2,k < λ

(k)
2,k−1 < . . . < λ

(k)
2,1 < λ

(k)
2,0 = 0

such that for α = αk and λ2 = λ
(k)
2,j , j = 0, 1, . . . , k− 1 the condition (28) is not satisfied.

Moreover, if α = αk and λ2 6= λ
(k)
2,j , j = 0, 1, . . . , k then (28) holds.

Notice that the hypothesis on γ in (c) includes in particular, the cases of constant γ inde-
pendent of α, as well as the case γ = −1/α corresponding to the homographic potential.

We have performed some numerical computations in the case γ = −1/α which corresponds,
in particular, to the homographic case. As we shall see in next section these numerical results
support the following conjecture

Conjecture 1. If γ = −1/α, the values given in (c) of lemma 3 are

αk =
2

2k + 1
, and hence λ̂(αk;−1/αk) = − k2

2k + 1
, k ≥ 1. (31)

Lemma 4. Let us consider the homographic potential. Assume α ∈ (0, 2) and λ2 > λ̂(α) are

fixed. Let be λ
(0)
1 = −(α/2)(ρ+)2.Then

(a) If λ1 > λ
(0)
1 , the condition (29) is satisfied.

(b) There exists a decreasing sequence of λ1 values, {λ(k)
1 }k≥0, with limk→∞ λ

(k)
1 = −∞ such

that the condition (29) is not satisfied. Moreover if λ1 6= λ
(k)
1 for any k ≥ 0, then (29)

holds.

Remark 3. We note that for the homographic potential (4), γ = −1/α and so, ρ+ depends on
α and λ2. Therefore, if we fix α, for λ2 ≥ λ̂, λ1 = −α

2 (ρ+)2 defines a curve in the (λ1, λ2)-plane
which can be written as

λ2 = − 1

α
(2λ1 + (2 − α)

√

−λ1), for λ1 ≤ −(2 − α)2

16
. (32)

Figure 2 shows these curves for some values of α. The curves end at the point (λ1, λ2) =
(−(2 − α)2/16, λ̂).

9



-1.5

-1

-0.5

 0

 0.5

 1
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Figure 2: Plot of the curve λ1 = −α
2
(ρ+)2, (32), in the (λ1, λ2)−plane for different values

of α. From top to bottom the curves correspond to α = 1.9, 1.5, 1, 2/3, 2/5, 2/7, 2/9, 2/19.
The dashed line gives the end points of these curves.

Remark 4. If 2
αλ1 + λ2 > 0, it is easy to check that λ1 > λ

(0)
1 and so, (29) is satisfied.

Next sections are devoted to prove lemmas 3 and 4. The condition (28) involves the
solutions of (26) along γ0. We note that they depend on the parameters α, γ and λ2. However
(29) involves solutions of (26) along γ+. Therefore they depend on α, γ, λ2 and λ1. We
shall see that in both cases, the condition fails for the values of the parameters such that the
corresponding system has an heteroclinic orbit.

3.1 Heteroclinic orbits for the system along γ0.

We consider the system (25), (26) with (q,Q) = (0, QL1
(τ)). We introduce a new variable

u = −QL1
(τ)/Qp. Then we get the following equations for ϕ, u

ϕ′ = λ2 cos2 ϕ +
Qpu

2
sin ϕ cos ϕ − sin2 ϕ, (33)

u′ =
α

2(2 − α)
Qp(1 − u2).

In order to check (28) we must study the solutions of (33) such that (ϕ(0), u(0)) = (0, 0),
(π/2, 0). Assume that tan ϕ(τ) → ρ− when τ → ∞ for one of these solutions. Then (28) does
not hold. We shall see that in this case we have an heteroclinic orbit of the system (33). We
recall that (28) has been defined for λ2 > λ̂. However in this section, to look for heteroclinic
orbits, it will be convenient to consider also λ2 = λ̂.

We note that (33) is π periodic in ϕ. So, we only need to consider (33) in the region

R = {(ϕ, u) |ϕ ∈ [−π/2, π/2], u ∈ [−1, 1]}. (34)

However to study the existence of heteroclinic orbits it will be more convenient to consider
ϕ ∈ R. We summarize the important marks of the qualitative behaviour of the system (33) in
the following properties:

1. The lines u = ±1 are invariant.

2. If λ2 > λ̂, (33) has four equilibrium points in R

(ϕ, u) = (ϕ+, 1), (ϕ−, 1), (−ϕ+,−1), (−ϕ−,−1), ϕ+ = arctan(ρ+), ϕ− = arctan(ρ−)
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3. If λ2 > λ̂, (ϕ−, 1) and (−ϕ−,−1) are saddle points, (ϕ+, 1) is an attractor and (−ϕ+,−1)
a repellor. For a saddle point, P , we shall denote by W u(P ) (W s(P )) the branch of the
unstable (stable) invariant manifold of P , contained in −1 ≤ u ≤ 1.

4. If λ2 = λ̂, ϕ+ = ϕ− and the system has only two equilibrium points on R of saddle node
type. In this case, W u(P ) (W s(P )) will denote the fast unstable (stable) manifold in R
of the saddle node point.

5. The system has the following symmetry (ϕ, u, τ) 7→ (−ϕ,−u,−τ). Therefore, if
(ϕ(τ), u(τ)) is a solution, then (−ϕ(−τ),−u(−τ)) is also a solution.

6. For values of 0 < α < 2, γ < 0, and λ2 = 0, we have ϕ+ = arctan(Qp/2) and ϕ− = 0.
In this case ϕ = 0 is invariant under the flow defined by (33) and W u((−ϕ−,−1)) and
W s((ϕ−, 1)) coincide.

Remark 5. We recall that we are interested in the orbits of the points (ϕ, u) = (0, 0) and
(π/2, 0). It is clear that the ω−limit set for these orbits is one of the equilibrium points in u = 1.
If these orbits go to an attractor (ϕ+ − kπ, 1) for some integer k, then limτ→∞ tan ϕ(τ) = ρ+.
In this case,

lim
τ→∞

< y−,
vi(τ)

‖vi(τ)‖ >= (−1)k(ρ− − ρ+) cos ϕ+ 6= 0 if λ2 6= λ̂

and (28) is satisfied. However, if one of these orbits goes to a saddle point (ϕ− − kπ, 1), for
some integer k, then the limit above equals zero and (28) does not hold. In this case using the
symmetry and the periodicity of (33), one has an heteroclinic orbit.

Let us consider α ∈ (0, 2), γ < 0 and λ2 ≥ λ̂(α, γ). We shall denote by ϕu(0;α, γ, λ2), or
simply ϕu(0;λ2) if α and γ are fixed, the value of ϕ at the intersection point of W u((−ϕ−,−1))
with u = 0. Notice that using the symmetry and the periodicity of (33), ϕu(0;α, γ, λ2) = −kπ/2
for some positive integer k if and only if W u((−ϕ−,−1)) and W s((ϕ− − kπ, 1)) coincide.

Lemma 5. For α = 2/3 and λ2 = λ̂(2/3; γ), W u((−ϕ−,−1)) reaches u = 0 with ϕ = −π/2.
Then an heteroclinic orbit between the points (−ϕ−,−1) and (ϕ−−π, 1) exists. This heteroclinic
orbit has an easy analytical expression given by u = ρ−/ tan ϕ.

Proof The lemma follows by checking that u = ρ−/ tan ϕ is invariant under the flow defined
by (33). 2

Lemma 6. Let us assume 0 < α < 2, γ < 0. Then ϕu(0;λ2) is a continuous increasing
function of λ2 for λ̂ ≤ λ2 ≤ 0.

Proof Let µ1, µ2 be such that λ̂ ≤ µ1 < µ2 < 0, we shall prove that ϕu(0, µ1) < ϕu(0, µ2).
For fixed α and γ, ϕ± depend on λ2, so we denote them as ϕ±(λ2). It is simple to check

that −ϕ−(µ1) < −ϕ−(µ2). We denote (33) as

ϕ′ = f(ϕ, u;λ2), u′ = g(u)

One has f(ϕ, u;µ1) < f(ϕ, u;µ2).
Let us consider the unstable invariant manifold of the point (−ϕ−,−1) for λ2 = µ1, W u

µ1
,

and let Γ be the arc defined by W u
µ1

for −1 ≤ u ≤ 0. Recall −ϕ− < 0 in the present case.
We define R2 the region in the (ϕ, u) plane bounded by Γ, Γ1 = {(0, u)| − 1 ≤ u ≤ 0},
Γ2 = {(ϕ,−1)| − ϕ−(µ1) ≤ ϕ ≤ 0} and Γ3 = {(ϕ, 0)|ϕu(0, µ1) ≤ ϕ ≤ 0}. If we take λ2 = µ2,
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the corresponding vector field (f, g) given by (33) on Γ and Γ1 points inside to the region R2.
Now W u

µ2
is contained in R2 for τ << 0 and it leaves R2 through Γ3. Therefore W u

µ2
intersects

u = 0 at some point ϕu(0, µ2) > ϕu(0, µ1). This ends the proof. 2

Proof of lemma 3 Let us consider 0 < α < 2 and λ2 > 0. On ϕ = 0, we have ϕ′ = λ2 > 0
and if we restrict to ϕ = π/2, ϕ′ = −1. Therefore the ω-limit set of the orbits through (0, 0)
and (π/2, 0) is the attractor (ϕ+, 1). Then (30) follows using the remark 5.

To prove (b) we consider first α = 2/3. We know after lemma 5 that for λ2 = λ̂(2/3; γ)
there exists an heteroclinic orbit given by u = ρ−/ tan ϕ, where ρ− = Qp/4 =

√−2γ/3. In this

case we have ϕu(0; λ̂(2/3; γ)) = −π/2. Using lemma 6, and ϕu(0; 0) = 0, we conclude that for
α = 2/3

−π/2 < ϕu(0;λ2) < 0 for λ̂ < λ2 < 0 (35)

and there are not heteroclinic orbits. Moreover this implies that for these values of λ2 the
ω-limit set of W u((−ϕ−,−1)) is the attractor (ϕ+ − π, 1), and it is easy to check that the
ω-limit set of the orbits through (0, 0) and (π/2, 0) are the attractors (ϕ+ − π, 1) and (ϕ+, 1)
respectively. Using the remark 5, part (b) for α = 2/3 follows.

Now we assume 2/3 < α < 2. We shall prove that

−π/2 < ϕu(0; λ̂(α; γ)) < 0. (36)

Then, using the same argument as before, (35) holds and (b) will be proved. To prove (36)
we take λ2 = λ̂(α; γ). We recall that in this case, the equilibrium point (−ϕ−,−1) is of saddle
node type. It is easy to check that the fast unstable direction is given by the vector V1 =
(−2(2 − α)Qp, α(16 + Q2

p))
T . Let us introduce

χ = {(ϕ, u) |u = f(ϕ), −π/2 < ϕ ≤ −ϕ−}, f(ϕ) =
ρ−

tan ϕ
, ρ− =

Qp

4
=

(2 − α)
√−2γ

4
(37)

We remark that if 2/3 < α < 2, χ is not an orbit for the flow defined by (33) (see figure 3).
However, it is clear that f(−ϕ−) = −1 and limϕ→−π/2 f(ϕ) = 0.

Let R be the region in the (ϕ, u) plane bounded by χ, χ1 = {(ϕ, u) | −π/2 ≤ ϕ ≤ 0, u = 0},
{(ϕ, u) | − ϕ− ≤ ϕ ≤ 0, u = −1} and χ2 = {(ϕ, u) |ϕ = 0,−1 ≤ u ≤ 0}. We shall prove that
in a neighbourhood of the equilibrium (−ϕ−,−1), W u((−ϕ−,−1)) is contained in R, and the
only way to leave R is through the u = 0 axis. This means that (36) holds.

Let be (ϕ, u) ∈ χ. The tangent vector to χ is V2 = (1,−Qp/(4 sin2 ϕ))T . Moreover, on χ
the vector field defined by (33) can be written as

V3 = F

(

− sin2 ϕ,
α
√−2γ

2

)T

where F = 1 −
Q2

p

16 tan2 ϕ
.

Notice that for −π/2 < ϕ < −ϕ−, one has F > 0. A simple computation shows that

V2 ∧V3 =

√−2γ

4
F (3α− 2) > 0 and lim

ϕ→−π/2

√−2γ

4
F (3α− 2) > 0 if α > 2/3.

This implies that if (ϕ, u) ∈ χ, the orbit goes inside R for positive time. Moreover, ϕ′ < 0,
along χ2. Therefore if (ϕ, u) is a point in the interior of R, the only way to leave the region R
for positive time is through u = 0.
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Figure 3: Plot of vector field (33) for α = 1, γ = −1 and λ2 = λ̂(α; γ)) = −1/8.
The dashed line is the graph of the function u = f(ϕ) and the continuous line shows
W u((−ϕ−,−1)).

Furthermore, V2,− =
(

1,−(16 + Q2
p)/(4Qp)

)T
is the tangent vector to χ at the equilib-

rium (−ϕ−,−1). Then V2,− ∧ V1 = (16 + Q2
p)(3α − 2)/2 > 0, if α > 2/3. Therefore, in a

neighbourhood of (−ϕ−,−1), W u((−ϕ−,−1)) is contained in R. This ends the proof of (b).

From now on we shall consider γ = γ(α) = −kαs(1+O(α)) for some k > 0 and −2 < s < 2.
First we take λ2 = λ̂(α; γ). We recall that λ̂(α; γ) = −Q2

p/16. From (33) for u2 ≤ 1 we get

ϕ′ = −1

2
(1 + c2) − 1

2
(c2 − 1) cos 2ϕ + cu sin 2ϕ ≤ −1

2
(1 + c2) +

√

1

4
(c2 − 1)2 + c2u2 , (38)

u′ ≤ 2αc

2 − α
,

where c = Qp/4. We note that if u2 < 1, then ϕ′ < 0. Moreover on the region B = {(ϕ, u) | −
1/
√

2 ≤ u ≤ 0} we get ϕ′ ≤ −1
2(c2 + 1−

√
c4 + 1). So, in the region B, the vector field defined

by (33) can be bounded by the following one

ϕ̂′ = −1

2
(c2 + 1 −

√

c4 + 1), (39)

û′ =
2αc

2 − α
.

Then

û′

ϕ̂′
= − 2α

(2 − α)
(c + c−1 +

√

c2 + c−2) . (40)

If γ = −kαs(1 + O(α)) we get c = k1α
s/2(1 + O(α)) for some constant k1 > 0 and then the

right hand side of (40) goes to 0 as α goes to 0. Once W u enters B the vector field (33) is
bounded by the constant one defined by (39). Then for any M > 0 large enough there exists
αM small enough such that for any 0 < α ≤ αM

ϕu(0;α, γ, λ̂) < −M, γ = γ(α), λ̂ = λ̂(α, γ).

However, from (b) we have for α = 2/3, ϕu(0; 2/3, γ, λ̂) = −π/2. Using the continuity of
ϕu(0;α, γ, λ̂) with respect to α, for α > 0, we get the existence of a sequence {αk}k≥0, with
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α1 = 2/3 and limk→∞ αk = 0, such that

ϕu(0;αk, γ, λ̂) = −kπ/2, k ≥ 1,

where γ = γ(αk), λ̂ = λ̂(αk, γ).
Let us fix now α = αk . From (a) we know that for λ2 > 0 there are not heteroclinic

orbits. So, we only need to consider λ̂(αk, γ) ≤ λ2 ≤ 0. Let us consider the function ϕu(0;λ2).
Then ϕu(0; λ̂) = −kπ/2 and ϕu(0; 0) = 0. After lemma 6 we know that ϕu(0;λ2) is an

increasing continuous function of λ2 for λ2 ∈ [λ̂, 0]. Therefore, there exists {λ(k)
2,j }j=0,1...k such

that ϕu(0;λ
(k)
2,j ) = −jπ/2, that is, if λ2 = λ

(k)
2,j , j = 0, 1 . . . k − 1, there exists an heteroclinic

orbit and (28) is not satisfied. Moreover, if λ2 ∈ [λ̂, 0], λ2 6= λ
(k)
2,j , ϕu(0;λ2) 6= −mπ/2 for any

positive integer m. Following the remark 5, we have now that (28) holds. 2

We have performed some numerical computations using the homographic potential (4) for
α ∈ (0, 2). For the system (33) we have computed the unstable invariant manifold
W u((−ϕ−,−1)) up to its intersection with u = 0. We know by lemma 5 that for α = 2/3
and λ2 = λ̂(2/3) = −1/3, there is an heteroclinic orbit between the equilibrium points
(−ϕ−,−1) and (ϕ− − π, 1). Figure 4 shows W u((−ϕ−,−1)) in −1 ≤ u ≤ 0, for (α, λ2) =
(2/3, λ̂(2/3)), (2/5, λ̂(2/5)). In both cases we have heteroclinic orbits. We note that in the case
α = 2/5 after lemma 3 there exists λ2,1, λ̂(2/5) < λ2,1 < 0 such that ϕu(0; 2/5, λ2,1) = −π/2.

0,0
−1−5

−0,5

−2 0−6

phi

−4 −3

1,0

−1,0

u

0,5

Figure 4: Plot of W u((−ϕ−,−1)) for the system (33) in the (ϕ, u)−plane, with param-
eters (α, λ2) = (2/3,−1/3), (2/5,−4/5). The equilibrium points are denoted with a box
for α = 2/3 and a diamond for α = 2/5.

The values αk such that ϕu(0;αk, λ̂(αk)) = −kπ/2 for some positive integers k have been
computed numerically. It turns out that all the computed values satisfy (31). So, these results
support the conjecture 1. We note that after lemma 3, for α = αk there are exactly k values
of the parameter λ2 greater than λ̂(α; γ) such that there exist an heteroclinic orbit of (33).
However the numerical computations also show that for αk+1 < α < αk there are exactly k + 1
values of λ2, λ̂(α) < λ2 ≤ 0 giving rise to an heteroclinic orbit.
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3.2 Heteroclinic connections for the system on γ+. The homo-
graphic potential

In this section we shall consider the homographic potential (4). In order to study the non degen-
eracy condition (29) one has to consider the system (25), (26), with (q,Q) = (qL2

(τ), QL2
(τ)).

As before we introduce u = QL2
(τ)/Qp. Then we get the following system for ϕ, u

ϕ′ =

(

2

α
λ1(1 − u2) + λ2

)

cos2 ϕ − Qpu

2
sin ϕ cos ϕ − sin2 ϕ, (41)

u′ =
2 − α√

2α
(1 − u2).

We remark that γ+ depends strongly on the function V (z) which defines the potential. To get
the system (41) we have used the particular form of V (z) in the homographic case.

The condition (29) involves the solutions of (41) such that (ϕ(0), u(0)) = (0, 0), (π/2, 0).
Now, if tan ϕ(τ) → −ρ+ as τ → ∞ for one of these solutions, (29) is not satisfied. As before,
we will see that in this case there exists an heteroclinic orbit of (41).

The system (41) can be analyzed in the same way as (33). However, we recall that (41)
depends on the parameters α, λ2 and λ1. Moreover, if λ2 > λ̂ (41) has four equilibrium points
in the region R (defined in (34))

(ϕ, u) = (ϕ+,−1), (ϕ−,−1), (−ϕ+, 1), (−ϕ−, 1) (42)

and (ϕ+,−1), (−ϕ+, 1) are saddle points, (−ϕ−, 1) is an attractor and (ϕ−,−1) a repellor.
For a saddle point, P , W u(P ) stands for the branch of the unstable invariant manifold of P ,
contained in −1 ≤ u ≤ 1. We also denote by ϕu(0;α, λ2, λ1), or simply ϕu(0;λ1) if α and λ2 are
fixed, the value of ϕ at the intersection point of W u((ϕ+,−1)) with u = 0. The symmetry given
in the property 5. also holds for (41). Therefore, ϕu(0;α, λ2, λ1) = −kπ/2 for some positive
integer k, if and only if an heteroclinic orbit exists between (ϕ+,−1) and (−ϕ+ − kπ, 1). We
remark that the existence of such an heteroclinic orbit implies that (29) is not satisfied.

Remark 6. To check (29) we are interested in the orbits of the points (0, 0) and (π/2, 0). If
the ω-limit set for that orbits is an attractor (−ϕ− − kπ, 1) for some integer k, then

lim
τ→∞

< y−,
wi

‖wi‖
>= (−1)k(ρ+ − ρ−) cos ϕ− 6= 0, if λ2 6= λ̂

and (29) is satisfied. However, if the ω-limit set of one of these orbits is a saddle point
(−ϕ+ − kπ, 1), then the limit above is zero.

Proof of lemma 4 Let us denote the equations (41) as

ϕ′ = f(ϕ, u;λ1), u′ = g(u).

We assume that α and λ2 are fixed. So, the equilibrium points are fixed. We claim

1. f(π/2, u;λ1) = −1 < 0 for any u, λ1

2. ϕu(0;λ1) is a continuous increasing function of λ1

3. Let M > 0 be large enough. Then there exists λ1 = λ1(M) < 0 such that ϕu(0;λ1) < −M
and λ1(M) tends to −∞ as M goes to ∞.
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If λ1 = λ
(0)
1 , it is easy to check that W u((ϕ+,−1)) has the simple analytical expression u =

−(1/ρ+) tan ϕ. Then ϕu(0;λ
(0)
1 ) = 0. Using the symmetry, there is an heteroclinic orbit

between the points (ϕ+,−1) and (−ϕ+, 1). Therefore (29) is not satisfied.

Let us consider now λ1 > λ
(0)
1 . Using claims 1. and 2. we have

0 = ϕu(0;λ
(0)
1 ) < ϕu(0;λ1) < π/2

Therefore W u((ϕ+,−1)) goes to the attractor (−ϕ−, 1) as τ → ∞ and (a) is proved.

From claims 2. and 3. we get a decreasing sequence of λ1 values {λ(k)
1 }k≥0, such that

limk→∞ λ
(k)
1 = −∞ and ϕu(0;λ

(k)
1 ) = −kπ/2 and then there exists an heteroclinic connection

between points (ϕ+,−1) and (−ϕ+ − kπ, 1). This implies that (29) does not hold and part (b)
is proved.

Now we prove claim 2. We note that ϕ± depend on α and λ2. So, if we fix these parameters
the equilibrium points are fixed. We shall prove that if µ1 < µ2 then ϕu(0;µ1) < ϕu(0;µ2).
Let W u

µ1
be the unstable invariant manifold of (ϕ+,−1) for λ1 = µ1 and Γ the arc defined by

W u
µ1

for −1 ≤ u ≤ 0. Let R3 be the region bounded by Γ, ϕ = π/2 and the lines u = −1 and
u = 0. It is clear that f(ϕ, u;µ1) < f(ϕ, u;µ2). Therefore the vector field (f, g) for λ1 = µ2 on
Γ, points inside R3. The same is true on ϕ = π/2. Moreover using the linear approximation
of W u

µ2
we can see easily that in a small neighbourhood of (ϕ+,−1), W u

µ2
is contained in R3.

Therefore W u
µ2

leaves R3 through a point on u = 0 with ϕ greater than ϕu(0;µ1).
Now we prove claim 3. Let M > 0 be large enough and K > 0 such that −(2K + 1)π/2 <

−M < −(2K − 1)π/2. We shall assume λ1 < 0. Let us introduce L = −λ1/α − λ2 and the
region B = {(ϕ, u) | − 1/

√
2 ≤ u ≤ 0}. If (ϕ, u) ∈ B from (41) we get

ϕ′ ≤ −L cos2 ϕ − Qpu

2
sin ϕ cos ϕ − sin2 ϕ ≤ −L + 1

2
+

√

(L − 1)2

4
+

Q2
pu

2

16
.

Then, if we take L ≥ max{3/4, Q2
p/16} we get

ϕ′ ≤ −1

2
(L + 1 −

√

L2 + 1) ≤ −1

4
.

However, if (ϕ, u) ∈ B, ϕ ∈ [−π/2, π/2], using that

ϕ′ ≤ −L + 1

2
− L − 1

2
cos 2ϕ +

Qp

4

it is easy to get ϕ′ ≤ −K2 by removing adequate small neighbourhoods of ϕ = ±π/2. Moreover,
from (41), u′ ≤ (2 − α)/

√
2α.

Summarizing, if (ϕ, u) ∈ B and ϕ ∈ [−π/2, π/2], the vector field defined by (41) is bounded
by

ϕ̂′ = −1

4
, û′ =

2 − α√
2α

, if ϕ ∈ [−π/2,−π/2 + δ−] ∪ [π/2 − δ−, π/2] (43)

and by

ϕ̂′ = −K2, û′ =
2 − α√

2α
, if ϕ ∈ [−π/2 + δ−, π/2 − δ−] , (44)

where δ− = 1
2 arccos(1 − δ1), δ1 = 2

L−1

(

K2 − 1 +
Qp

4

)

. We remark that if we take L > 0 large

enough (that is, λ1 < 0 and |λ1| large enough) we can take δ− ≤ 1/K2, once K is fixed.
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Now, if we take initial conditions ϕ̂(τ0) = π/2, û(τ0) = −1/
√

2, the variation of û as ϕ̂ goes
from π/2 to −π/2 under the flow defined by (43) and (44), is

∆πû =
(2 − α)√

2α

(

8δ− +
π − 2δ−

K2

)

≤ (2 − α)√
2α

(

8δ− +
π

K2

)

=
(2 − α)√

2α

(8 + π)

K2
.

When this orbit intersects the line ϕ = −(2K + 1)π/2 the variation of û is bounded by

∆û ≤ (K + 1)∆πû ≤ 2(2 − α)√
2α

(8 + π)

K
.

By taking K large enough we get ∆û ≤ 1/
√

2. Let us consider W u((ϕ+,−1)). Once it enters
the region B, it is bounded by the orbits of (43), (44). Then it crosses the line ϕ = −M at
some point with u < 0. This proves claim 3. 2

Using the homographic potential (4), we have computed numerically some of the values
of the parameters λ1, λ2 giving rise to heteroclinic orbits of (41). In the Table 1 we give the
first values of λ1 for α = 1 and three different values of λ2. Figure 5 displays the curves

λ2 = λ
(j)
1 (λ1), 0 ≤ j ≤ 5. We recall that for j = 0 the curve is given analytically in lemma 4

(see also remark 3).

λ2 = −0.1 λ2 = −0.01 λ2 = 1

λ
(0)
1 −0.130901699 . . . −0.239895788 . . . −1.000000000 . . .

λ
(1)
1 −0.742705098 . . . −0.979687364 . . . −2.250000000 . . .

λ
(2)
1 −1.854508497 . . . −2.219478940 . . . −4.000000000 . . .

λ
(3)
1 −3.466311896 . . . −3.959270517 . . . −6.250000000 . . .

λ
(4)
1 −5.578115294 . . . −6.199062098 . . . −9.000000000 . . .

λ
(5)
1 −8.189918693 . . . −8.938853668 . . . −12.25000000 . . .

λ
(6)
1 −11.30172209 . . . −12.17864524 . . . −16.00000000 . . .

λ
(7)
1 −14.91352549 . . . −15.91843682 . . . −20.25000000 . . .

λ
(8)
1 −19.02532889 . . . −20.15822839 . . . −25.00000000 . . .

λ
(9)
1 −23.63713228 . . . −24.89801997 . . . −30.25000000 . . .

λ
(10)
1 −28.74893568 . . . −30.13781155 . . . −36.00000000 . . .

Table 1: First critical values of λ1 giving rise to heteroclinic connections for α = 1 and three
different values of λ2.

4 Numerical stability/instability regions

We have computed the stability parameter tr, by integrating numerically the differential equa-
tion (1). A systematic use has been made of higher order Taylor methods, see [4] and references
therein for description and a public available package and [10] for a didactic presentation and
examples. The homographic potential (4) has been used in the computations. We recall that
for α = 1 (Newtonian potential), the solution of (2) on an energy level E = −δ is obtained
explicitly in terms of the eccentricity e, where δ = (1 − e2)/2. For α ∈ (0, 2), α 6= 1, the
equation (2) can not be explicitly integrated. However one can define a generalization of the
eccentricity (see [7]) through δ = (2 − α)(1 − e2)/(2α). To show the numerical results in this
section we shall use indistinctly parameters δ and e.
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Figure 5: Plot of the curves λ2 = λ
(j)
1 (λ1) for α = 1, in the (λ1, λ2)-plane. From right to

left j = 0, 1, 2, 3, 4, 5. The dashed horizontal line is located on λ2 = −1/8, the level at

which all the λ
(j)
1 end.

First, we show the results for α = 1. In figure 6 we show for λ2 = −0.1, the stability

parameter tr as a function of − log10(1 − e) for λ1 = λ
(0)
1 , λ

(1)
1 and nearby values. We recall

that for λ
(0)
1 , λ

(1)
1 , (29) is not satisfied. In figure 6 we observe a constant behaviour of tr as e

goes to 1. Moreover, the limit behaviour of tr changes from −∞ to ∞ as λ1 goes through λ
(0)
1

in a decreasing way. A similar change in the limit behaviour is observed as λ1 goes through

λ
(1)
1 .
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λ1=λ1
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λ1=-0.13

λ1=-0.131

λ1=λ1
1

λ1=-0.4

λ1=-0.8

Figure 6: Plot of tr as a function of e (in the horizontal axes we plot − log10(1 − e)) for
λ2 = −0.1 and different values of λ1

For a fixed value of e, the curves in the (λ1, λ2)−plane such that tr= ±2 define the stability
and instability regions in the plane of parameters. We have computed numerically that curves.
We recall that for α = 1, λ̂ = −1/8. We know from lemma 3 that the condition (28) is satisfied
for any λ1 and λ2 > λ̂. However, after lemma 4 there are some curves in the (λ1, λ2)-plane

defined by λ2 = λ
(j)
1 , j = 0, 1, . . . where (29) fails (see figure 5). In figure 7 (a), we plot the

curves with tr= ±2 for e = 1 − 2−9 in a neighbourhood of the origin. If λ1 > 0, λ2 > 0,
all points give rise to instability. For λ1 < 0 and λ2 < 0, there is mainly stability but some
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instability pockets appear. Instability pockets in Hill’s equations are very common, both in
the periodic Hill’s case (see [1] and references therein) and in the quasi-periodic one (see [3]
and references therein). We remark that the stability channels become here narrower as the
parameters λ1, λ2 move to the second and third quadrant. So, if λ1λ2 < 0, there is instability
except inside extremely thin tongues where the system is stable. Figure 7 (b) shows a larger
neighbourhood of the origin. We observe that the stability channels become very thin close to
two “critical lines” (see also the figures 7 (c) and (d)). This fact appears in all families of Hill’s
equations of the form ẍ + (a + bp(t))x = 0 in the (a, b)-plane, see [2]. Figures 8 (a) to (f) show
the evolution of the stability and instability regions as e goes to 1. We see that the stability

tongues for λ2 > −1/8 go quickly to the limit curves λ2 = λ
(j)
1 , j = 0, 1, ... For λ1 < 0, we

observe that the instability pockets in λ2 < λ̂ change and accumulate to the line λ2 = −1/8 as
e goes to 1. However, if λ̂ < λ2 < 0 the instability pockets tend to some limit regions bounded

by λ2 = 0, λ2 = −1/8 and λ2 = λ
(j)
1 . For (λ1, λ2) in these limit regions, the system is unstable.
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Figure 7: Stability and instability regions in the (λ1, λ2)−plane for α = 1. (a) e = 1−2−9,
(b) 1 − 2−9 but in a larger domain, (c) 1 − 2−12, (d) 1 − 2−14. Note that the changes
when e → 1 are hard to distinguish at present scale.

Figure 9 (a), (b), (c), (d), shows magnifications of figure 8 for e = 1 − 2−10, 1 − 2−20, 1 −
2−30, 1 − 2−40, respectively, in a neighbourhood of λ2 = −1/8. Moreover, in these plots we

display also the curves λ2 = λ
(j)
1 (λ1) for j = 0, 1, 2, 3 (see figure 5). In figures 9 (a) and (b),

one can distinguish these curves as the ones having an end point on λ2 = −1/8. We can see
that the stability tongues in the region λ1 < 0, λ2 > 0 become thinner and quickly tend to the

curves λ2 = λ
(j)
1 (λ1) as e goes to 1.
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Figure 8: Stability and instability regions in a small domain of the (λ1, λ2)−plane for
α = 1. (a) e = 1− 2−10, (b) 1− 2−12, (c) 1− 2−20, (d) 1− 2−25, (e) 1− 2−30, (f) 1− 2−35.
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Figure 9: Stability and instability regions in the (λ1, λ2)−plane for α = 1. (a) e =
1 − 2−10, (b) 1 − 2−20, (c) 1 − 2−30, (d) 1 − 2−40.

Figures 10 and 11 show the stability/instability regions for some values of α < 1. Like in

the case α = 1, we can distinguish the limit curves λ2 = λ
(j)
1 , j = 0, 1, .... However after lemma

3, we know that for some values of α < 1, there are λ1, λ2 values such that (28) is not satisfied.
So, additional limit curves are expected in these cases. To explain the results, from now on, for
αk in lemma 3 we shall use the values given by the conjecture 1, that is we shall assume that the
conjecture is true. Let us take α = 0.5. Then λ̂ = −0.5625..., and 2/5 = α2 < α < α1 = 2/3.
Therefore, there are exactly two values of λ2, with λ̂ < λ2,1 < λ2,0 = 0 such that for any λ1,
(28) is not satisfied. In figure 10 we see the evolution of the regions for α = 0.5 and different
values of e tending to 1. If λ2 < λ̂, the instability pockets accumulate from below to the line
λ2 = λ̂. However, for λ̂ < λ2 < 0, they tend to some limit regions along two horizontal strips
which are limited by the lines λ2 = 0, λ2 = λ2,1 and λ2 = λ̂ (see figures 10 (c) and (d)). In the

figure 11 (a) and (b) we take α = α2 = 2/5. In this case, there exist λ̂ = λ2,2 < λ2,1 < λ2,0 = 0,
such that for any λ1, (28) does not hold. Therefore, we get two strips of limit instability regions
for λ̂ < λ2 < 0. For α = 0.2 we have λ̂ = −2.025... and α5 < α < α4. In this case there exist
λ̂ < λ2,4 < λ2,3 < λ2,2 < λ2,1 < λ2,0 = 0. So, there are five strips of limit regions for λ̂ < λ2 < 0
(see figures 11 (c) and (d)).
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Figure 10: Stability and instability regions in the (λ1, λ2)−plane for α = 0.5. (a) e =
1 − 10−2, (b) 1 − 10−4, (c) 1 − 10−8, (d) 1 − 10−10.
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Figure 11: Stability and instability regions in the (λ1, λ2)−plane (a) (α, e) = (0.4, 1 −
10−3), (b) (α, e) = (0.4, 1−10−9), (c) (α, e) = (0.2, 1−10−2), (d) (α, e) = (0.2, 1−10−6).
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Finally, in order to check the goodness of the asymptotic formulae given in the main theorem
we perform the following computations. For a fixed value of α and taking γ = −1/α, we select
a point (λ1, λ2) in the parameter plane. Then we use the least squares method to fit the
numerically computed tr by a function

f(δ) =

{

za + zb log δ if λ2 > λ̂(α)

z2 + z3 cos(z1 log δ + z4) if λ2 < λ̂(α)
.

In this way we can compare the values zb and z1 with the theoretical ones predicted by the
asymptotic formulae, that is,

zt
b = −(2 − α)

2α
β = −(2 − α)

2α

√

1 − λ2

λ̂(α)
, zt

1 = −(2 − α)

2α
β̂.

Note that zt
b and zt

1 do not depend on λ1. The computations have been done for α = 1 and
α = 0.5. In any case, the points (λ1, λ2) have been selected at different regions (see Tables 2

and 3). So, for α = 1, points A1, A2, A3 lie on the limit regions defined by λ
(0)
1 , λ

(0)
2 and λ

(0)
3

with λ2 > 0 (see Table 1). Other points are plotted in the Figure (12). The signs +,− on this
figure mean that tr goes to +∞ or −∞ as e goes to 1, at the limit region. At C1, C2 we have
oscillatory behaviour of tr. In the case α = 1/2, points (λ1, λ2) have been selected in a similar
way according to the limit regions (see Figure 10).

The Table 2 shows the values of za and zb for parameters λ1, λ2 corresponding to hyperbolic
behaviour of tr. One can see a very good agreement between zb and zt

b. In the figure 13 (a)
we plot log |tr| as a function of log δ, using the numerical computation of tr, for some values of
the parameters α, λ1 and λ2. The difference log |tr| − (za + zb log δ) is displayed in the figure
13 (b). Similar plots are obtained for different values of the parameters. Table 3 shows the
values of zi, i = 1, . . . 4, in cases of oscillatory behaviour as well as zt

1. Figures 14 (a) and (b)
show the typical behaviour of tr and tr − (z2 + z3 cos(z1 log δ + z4)) respectively, as functions
of log δ, in the elliptic case.
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Figure 12: Some of the points used in the check of the goodness of the formulae.
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point α λ1 λ2 za zb zt
b

A1 1 -0.5 1 4.3439101933... -1.5000000000... −3/2
A2 1 -2.0 1 1.0757003494... -1.5000000000... −3/2
A3 1 -3.0 1 1.0815271087... -1.5000000000... −3/2

A4 1 -0.7 -0.01 -2.7537028676... -0.4795831523... −
√

23/10

A5 1 -1.2 -0.01 -3.2980826090... -0.4795831523... −
√

23/10
B1 0.5 1.0 1 6.66605868... -2.50000000... −5/2

B2 0.5 1.0 -0.3 3.17124093... -1.02469507... −
√

4.2/2

B3 0.5 1.0 -0.55 4.99803332... -0.22360679... −
√

0.2/2

B4 0.5 -1.8 -0.1 -1.90615984... -1.36014705... −
√

7.4/2

B5 0.5 -2.0 0.5 1.10195805... -2.06155281... −
√

17/2

B6 0.5 -4.0 -0.1 -1.80582582... -1.36014705... −
√

7.4/2

B7 0.5 -4.0 0.5 0.82486302... -2.06155281... −
√

17/2

Table 2. Least squares fit for some values of the parameters giving rise to hyperbolic
behaviour.

point α λ1 λ2 z1, z2 z3, z4 zt
1

C1 1 0.1 -0.3 -0.591607978300025 -3.25904693119756 −
√

1.4/2
-0.758707554534354 -0.99960080326998

C2 1 -0.2 -0.3 -0.591607978302245 -2.19337090928979 −
√

1.4/2
0.193094342117449 0.979970152735149

E1 0.5 1 -0.8 -0.974679434482771 -54.9061553695576 −
√

3.8/2
5.12366550763497 -0.0251374945219104

E2 0.5 -2 -1 -1.32287565553419 -2.23700973253491 −
√

7/2
0.0313389295860508 -0.394244091090544

Table 3. Least squares fit for some values of the parameters giving rise to oscillatory
behaviour.
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Figure 13: Plots for α = 0.5, λ1 = −1.8, λ2 = −0.1 with log δ in the horizon-
tal axes (a) Graph of log |tr| numerically computed. (b) Plot of log |tr| − f(δ) with
za = −1.90615984216061, zb = −1.36014705088255.
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Figure 14: Plots for α = 1, λ1 = −0.2, λ2 = −0.3 with log δ in the horizontal axes (a)
Graph of tr numerically computed. (b) Plot of tr − f(δ) with z1 = 0.193094342117449,
z2 = 2.19337090928979, z3 = 0.591607978302245, z4 = 2.16162250085465.

5 On the collapsed gaps

In this section we apply the results of [11] concerning coexistence of periodic solutions to the
equation (7). We recall that (7) includes the Newtonian case of homographic potential where
a is minus the eccentricity. Coexistence is related to collapsed gaps which corresponds to the
endpoints of instability pockets found in the (λ1, λ2)-plane. In this way we can give additional
information about the instability pockets for the equation (7).

We shall write (7) as

(1 + a cos t)ẍ − (λ1 + λ2 + λ1a cos t)x = 0. (45)

If a = 0, the solutions can be obtained explicitly. In this case, if λ1 + λ2 < 0, the stability
parameter tr=tr(λ1, λ2) oscillates with |tr| ≤ 2, and |tr| = 2 for some special values of (λ1, λ2).
In the (λ1, λ2)-plane the lines defined by

λ1 + λ2 = −n2, n ≥ 0 , (46)

λ1 + λ2 = −
(

n +
1

2

)2

, n ≥ 0 (47)

give rise to tr= 2 and tr= −2 respectively.
For a 6= 0 small enough, one can expect that tr crosses the lines ±2, for values of λ1, λ2

near the ones defined by (46) and (47), giving rise to some instability regions. So, if we fix
a 6= 0, small enough, in a neighbourhood of each line (46) and (47), we should have two curves
such that tr= 2 and tr= −2 respectively. Moreover it is well known from the general theory of
Hill equation (see [5]) that |tr| = 2 is related to the existence of 2π and 4π-periodic orbits. So,
following the notation used in [11], we introduce α2n, β2n, α2n+1 and β2n+1 such that

- for λ2 = −λ1 + α2n(a, λ1), (45) has a non trivial even 2π-periodic solution,

- for λ2 = −λ1 + β2n(a, λ1), (45) has a non trivial odd 2π-periodic solution,

- for λ2 = −λ1 + α2n+1(a, λ1), (45) has a non trivial even 4π-periodic solution,

- for λ2 = −λ1 + β2n+1(a, λ1), (45) has a non trivial odd 4π-periodic solution.
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It is clear that if a = 0 one has α2n = β2n = −n2 and α2n+1 = β2n+1 = −(n + 1/2)2, for n ≥ 0.
Furthermore for any a 6= 0 and λ1 such that αm(a, λ1) 6= βm(a, λ1), we get an instability interval
for λ2. However it may happen that αm(a, λ1) = βm(a, λ1) for some values of the parameters
a, λ1 and some positive integers m. In this case the instability interval for λ2 degenerates to a
point and we get the so called collapsed gaps. For a fixed value of a 6= 0, they can be seen in
the (λ1, λ2)-plane as the endpoints of the instability pockets (see figures 8, 9).

We trivially get collapsed gaps for any a, |a| < 1, on the λ1-axes. If we take λ2 = 0, the
equation (45) reduces to ẍ − λ1x = 0. So, for λ1 < 0 we get collapsed gaps if λ1 = −k2 and
λ1 = −(k+1/2)2, k ≥ 0, that is, α2k(a,−k2) = β2k(a,−k2) = −k2 and α2k+1(a,−(k+1/2)2) =
β2k+1(a,−(k + 1/2)2) = −(k + 1/2)2.

Lemma 7. Assume 0 < |a| < 1 is fixed.

1. If λ1 = −k2 for some integer k ≥ 0, then α2n(a, λ1) = β2n(a, λ1), for n ≥ k0 where,
k0 = k if k ≥ 1, and k0 = 1 if k = 0.

2. If λ1 = −(k + 1/2)2 for some integer k ≥ 0, then α2n+1(a, λ1) = β2n+1(a, λ1), for n ≥ k.

Otherwise, αm(a, λ1) 6= βm(a, λ1) for m ≥ 1, and there is an open instability interval for λ2.

Proof Following [11] we introduce the polynomial Q(µ; a, λ1) = 2a(µ2 + λ1). Then the main
result in [11] implies that

(a) sign [α2n(a, λ1) − β2n(a, λ1)] = sign Πn−1
m=−nQ(m; a, λ1) for n = 1, 2, 3, . . .

(b) sign [α2n+1(a, λ1) − β2n+1(a, λ1)] = sign Πn
m=−nQ(m − 1/2; a, λ1) for n = 0, 1, 2, 3, . . .

where the sign of a real number x is understood to be −1, 0, 1, according to whether x < 0,
x = 0 or x > 0 respectively. Assume λ1 = −k2, k ≥ 0. Then the right hand part of (a)
vanishes, for n ≥ k if k ≥ 1 and for n ≥ 1 if k = 0. This proves first part of the lemma. In a
similar way, part 2 holds after (b). Moreover, if λ1 6= −k2 and λ1 6= −(k + 1/2)2 for any k ≥ 0,
then Q(µ, a, λ1) and Q(µ− 1/2, a, λ1) do not have integer roots, and the right hand part of (a)
and (b) is different from zero for any n. 2

Assume a is fixed. The lemma above implies that the endpoints of instability pockets are
on the vertical lines λ1 = −k2 and λ1 = −(k+1/2)2, with k > 0 integer. Moreover these points
are in the halfplane λ2 < 0. Figure 15 shows the instability pockets in the (λ1, λ2)-plane for
three values of a. We plot also some vertical lines with constant λ1 . Moreover three fat points
on the line λ1 = −4 are distinguished. They correspond to endpoints of one pocket for three
different values of a.
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6 Appendix

To prove lemma 1 we use a very well-known result for the general Ince equation

(1 + a cos t) ÿ + b sin t ẏ + (c + d̃ cos t) y = 0, (48)
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Figure 15: Some instability pockets in the (λ1, λ2)-plane for the equation (45) with
−a = 1 − 2−10, 1 − 2−11, 1 − 2−12, and the lines λ1 = −1/4,−1,−9/4,−2,−25/4

where a, b, c and d̃ are real parameters with |a| < 1. In [5] it is shown that by performing

the following change of variables y = (1 + a cos t)
b
2a x if a 6= 0, and y = e

b
2

cos tx if a = 0, (48)
becomes

ẍ +
1

(1 + a cos t)2

[

−ab

2
− b2

4
+ c +

(

d̃ + ac − b

2

)

cos t +

(

ad̃ +
b2

4

)

cos2 t

]

x = 0. (49)

Assume a 6= 0. Equation (49) can be written as (7) if and only if the following equalities are
satisfied

λ1 + λ2 =
ab

2
+

b2

4
− c,

2aλ1 + aλ2 = −d̃ − ac +
b

2
, (50)

a2λ1 = −ad̃ − b2

4
.

The two last equations in (50) give us λ1 = − 1
a2

(

ad̃ + b2

4

)

, and λ2 = −c+ d̃
a + b

2a + b2

2a2 . Using

these expressions for λ1 and λ2 the first equation in (50) becomes
(

1 − 1

a2

) (

b2

4
+

ba

2

)

= 0.

We recall that |a| 6= 1, then the equation above is satisfied if and only if b = 0 or b = −2a.
In the first case we get λ1 = −d̃/a and λ2 = d̃/a − c. If b = −2a, λ1 = −d̃/a − 1 and
λ2 = d̃/a − c + 1. We note that λ1 and λ2 are independent on a if and only if d̃ = ad.

If a = 0, (50) implies b = 0 and the reduction is trivial.
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