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Abstract. The fact that a continuous self-map of a tree has positive topolog-
ical entropy is related to the amount of different gods (greatest odd divisors)
exhibited by its set of periods. Llibre & Misiurewicz [11] and Blokh [9] give
generic upper bounds for the maximum number of gods that a zero entropy
tree map f : T −→ T can exhibit, in terms of the number of endpoints and
edges of T . In this paper we compute exactly the minimum of the positive
integers n such that the entropy of each tree map f : T −→ T exhibiting more
than n gods is necessarily positive, for the family of trees which have a subin-
terval containing all the branching points (this family includes the interval and
the stars). We also compute which gods are admissible for such maps.

1. Introduction

In the framework of the discrete dynamical systems, the study of the set of peri-
ods for continuous self-maps of one dimensional spaces has centered the attention
in the last decades. In particular, we will focus on the study of the set of periods
of maps f : T −→ T , where T is a tree (a graph without circles). The first and
most famous result in this direction is the Sharkovsky’s theorem ([12]), which gives
a complete characterization of the set of periods of f when T is a closed interval.
Later on, a similar characterization has been also given for n-stars (trees consisting
of n edges attached at a unique central point) by Baldwin (in [6]). Recently, Alsedà,
Juher and Mumbrú (see [2]) have characterized the set of periods of f when T is
any generic tree, in terms of the topological structure of T .

One way to study the dynamical complexity of a continuous map f : X −→ X of
a compact metric space is computing its topological entropy, a nonnegative constant
which measures how the iterates of f mix the points of X (see [1]). For example, a
map with positive topological entropy is chaotic in the sense of Li and Yorke (see
[10] and [8]). The entropy of f is closely related to the periods of the periodic orbits
exhibited by f . There are some results that describe partially the set of periods of
f depending on the fact that f has positive or zero entropy. In this paper we focus
our attention on zero entropy continuous maps defined on trees and the problem of
describing the admissible set of periods for this sort of maps.

When T is an interval, it is well known that a map f : T −→ T has zero entropy
if and only if the period of each periodic orbit of f is a power of 2 (see [3] for a
historical survey on the proof of this result). For a generic tree, the zero entropy
maps have been characterized by Alsedà and Ye (see [5]). The authors give the
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characterization in terms of the notion of division of a periodic orbit (see Section 3
for a definition and Theorem 3.1). They also give a maximal set of periods for zero
entropy maps in terms of the number of endpoints of the tree. Another result in
the same way is due to Blokh (Corollary 7 of [9]), which gives a better upper bound
for the set of periods of zero entropy maps:

Theorem 1.1. Let T be a tree with n endpoints and s edges, and let f : T −→ T
be continuous. Then the topological entropy of f is zero if and only if Per(f) ⊂
{k · 2l : l ≥ 0, k odd , k ≤ s, each prime divisor of k is not larger than n}.

As we can see, the fact that a map has positive entropy is related to the odd
factors exhibited by its set of periods. This is the main motivation for the notions
of god of a nonnegative integer and pantheon of a subset of N, first introduced
by Llibre and Misiurewicz in [11]. Given any n ∈ N, the god of n is simply the
greatest odd divisor of n. It is denoted by god(n). Note that each n ∈ N can be
written uniquely as n = god(n) · 2l for some l ∈ N ∪ {0}. For any A ⊂ N, the set
{god(n) : n ∈ A} is called the pantheon of A. Given a tree map f , the pantheon of
Per(f) is called the pantheon of f , and is denoted by Pan(f).

In Section 2 we will show that Theorem 1.1 can be reformulated in terms of
gods as follows: a map f : T −→ T of a tree with n endpoints and s edges has zero
entropy if and only if Pan(f) ⊂ AT ∪ BT (see Theorem 2.2), where AT is the set
of odd numbers less or equal than n, and BT is the set of odd non-prime numbers
between n + 1 and s.

On another hand, Llibre and Misiurewicz ([11]) showed that if a continuous
map f : G −→ G is defined on a graph G with s edges and the cardinality of the
pantheon of f is greater than a constant Γ(s), then the map has positive entropy.
As the authors remark, the estimate Γ(s) is not the best possible and they have
not tried to optimize it. In the case of the interval and the circle, it is known that
the best estimate of the minimum number of gods which forces positive entropy
is two. But for a generic graph the problem of determining how many gods are
permitted for a zero entropy map remains open. For any tree T , let us denote this
number by NT . That is, NT is the minimum of the positive integers n such that
the entropy of each tree map f : T −→ T with |Pan(f)| > n is necessarily positive.
As we have seen, Γ(s), where s is the number of edges of T , is an upper bound
of NT . Furthermore, Theorem 1.1 gives another upper bound, |AT ∪ BT |, much
better than Γ(s) in general. Nevertheless, the exact computation of this number in
general is a difficult problem in which we are interested in.

A different problem consists of describing, for a fixed tree T , the set of gods k
such that there exists a zero entropy map f : T −→ T with k ∈ Pan(f). We call
such a god an admissible god for T . The set of all admissible gods for T is called
the pantheon of T , denoted by Pan(T ), which, clearly, coincides with the union of
the pantheons of all zero entropy maps defined on T . We call Pan(T ) the positive
entropy kernel by analogy with a well known notion, the full periodicity kernel
(see, for example, [3]). The positive entropy kernel Pan(T ) gives the maximum
set of admissible gods for a zero entropy map, because any tree map f : T −→ T
exhibiting a periodic orbit P such that god(|P |) /∈ Pan(T ) has positive entropy.

We would like to describe the set Pan(T ) and the constant NT depending on the
particular geometry of the tree T , which is a difficult task in general. For example,
if T is an interval it is well known that f : T −→ T has zero entropy if and only
if Per(f) ⊂ {2k : k ∈ N ∪ {0}}. Thus, in this case Pan(T ) = {1} and NT = 1.
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Figure 1. Three examples of 7-combs

Observe that both questions are not equivalent, in the sense that it is not true that
NT = |Pan(T )|. For example, one may obtain that Pan(T ) = {1, 3, 5, 7}, while
proving that any map on T exhibiting more than two of these gods at the same
time necessarily has positive entropy, so in this case, NT = 2. In general, we can
only assure that NT ≤ |Pan(T )|.

As we have noticed, Theorem 1.1 gives a generic upper bound for Pan(T ). It
turns out that the results obtained by Barrabés and Juher in [7] allow us to improve
this bound. See Theorem 2.6.

This paper contains two main results, labelled as Theorems A and B. Theorem A
describes Pan(T ) and NT for a family of trees which we have termed combs. A comb
is a tree which has a subinterval containing all the branching points (i.e. points
x such that T \ {x} has at least 3 connected components). See Figure 1 for some
examples of combs. Of course, in particular the interval and the stars are combs.
Theorem A states that if T is a comb then Pan(T ) = AT and NT = |AT |.

On another hand, Theorem B states that when a tree T can be obtained from
another tree S by collapsing finitely many subtrees of S to points then Pan(T ) ⊂
Pan(S). This result can be a crucial tool to tackle the general problem of char-
acterizing the pantheon of any tree T , since it allows to compute lower or upper
bounds of Pan(T ) by comparing different sorts of trees.

This paper is organized as follows. In Section 2 we introduce the basic definitions,
discuss some generic bounds for Pan(T ) and NT and finally state Theorems A and
B. To prove them, we will use several classical results and well known topics. We
will recall all these notions in Sections 3 and 4. In the same sections we will also
define the notion of simplified model and will use it to prove some useful technical
results. Sections 5 and 6 are devoted to the proofs of Theorem A and B respectively.

2. Basic definitions and statement of the main results

Given any subset X of a topological space, we will denote by Int(X) and Cl(X)
the interior and the closure of X, respectively. For a finite set A we will denote its
cardinality by |A|.

By an interval we mean any space homeomorphic to [0, 1] ⊂ R. A tree is a
uniquely arcwise connected space that is either a point or a union of finitely many
intervals. Any continuous map from a tree into itself will be called a tree map. The
set of periods of all periodic orbits of a tree map f will be called the set of periods
of f and will be denoted by Per(f). A triplet (T, P, f) such that f : T −→ T is a
tree map and P ⊂ T is a finite f -invariant set will be called a model. If in addition
P is a periodic orbit then the model (T, P, f) will be called periodic.

If T is a tree and x ∈ T , the valence of x is the number of connected components
of T \ {x}. Each point of valence 1 will be called an endpoint of T and the set
of such points will be denoted by En(T ). A point of valence different from 2 will
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be called a vertex of T , and the set of vertices of T will be denoted by V (T ).
The closure of each connected component of T \ V (T ) will be called an edge of T .
An edge containing an endpoint will be called external, otherwise it will be called
internal. The number of endpoints and the number of edges of T will be denoted,
respectively, by en(T ) and ed(T ). It is clear that for any tree T with at least 3
endpoints the number of external and internal edges are en(T ) and ed(T )− en(T )
respectively.

Given a tree T and P ⊂ T , we will define the convex hull of P , denoted by 〈P 〉T
or simply by 〈P 〉, as the smallest closed connected subset of T containing P . When
P = {x, y} we will write 〈x, y〉 or [x, y] to denote 〈P 〉. The notations (x, y), (x, y]
and [x, y) will be understood in the natural way.

The notion of topological entropy, introduced in [1], is defined for continuous
maps on compact metric spaces and is a quantitative measure of the dynamical
complexity of the map. It is an important topological invariant. The topological
entropy of a map f will be denoted by h(f).

As we have noticed in Section 1, the fact that a map has zero entropy is closely
related to the gods exhibited by Per(f). Theorem 1.1 gives a maximal set of periods
for zero entropy maps. This Theorem can be reworded using the following lemma
(its proof is simple and it is left to the reader) and the subsequent notation.

Lemma 2.1. Let T be a tree with en(T ) ≥ 3. Then en(T ) ≤ ed(T ) ≤ 2 en(T )− 3.

For each tree T we define the sets

AT = {n ∈ N : n odd, n ≤ en(T )},
BT = {n ∈ N : n non-prime odd, en(T ) < n ≤ ed(T )}.

Theorem 2.2. For each tree map f : T −→ T , h(f) = 0 if and only if Pan(f) ⊂
AT ∪BT .

Proof. From Lemma 2.1 it follows that if n ∈ N is not prime and satisfies n ≤ ed(T )
then each prime divisor of n is not larger than en(T ). Thus the theorem follows
from Theorem 1.1. ¤

We are interested in calculating Pan(T ) and NT depending on the particular
geometry (number and arrangement of vertices, edges and endpoints) of the tree
T . We recall that Pan(T ) is defined to be the union of the pantheons of all zero
entropy maps on T , while NT is the minimum of the positive integers n such that
each tree map f : T −→ T with |Pan(f)| > n necessarily satisfies h(f) > 0.

Theorem 2.2 gives upper bounds for Pan(T ) and NT , which are the set AT ∪BT

and its cardinality respectively. Furthermore, the following lemma and corollary
give lower bounds. These bounds are general for any tree T , that is, they do not
depend on the particular geometry of T .

Lemma 2.3. Let f : T −→ T be a tree map and let k ∈ {1, 2, . . . , en(T )}. Then
there exists a tree map g : T −→ T such that h(g) = h(f) and Per(g) = Per(f)∪{k}.
Proof. Let {e0, e1, . . . , en−1}, for n = en(T ), be the set of endpoints of T . The
result trivially holds when T reduces to a point, so we assume n ≥ 2. For each
0 ≤ i < n, take a point e′i ∈ T \ En(T ) such that (ei, e

′
i) ∩ V (T ) = ∅ (when n = 2,

in addition we take e′0 and e′1 such that e′1 ∈ (e′0, e1)). Let S be the convex hull
of {e′i}n−1

i=0 . Observe that S is a subtree of T which is homeomorphic to T . Let
h : S −→ T be a homeomorphism such that h(e′i) = ei for each 0 ≤ i < n.
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For any x ∈ S, we define g(x) = h−1 ◦ f ◦ h(x). Since g and f are conjugate,
h(f) = h(g

∣∣
S
) and there is a bijection between the respective sets of periodic orbits.

In particular, Per(g
∣∣
S
) = Per(f). Now we extend g to the whole T as follows. For

k ≤ i < n, let us define g(x) = g(e′i) ∈ S for each x ∈ (e′i, ei]. It easily follows
that gj(x) ∈ S for each j ≥ 1 and, consequently, since x ∈ T \ S, x is not periodic.
Therefore, there are no periodic points of g in (e′i, ei] for k ≤ i < n. Finally we
have to define g on (e′i, ei] for each 0 ≤ i < k. Take points mi ∈ (e′i, ei). We define
g(mi) = mi and g(ei) = ei+1 mod k, and extend g to be monotone on [e′i,mi] and
[mi, ei]. Let us consider x ∈ [e′i,mi]. If g(e′i) = e′i, then g(x) = x; if not, due
to the monotonicity of g, there exists some j such that gj(x) ∈ S. In any case,
x cannot belong to a periodic orbit. The same argument applies for x ∈ [mi, ei],
so {e0, e1, . . . , ek−1} is the only non-trivial periodic orbit of g in T \ S. Therefore,
Per(g) = Per(f) ∪ {k}. Finally, we have to prove that the entropies of f and g are
equal. Let

X = {e0, e1, . . . , ek−1}
⋃ (

Fix(g)
⋂ k−1⋃

i=0

[mi, e
′
i]
)
,

where Fix(g) is the set of all fixed points of g. Observe that X is closed and
invariant by g. Let Ω(g) be the set of nonwandering points of g. It is well known
(see, for instance, Lemma 4.1.5 of [3]) that Ω(g) is closed and invariant and the
entropies of g and g

∣∣
Ω(g)

are equal. By the definition of g, we have that Ω(g) is the

union of the invariant and closed sets X and Ω(g) ∩ S. Note also that h(g
∣∣
X

) = 0,
since X contains only a k-periodic orbit and fixed points of g. Therefore,

h(g) = h(g
∣∣
Ω(g)

) = max{h(g
∣∣
X

), h(g
∣∣
Ω(g)∩S

)} = h(g
∣∣
Ω(g)∩S

) = h(g
∣∣
S
) = h(f).

¤

Corollary 2.4. Given any tree T , there exists a map g : T −→ T such that h(g) = 0
and Pan(g) = AT .

Proof. Consider the identity map f on T , which satisfies h(f) = 0 and Per(f) =
{1}. Since each element in AT is not greater than en(T ), we can use inductively
Lemma 2.3 to construct the prescribed map. ¤

From the above results we get the following bounds for Pan(T ) and NT .

Theorem 2.5. Let T be a tree. Then AT ⊂ Pan(T ) ⊂ AT ∪BT and |AT | ≤ NT ≤
|AT |+ |BT |.
Proof. Statements AT ⊂ Pan(T ) and |AT | ≤ NT follow from Corollary 2.4. By
Theorem 2.2, Pan(T ) ⊂ AT∪BT , so we have that NT ≤ |Pan(T )| ≤ |AT |+|BT |. ¤

The upper bound of Pan(T ) (and, thus, of NT ) can be improved by using some
recent results of the authors. In [7], for a fixed p ∈ N, the minimum number of
endpoints ep of a tree admitting a zero entropy map f with a periodic orbit of
period p is given. This minimum of endpoints can be computed from p as

ep = s1s2 · · · sk −
k∑

i=2

sisi+1 · · · sk,

where p = s1s2 · · · sk is the decomposition of p into a product of primes such that
si ≤ si+1 for 1 ≤ i < k, and it is easy to see that ep = egod(p). The result implies
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that if T is a tree such that en(T ) < ep, then god(p) /∈ Pan(T ). Then, Corollary
1.3 of [7] gives the following result.

Theorem 2.6. Let T be a tree and BT = {p ∈ BT : ep ≤ en(T )}. Then AT ⊂
Pan(T ) ⊂ AT ∪BT and |AT | ≤ NT ≤ |AT |+ |BT |.

For example, let us consider a tree T with en(T ) = 19 and the maximum possible
number of edges, which is 35. In this case, BT = {21, 25, 27, 33, 35}, while BT =
{21, 27} because e25 = 20, e33 = 22 and e35 = 28. Then, by Theorem 2.6, Pan(T ) ⊂
AT ∪ {21, 27} and 10 ≤ NT ≤ 12. For another example, let T be any tree with
9 endpoints and 15 edges. In this case BT = {15} but, since e15 = 10, BT = ∅.
Thus, from Theorem 2.6, we get that Pan(T ) = AT and NT = |AT |.

The problem of computing generically NT and Pan(T ) is not easy. Thus, it
seems convenient to restrict our attention to any particular sort of trees. In the
literature, the classical results on interval maps are usually first extended to star
maps. For any n ≥ 2, an n-star is a tree which is a union of n intervals whose
intersection is a unique point x of valence n (which is called the central point of the
star). Observe that if n ≥ 3 any n-star has n endpoints and n edges. The following
immediate consequence of Theorem 2.5 solves our problem for this sort of trees.

Theorem 2.7. Let T be a star. Then Pan(T ) = AT and NT = |AT |.
Proof. The result is well known when T is an interval. If T has at least 3 endpoints,
the theorem follows from Theorem 2.5 and the fact that BT = ∅, because in this
case en(T ) = ed(T ). ¤

Theorem A below states that the same holds for another family of trees: the
combs. For any n ≥ 2, an n-comb is defined to be any tree T such that en(T ) = n
and there exists a subinterval of T containing V (T ) \ En(T ). In other words, each
point with valence at least 3 (these points are usually called branching points)
belongs to an external edge. Observe that the interval and the stars are particular
cases of combs. In Figure 1 one can find three examples of 7-combs.

Remark 2.8. Any proper subtree of an n-comb is a t-comb for some t ≤ n.

Theorem A. Let T be a comb. Then Pan(T ) = AT and NT = |AT |.
To state Theorem B we need to introduce a relation ¹ among trees. We say that

T ¹ S if T is homeomorphic to a tree obtained by choosing finitely many disjoint
subtrees of S and collapsing each one to a point. It is easy to check that ¹ is not
a total ordering.

Theorem B. Let T and S be trees such that T ¹ S. Then, Pan(T ) ⊂ Pan(S).

Theorem B can be used to adjust the upper and lower bounds discussed above
for the pantheon of a generic tree T . In some cases, it is possible to compute
exactly the pantheon of a collection of trees by ¹-comparing them with another
regular enough family of trees. As an example, consider a (3, 5)-star T (see [7] for
the definition of a generic (s1, . . . , sk)-star). It is easy to construct a zero entropy
map f : T −→ T such that 15 ∈ Per(f) (see [7] for details). Then, from Theorem B
we have that

(2.1) 15 ∈ Pan(S) for each tree S such that T ¹ S.
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Figure 2. An example of a (3, 5)-star T (on the left) and two
trees greater than T in the ordering ¹.

Consider now the set of all trees S such that T ¹ S and en(S) ≤ 13 (see Fig-
ure 2). Each tree S in this family satisfies BS = {15} and, hence, from (2.1) and
Theorem 2.6 it follows that Pan(S) = AS ∪ {15}.

3. Zero entropy tree maps and simplified models

The zero entropy orbits on trees are characterized in terms of the notion of
division, first introduced by Alsedà and Ye in [5]. Next we recall this notion.

Let f : T −→ T be a tree map and let P be a periodic orbit of f of period larger
than 1. The map fP : 〈P 〉 −→ 〈P 〉 defined by fP = r ◦ f , where r : T −→ 〈P 〉 is
the natural retraction, will be called the natural restriction of f to 〈P 〉. Let y be
a fixed point of fP . Let Z be the connected component of 〈P 〉 \ P containing y
and Z1, Z2, . . . , Zl the connected components of 〈P 〉 \ Z. These sets will be called
the components of P . We say that P has a division of type (l, m) if there exist
{M1,M2, . . . ,Mm} with m ≥ 2, a partition of 〈P 〉 \ Z, such that each Mi consists
of a union of components Zi of P , f(Mi ∩ P ) = Mi+1 ∩ P for 1 ≤ i < m and
f(Mm ∩ P ) = M1 ∩ P . The sets Mi will be called the branches of P . Observe that
each branch contains |P |/m points of P .

The following result, which is a part of Corollary C of [5], characterizes the zero
entropy tree maps in terms of their orbits.

Theorem 3.1. Let f : T −→ T be a tree map. Then h(f) = 0 if and only if for
every n ∈ N each periodic orbit of fn of period larger than 1 has a division.

Given a periodic orbit of a zero entropy tree map, sometimes it is convenient
to reduce it (in a sense given by the proof of Lemma 3.4) in order to get another
periodic orbit, which we will call simplified, satisfying a number of useful properties.
Let us define this notion. Let (T, P, f) be a periodic model. We say that (T, P, f)
is a simplified model if either |P | = 1 or the following conditions hold:
(S1) |P | > 1.
(S2) h(f) = 0.
(S3) En(T ) ⊂ P .
(S4) If M1,M2, . . . , Mm are the branches of P defined by any division of P , then

Int(〈Mi〉T ) ∩ P = ∅ for each 1 ≤ i ≤ m.

Lemma 3.2. Let f : T −→ T be a tree map with h(f) = 0, X a subtree of T and
let r : T −→ X be the natural retraction from T onto X. Then, h(r ◦ f

∣∣
X

) = 0.

Proof. Since h(f) = 0, for every n ∈ N each periodic orbit of fn of period larger
than 1 has a division by Theorem 3.1. On the other hand, by Lemma 2.5 of [5],
this is also true for r ◦ f

∣∣
X

. Hence, again by Theorem 3.1, h(r ◦ f
∣∣
X

) = 0. ¤
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Lemma 3.3. Let f : T −→ T be a zero entropy tree map exhibiting a periodic orbit
of period 2ls with s odd. Then, there exists a zero entropy tree map g : T −→ T
exhibiting a periodic orbit of period s.

Proof. It is enough to take g = f2l

. Then, h(g) = 2lh(f) = 0. Moreover, from
Lemma 2.1.10 of [3], each periodic orbit of f of period 2ls is a periodic orbit of g
of period 2ls/gcd(2ls, 2l) = s. ¤

The previous lemmas allow us to prove the following one, which is the main
result of this Section.

Lemma 3.4. Let (T, P, f) be a periodic model such that |P | > 1 and h(f) = 0.
Then, there exists a simplified model (S, Q, g) such that S ⊂ T . Moreover, if
god(|P |) ∈ BT then |Q| ∈ BS.

Proof. Set s = god(|P |). By Lemma 3.3 there is a tree map f ′ : T −→ T with
h(f ′) = 0 exhibiting a periodic orbit P ′ such that |P ′| = s. If s = 1, the model is
simplified by definition. Let us suppose that s > 1. Note that the model (T, P ′, f ′)
satisfies (S1) and that god(|P ′|) = |P ′| = s.

We proceed by induction. Set P0 = P ′ and T0 = 〈P ′〉T . Let r : T −→ T0 be the
natural retraction and set f0 = r ◦ f ′

∣∣
T0

. By Lemma 3.2, h(f0) = 0. Moreover,
En(T0) ⊂ P0. Thus, the model (T0, P0, f0) satisfies (S1–3). Now we claim that
if s ∈ BT then |P0| ∈ BT0 . Indeed, otherwise god(|P0|) = |P0| = s ∈ AT0 by
Theorem 2.2, but AT0 ⊂ AT because en(T0) ≤ en(T ). Thus, s ∈ AT ∩ BT = ∅, a
contradiction which proves the claim.

Now assume that we have constructed a sequence of models {(Ti, Pi, fi)}k
i=0 such

that, for each 0 ≤ i ≤ k,
(i) Ti ⊂ T
(ii) (Ti, Pi, fi) satisfies (S1–3)
(iii) If god(|P |) ∈ BT then |Pi| ∈ BTi

and, for each 0 ≤ i < k,
(iv) |Pk+1| = |Pk|/mk for some mk ≥ 2.

If in addition (Tk, Pk, fk) satisfies (S4), then we are done by setting S = Tk, g = fk

and Q = Pk.
Assume that (Tk, Pk, fk) does not satisfy (S4). That is, Pk has a division with

branches M1, M2, . . . , Mm with m ≥ 2 and, for some i ∈ {1, 2, . . . ,m},
(3.1) Int(〈Mi〉Tk

) ∩ Pk 6= ∅.
Let φ : Tk −→ 〈Mi〉Tk

be the natural retraction. Set Tk+1 = 〈Mi〉Tk
, fk+1 = φ ◦

(fk)m
∣∣
Tk+1

and Pk+1 = Pk ∩ Tk+1. Since Tk+1 ⊂ Tk, (Tk+1, Pk+1, fk+1) satisfies
(i). Let us see that it satisfies (ii). Observe that En(Tk+1) ⊂ Pk+1. From (3.1) it
follows that

(3.2) |Pk+1| > en(Tk+1).

In particular, |Pk+1| > 1. On the other hand, h(fk+1) = 0 using Lemma 3.2.
Summarising, (Tk+1, Pk+1, fk+1) satisfies (ii). By the definition of division, Pk+1

is a periodic orbit of fk+1 with period |Pk|/m. Then, (Tk+1, Pk+1, fk+1) satisfies
(iv) by taking mk = m. Finally we claim that it satisfies (iii). Assume that
god(|P |) ∈ BT . Since (Tk, Pk, fk) satisfies (iii), |Pk| ∈ BTk

. Note that |Pk+1| is
odd because |Pk+1| = |Pk|/m and |Pk| is odd. Hence, god(|Pk+1|) = |Pk+1|. By
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Theorem 2.2, |Pk+1| ∈ ATk+1 ∪BTk+1 . Thus, from (3.2) and the definition of BTk+1

we have that |Pk+1| ∈ BTk+1 and the claim follows.
Since each model in the sequence satisfies (S1) and (iv), it easily follows that

this iterative procedure stops after finitely many steps. ¤

4. Horseshoes and simplicial models

It is also well known that positive topological entropy is due to the existence
of horseshoes. For example, the next result, which is a particular instance of
Lemma 6.1 of [11], is a useful tool to prove that a map has positive entropy.

Lemma 4.1. Let f : T −→ T be a tree map. Let I, J1, J2 ⊂ T be closed intervals
containing no points of V (T ) in their interiors such that Int(J1) ∩ Int(J2) = ∅.
If there exist positive integers r, s, t such that fr(I) ⊃ J1 ∪ J2, fs(J1) ⊃ I and
f t(J2) ⊃ I, then h(f) > 0.

Corollary 4.2. Let f : T −→ T be a tree map. Let K, L ⊂ T be closed intervals
containing no points of V (T ) in their interiors such that Int(K) ∩ Int(L) = ∅. If
there exist positive integers i, j such that f i(K) ⊃ K ∪ L and f j(L) ⊃ K then
h(f) > 0.

Proof. Use Lemma 4.1 with I = J1 = K, J2 = L, s = r = i and t = j. ¤
A model (T, P, f) will be called simplicial if En(T ) ⊂ P , f(V (T )) ⊂ P ∪ V (T )

and f is monotone on each connected component of T \ (P ∪ V (T )). In this case,
the closure of each connected component of T \ (P ∪ V (T )) will be called a basic
interval. The following result is a particular instance of the main result of [4]:

Theorem 4.3. Let f : T −→ T be a tree map such that h(f) = 0. Let P be a
periodic orbit of f . Then, there exists a tree map g : 〈P 〉T −→ 〈P 〉T such that
g
∣∣
P

= f
∣∣
P
, h(g) = 0 and (〈P 〉T , P, g) is a simplicial model.

The following is a technical result which we will use to prove the main result of
this paper:

Proposition 4.4. Let (T, P, f) be a periodic simplicial model such that |P | is odd.
If there is a basic interval [v, x] such that x ∈ En(T ) and |fk([v, x]) ∩ P | > 1 for
some k ≥ 0 then h(f) > 0.

Proof. Set n = |P | and P = {xi}n−1
i=0 , in such a way that x0 = x, f(xi) = xi+1 for

0 ≤ i < n − 1 and f(xn−1) = x0. By hypothesis, there exists xj 6= xk such that
fk([x0, v]) ⊃ [xk, xj ]. Assume that k > j (the argument for k < j is similar). Set
K = [x0, v]. Then, fn(K) ⊃ fn−k([xk, xj ]) ⊃ [x0, xn+j−k]. Since (P ∪ V (T )) ∩
Int(K) = ∅ and x0 ∈ En(T ), it follows that

(4.1) fn(K) ⊃ [x0, xn+j−k] ⊃ K.

Set σ = k − j, so that fσ(xn+j−k) = x0. Since (T, P, f) is a simplicial model,
f(P ∪ V (T )) ⊂ P ∪ V (T ). Assume that there is w ∈ (P ∪ V (T ))∩ [v, xn+j−k) such
that fσ(w) 6= x0. It easily follows that there is a basic interval L ⊂ [v, xn+j−k)
such that fσ(L) ⊃ K. Since fn(K) ⊃ K ∪ L by (4.1), from Corollary 4.2 we get
that h(f) > 0 and we are done in this case.

Now assume that fσ(w) = x0 for all w ∈ (P ∪V (T ))∩ [v, xn+j−k). In particular,
fσ(v) = x0 and, since fσ(x0) = xσ, as above it follows that

(4.2) fσ(K) ⊃ [x0, xσ] ⊃ K.
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Finally, observe that fσ(xσ) 6= x0 because n is odd. It easily follows that there is
a basic interval L ⊂ [v, xσ] such that fσ(L) ⊃ K. Since fσ(K) ⊃ K ∪ L by (4.2),
from Corollary 4.2 we get that h(f) > 0 and we are done. ¤

5. Proof of Theorem A

By Theorem 2.5 and the definition of Pan(T ) and NT , it is enough to prove that
any continuous self-map of T exhibiting a period whose god belongs to BT has
positive topological entropy.

Let f : T −→ T be a comb map with a periodic orbit P such that god(|P |) ∈ BT .
To prove the theorem we assume that h(f) = 0, and we will get a contradiction.

By Lemma 3.4, there is a simplified model (S, Q, g) with S ⊂ T and |Q| ∈ BS . In
particular, h(g) = 0 and En(S) ⊂ Q. In addition, by Theorem 4.3 we can assume
that (S, Q, g) is a simplicial model. Thus, g(V (S)) ⊂ V (S) ∪Q and g is monotone
on each basic interval.

By Remark 2.8, S is a comb. Observe that S is neither an interval nor a star,
because otherwise the fact that |Q| ∈ BS would contradict Theorem 2.7. Since
En(S) ⊂ Q and |Q| > en(S), we have that Q \ En(S) 6= ∅. Note that

(5.1) any point in Q \ En(S) does not belong to an external edge

because, otherwise, we would have a basic interval [x, v] with x ∈ En(S) ⊂ Q and
v ∈ Q, obtaining, by applying Proposition 4.4, that h(g) > 0, a contradiction. Since
S is a comb, any point of V (S) belongs to an external edge. So from (5.1) we get

(5.2) (Q \ En(S)) ∩ V (S) = ∅.
Let y be a fixed point of g with respect to which the orbit Q has a division. Let

(l, m) be the type of this division and denote by Z0, . . . , Zl−1 and M0, . . . , Mm−1,
respectively, the components and the branches of Q, in such a way that g(Mi∩P ) =
Mi+1 ∩ P . Observe that, since |Q| is odd, m is also odd.

We claim that Q \ En(S) has at most two elements. Indeed: if |Q \ En(S)| ≥ 3,
then there is at least one component Zi of Q such that Int(〈Zi〉) ∩ Q 6= ∅. Since
each branch of Q is a union of components of Q, this fact contradicts property (S4)
of a simplified model. So the claim follows.

Now we claim that if Q\En(S) consists of two points x, z then (x, z)∩V (S) 6= ∅.
Let us prove it. First we note that y ∈ (x, z) because otherwise there is a component
(and, thus, a branch) of Q containing either x or z in its interior, in contradiction
with property (S4) of a simplified model. Now assume that the claim is false, so
that (x, z) ∩ V (T ) = ∅. It easily follows that Q has exactly two components and,
thus, m = l = 2, a contradiction with the fact that m is odd.

Let x be a point of Q \En(S). By (5.2), x /∈ V (S) and therefore S \ {x} has two
connected components. Let Y be the connected component of S \{x} containing y.
Then, S \Y coincides with a component Zi of the orbit Q. Observe that the branch
of Q containing Zi (which we can assume to be M0 without loss of generality)
does not contain other components of Q, because otherwise x ∈ Int(〈M0〉), in
contradiction with property (S4) of a simplified model. Hence, M0 = 〈M0〉 = S \Y .
Observe that V (S) ∩ Int(Y ) 6= ∅ (it follows from (5.1) when |Q \ En(S)| = 1 and
from the previous claim when |Q \ En(S)| = 2). Take v ∈ V (S) ∩ Int(Y ) such that
(x, v) ∩ V (S) = ∅. In other words, v ∈ V (S) \ En(S) and [x, v] is a basic interval
contained in Cl(Y ). Set K = [x, v].
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Let e ∈ En(S) be such that [v, e] is an external edge. By (5.1), (v, e] ∩Q = {e}.
Since e ∈ Y = S \M0, there is 0 < i < m such that e ∈ Mi. Let us see that there
exists α ∈ N such that

(5.3) gα(v) ∈ M0.

Note that gm−i(e) and g2m−i(e) belong to M0, since e ∈ Mi. Take α = m − i if
gm−i(e) 6= x and α = 2m− i if gm−i(e) = x. Note that gα(e) 6= x, because Q∩M0

is a periodic orbit of gm and |M0 ∩ Q| > 1. Then (5.3) holds because, otherwise,
gα([v, e]) ∩ Q ⊃ [gα(v), gα(e)] ∩ Q ⊃ {x, gα(e)} and, consequently, h(g) > 0 by
Proposition 4.4, a contradiction.

Observe that α mod m = −i mod m 6= 0. Therefore, gα(x) ∈ Mα mod m 6=
M0. From this fact and (5.3) it follows that

(5.4) gα(K) ⊃ [x, gα(x)] ⊃ K.

Since (S,Q, g) is a simplicial model, g(Q ∪ V (S)) ⊂ Q ∪ V (S). Finally, since
gi(x) ∈ Mi and gi(gα(x)) ∈ M0, from the finiteness of (Q∪V (S))∩[x, gα(x)] it easily
follows that there exists a basic interval L ⊂ [x, gα(x)] such that gi(L) ⊃ K. Since
gα(K) ⊃ K ∪ L by (5.4), from Corollary 4.2 we get that h(g) > 0, a contradiction
which proves the theorem.

6. Proof of Theorem B

It is easy to see that the definition of T ¹ S is equivalent to the following one:
T ¹ S if and only if T is homeomorphic to a tree obtained by choosing a set X
which is a finite union of edges of S and collapsing each connected component of X
to a point. If only internal edges are collapsed, then en(T ) = en(S) and ed(T ) =
ed(S)− k, where k is the number of collapsed edges. Clearly, if k = ed(S)− en(S)
(the total number of internal edges of S), the tree obtained is the en(S)−star.

Theorem B will be easily obtained as a consequence of Proposition 6.4. To prove
it, we need two technical results.

Lemma 6.1. Let S and T be trees such that T ¹ S. Let X be a union of external
edges of S and assume that T has been obtained by collapsing each connected com-
ponent of X to a point. If there exists a periodic model (T, P, f) such that h(f) = 0
then there exists a periodic model (S, Q, g) such that h(g) = 0 and |Q| = |P |.
Proof. The result follows easily if T is a point. So, from now on we assume that T
is a proper tree. Let X1, X2, . . . , Xk be the connected components of X. Since Xi

is a union of external edges for each 1 ≤ i ≤ k, it follows that Xi \ Int(Xi) consists
of a single point in S, which we call xi. Consider the equivalence relation ∼ on
S defined by: x ∼ y if and only if either x = y or there is 1 ≤ i ≤ k such that
{x, y} ⊂ Xi. Then, T can be identified with the quotient space S/ ∼. Consider
the standard projection π : S −→ T , which is a continuous map. It is not difficult
to see that π is a homeomorphism between S \ Int(X) and T . Set wi := π(xi) for
each 1 ≤ i ≤ k. Now, for each x ∈ S, we define

g(x) =
{

xi if f ◦ π(x) = wi for some 1 ≤ i ≤ k
π−1 ◦ f ◦ π(x) otherwise.

It is easy to see that g : S −→ S is well defined and continuous. Observe that there
are no periodic points of g in Int(X), because g(Int(X)) ⊂ S \Int(X). On the other
hand, since π ◦ g(x) = f ◦ π(x) for all x ∈ S and π is a homeomorphism between
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S \ Int(X) and T , it follows that there is a period-preserving bijection between the
sets of periodic orbits of f and g. Let Q be the image of the orbit P by this bijection.
Then, (S,Q, g) is a periodic model with |Q| = |P |. Finally we have to show that
h(g) = 0. Since Per(g) = Per(f), in particular Pan(g) = Pan(f), which is contained
in AT ∪ BT by Theorem 2.2, because h(f) = 0. Since T ¹ S, then en(T ) ≤ en(S)
and ed(T ) ≤ ed(S). It follows that AT ⊂ AS and BT ⊂ AS ∪ BS . Summarizing,
Pan(g) = Pan(f) ⊂ AT ∪BT ⊂ AS ∪BS . Thus, h(g) = 0 by Theorem 2.2. ¤

To prove the next result we need to recall briefly a standard notion. We will
say that a model (T, Q, f) is a Markov model if V (T ) ⊂ Q and f is monotone on
the closure of each connected component of T \ Q. These connected components
will be called Q-basic intervals. As usual, we can consider the (Markov) f -graph of
Q, whose vertices are the Q-basic intervals and there is an arrow from the vertex
I to the vertex J if and only if f(I) ⊃ J . If {I1, I2, . . . , Ik} is the set of Q-basic
intervals, then we can construct a k × k matrix M = (mij), called the transition
matrix of (T, Q, f), defined by

mij =
{

1 if f(Ii) ⊃ Ij

0 otherwise.

Remark 6.2. If (T,Q, f) is a Markov model, then h(f) = max(0, log(σ)), where
σ is the spectral radius of the transition matrix of (T,Q, f). This follows from
Theorem 4.4.5 of [3] with the obvious changes (see also [4]).

Lemma 6.3. Let S and T be trees such that T ¹ S. Assume that T has been
obtained by collapsing one internal edge of S to a point. If there exists a Markov
model (T, P , f) such that h(f) = 0 and P contains a periodic orbit P , then there
exists a Markov model (S, Q, g) such that h(g) = 0 and Q contains a periodic orbit
Q with |Q| = |P |.
Proof. Let [a, b] be the internal edge of S which has been collapsed to obtain T .
Then, T can be identified with the quotient space S/ ∼, where ∼ is the equivalence
relation defined by: x ∼ y if and only if either x = y or {x, y} ⊂ [a, b]. Consider the
standard projection π : S −→ T , which is a continuous map. Then, π([a, b]) reduces
to a point in T . Set x = π([a, b]). Observe that a, b ∈ V (S) and that x ∈ V (T ) ⊂ P .
It is not difficult to see that π is a homeomorphism between S \ [a, b] and T \ {x}.
Set Q := π−1(P \ {x}) ∪ {a, b}. Then, Q ⊃ V (S).

Next we define the map g : S −→ S satisfying the prescribed properties. We
start by defining g on a and b. If f(x) = x, then we define g(a) = a and g(b) = b.
Otherwise, we define g(a) = g(b) = π−1(f(x)), which belongs to Q \ {a, b} since
f(x) ∈ P \ {x}. Now we define g(z) for each z ∈ Q \ {a, b}. If f(π(z)) 6= x, then
we set g(z) = π−1(f(π(z))), which belongs to Q \ {a, b}. If f(π(z)) = x, then we
define g(z) = a if b /∈ (z, a), and g(z) = b otherwise.

So, we have that g(Q) ⊂ Q. Finally, we extend g to S by taking any piecewise
monotone extension of g

∣∣
Q

. That is, g maps monotonically any Q-basic interval
[v, w] onto [g(v), g(w)]. Then, (S, Q, g) is a Markov model, since V (S) ⊂ Q.

Let us see that Q contains a periodic orbit Q with |P | = |Q|. We distinguish
three cases. If x /∈ P , then we take Q = π−1(P ). If P = {x}, then f(x) = x and
any point in [a, b] is a fixed point of g, so we take Q = {a}. In both cases, it is
easy to check that Q is a periodic orbit of g and |Q| = |P |. Finally, let us consider
the case x ∈ P and |P | > 1. For 1 ≤ i < |P |, we take zi = π−1(f i(x)). Then,
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zi ∈ Q \ {a, b} and g(zi) = zi+1 for 1 ≤ i < |P | − 1. If b ∈ (z|P |−1, a) then we set
z0 = b, otherwise we set z0 = a. From the definition of g it is easy to check that
g(z|P |−1) = z0 and g(z0) = z1, so that Q is a periodic orbit of g and |Q| = |P |.

Finally we have to show that h(g) = 0. Let AT be the set of P -basic intervals
in T and let AS be the set of Q-basic intervals in S. Since π is a homeomorphism
between S \ [a, b] and T \{x}, the map κ : AS \ {[a, b]} −→ AT given by κ([v, w]) =
[π(v), π(w)] is a bijection. Observe that κ−1 acts as a bijection between the f -graph
of P and a subgraph of the g-graph of Q, sending each loop I0 → I1 → . . . → In →
I0 in the f -graph of P to κ−1(I0) → κ−1(I1) → . . . → κ−1(In) → κ−1(I0). On
the other hand, since either g is the identity map on [a, b] or g([a, b]) collapses to
a point, there are no other loops in the g-graph of Q except, perhaps, the loop
[a, b] → [a, b]. Let M and N be the transition matrices of the f -graph of P and
the g-graph of Q, respectively. Denote by tr(·) the trace of a matrix (that is, the
sum of all the entries from its diagonal). From Lemma 4.4.1 of [3], it follows that,
for each n ≥ 1, tr(Mn) ≤ tr(Nn) ≤ tr(Mn) + 1. Then, by Lemma 4.4.2 of [3], the
spectral radius of N equals that of M . Then, by Remark 6.2, h(g) = h(f) = 0. ¤

Proposition 6.4. Let (T, P, f) be a periodic simplicial model with h(f) = 0 and
let S be a tree such that T ¹ S. Then there exists a periodic model (S, Q, g) such
that h(g) = 0 and |Q| = |P |.
Proof. The result follows easily if T is a point. So, from now on we assume that T
is a proper tree. Let k ≥ 0 be the number of edges of S which have been collapsed
to obtain T . If k = 0 then S and T are homeomorphic and the proposition follows
trivially, so we assume k ≥ 1. We remark that if e is an external edge of a tree X
and we obtain a new tree X ′ ¹ X by collapsing one internal edge of X to a point,
then e keeps being an external edge of X ′. On the other hand, (T, P ∪ V (T ), f) is
a Markov model. Therefore, if l is the number of internal edges which have been
collapsed to obtain T from S, with 0 ≤ l ≤ k, the proposition follows by iteratively
applying Lemma 6.3 l times and, finally, by applying Lemma 6.1. ¤

Now we are ready to prove Theorem B.

Proof of Theorem B. Let p ∈ Pan(T ). Then, there exists a map f : T −→ T and
a periodic orbit P of f such that h(f) = 0 and |P | = 2kp for some k ≥ 0. From
Theorem 4.3, there exists a map g : 〈P 〉T −→ 〈P 〉T such that h(g) = 0, (〈P 〉T , P, g)
is a simplicial model and g

∣∣
P

= f
∣∣
P

. Since 〈P 〉T ¹ T , then 〈P 〉T ¹ S and, by using
Proposition 6.4, we get that p ∈ Pan(S). ¤
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