Thomson’s Heptagon: a case of bifurcation at infinity.
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Vortex modeling has a long history. Descartes (1644) used it as a model for the solar systems. J.
J. Thomsom (1883) used it as a model for the atom. We consider point-vortex systems, which can be
regarded as “discrete” solutions of the Euler equation. Their dynamics is described by a Hamiltonian
system of equations. We are interested in polygonal configurations and how their stability depends
upon various dynamical variables. A bit of Celestial Mechanics’ techniquess helped us to simplify a
problem that has been studied during over a century.
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I. INTRODUCTION

In 1883, when searching a model for the atom, J.J.
Thomson was brought to study the linear stability of
polygonal configurations of IV identical point-vortices in
the plane. In his analysis he reached the conclusion that a
ring of six or fewer vortices was stable while for seven vor-
tices he erroneously concluded that the ring was slightly
unstable [12]. Fifty years later, in 1931, T. Havelock [6]
succeeded in solving the ring linear analysis in full gen-
erality and showed that Thomson’s Heptagon was neu-
trally stable. In 1999, Cabral and Schmidt [4] performed
the nonlinear stability analysis for polygonal configura-
tions with a central vortex (see Figure 1.a)). Finally
very recently, in 2003, L.G. Kurakin and V.I. Yudovich
[8] showed that the heptagon is nonlinearly stable. Then
the “biblical” question arises: why should N = 7 be any
special? Why seven should be the border-line between
stability and instability in the plane? What is happening
for rings of vortices, say, on a sphere? In this article we
show that the conclamated case of Thomson’s Heptagon
is actually a case of bifurcation at infinity! People were
looking at the problem in a reduced parameter space —
i.e. for a special value of an extra parameter at infinity.
This is particularly clear when considering the problem
of a ring of vortices on a sphere with two polar vortices of
variable intensities, Iy and I'g, respectively at the North
and South Pole.

II. EQUATIONS OF MOTION

Let us consider a non-rotating sphere of radius R. The
position of a point-vortex on the surface of the sphere
is specified by means of the usual spherical coordinates
(¢,6), where 8 € [0, 7] is the co-latitude and ¢ € [0, 27]
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the longitude. It has already been shown in the literature
(see for example [2, 7]) that on a sphere the dynamics of
N point vortices of strengths T'y,..., 'y is given by the
Hamiltonian system of equations
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where q, = ¢, and p, = 'y R?(cosf, — 1) are the canon-
ical variables associated to the ath vortex, and H is the
autonomous Hamiltonian

H(q1,.,qN,P1,--»PN) = C Z TowIsln(l —dag), (2)
a<f

with ¢ = —1/dr and dag = (1+ =) (1+ a4z ) +
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III. A RING OF IDENTICAL VORTICES

Now let us focus our attention on the case of the unit
sphere, R = 1, and a vortex configuration consisting of
one latitudinal ring of N identical vortices, say of vortic-
ityl'l =...=Tny =1, ie.

2 -1
w0 =20 0=t -1 (3)
N
and two polar vortices respectively of vorticity I'y and
[s, held fixed at each pole, as shown in Figure 1.c). The
Hamiltonian of the vortex system is H = H, + Hpp,

where

N N
Hpp = cI'n Z In(—pg) + I's Z In(2 + pg)
B=1 B=1

is the part describing the interaction of the polar vortices
with each vortex in the ring, and H, is as H in (2), the



FIG. 1: a) In the plane and on a sphere, a configuration of a
ring of identical vortices with a center vortex of vorticity I'.
b) A point on the sphere of radius R can be localized by spec-
ifying its longitude ¢ and its co-latitude 6. c) Configuration
of a ring and two polar vortices on a sphere.

Hamiltonian describing the interaction of the vortices of
the ring. It has been shown (see [3, 9]) that the dynamics
of such a configuration is a rigid rotation —i.e. a relative
equilibrium —

da(t) = vt +4a(0), pa(t) =z, -1, (4)
where 2z, = cosb,, v = ¢ [;—g(N— 1) + 2 — 45

is the rotational frequency deduced in [3] and p, =
/1 — 22. Now the natural question arises:

How does the stability (linear and non linear) of such
configuration depend upon N, z,, Iy e'g ?

To tackle this question we begin by rewriting the system
(1) as
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where X = (q1,...,qN, D1, DN), J = Il o and
_ o o 2] o :
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changing the values of I'y and T'g is equivalent to ex-
change z9 by —z9. Hence, it will be enough to discuss
the behaviour for fixed values of I's and let vary 'y and
z0- Then we do the following (see for details Boatto and
Simé [3]):

i) Change of reference frame: we view the dynamics in a
frame corotating with the relative equilibrium configu-
ration. In the corotating reference system, the Hamil-
tonian takes the form

H=H+vM,

where M = N + fovzl Pq is the momentum of the sys-
tem — associated to the invariance under translations
of the Hamiltonian H along parallels. The relative
equilibrium becomes an equilibrium, X*, in the new
reference system, and the standard techniques can be
used to study its stability.

The relevant equation to be studied is therefore

dAX
— = JSAX (5)

where X = X* + AX, and S is the Hessian of H eval-
uated at the equilibrium X™*. For the linear stability
we study the eigenvalues of the matrix JS (spectral
stability), while for nonlinear stability we make use of

Dirichlet’s Criterion, i.e. we study the definiteness of
the Hessian S [4, 5]:

Theorem III.1 (Dirichlet’s Criterion)

Let X* be an equilibrium of an autonomous system of
ordinary differential equations

dX
= = 1%, X e Qc RN, (6)
that is, f(X*) = 0. If there exists a positive (or negative)
definite integral © of the system (6) in a neighborhood of
the equilibrium X*, then X* is stable.

Then let X* be an equilibrium (3) and S the Hessian
of H evaluated at the equilibrium configuration. Since
H is a first integral of the system, Dirichlet’s theo-
rem implies that if at the equilibrium the quadratic
form AXTSAX is positive (or negative) definite, then
the equilibrium is stable. Notice that the Hessian S
is a symmetric matrix and therefore it is diagonaliz-
able, i.e. there exists an orthogonal matrix C' such
that CTSC = D, where D = diag()\y,..., \an) is a
diagonal matrix. Furthermore the matrix C' can be
chosen to leave invariant the symplectic form (equiva-
lently J = CTJC). Then by the canonical change of
variables Y = CT X Eq. (5) becomes

dAY
—— = JDAY,
- =JDAY, 7

where YV = (615"'56N7ﬁ1a"'7ﬁN) and (ijj)ﬁj)a .7 =
1,..., N, are pairs of conjugate variables. Eq. (7) can
be rewritten as

d*Ag; . .
dt2] = —/\j/\j+NAq]', J = 1,...,N.
Then we have linear stability if
Aj = XjAjpn >0 (8)

forall j =1, ..., N, with the exception of the zero eigen-
values due to symmetries of H.



ii) As deduced in [3] the Hessian S of H has the structure
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where the matrices ) and P are of the form

Q=c(=sI+4), P=c((ti—i)I—4), (10)
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and A is a symmetric circulant matrix with first row

a1 =0, and a; = L =an_;j
e 7T T—cos(2n(j —1)/N) ~ “NIt®
j=1,...,N, and has minimum and maximum eigen-
values
1
Mpin = —572N? +143(-D"], Moo =5 (1)

It follows that @) has a zero eigenvalue, to be denoted
as Ag, and the other ones are positive (since ¢ < 0).

iii) As @ and P are linear combinations of I and A, they
diagonalize in the same basis as A. Let \g ;> Ap; be the
respective eigenvalues. Hence, we can diagonalize JS
and its eigenvalues are

Ass; = V AQiAP;  AJSiin = RV AQ; APy

j =1,...,N. Then the single zero eigenvalue Ag, of
S corresponds to double zero eigenvalue of JS, i.e.

Ais; = Assyy = 0.

Then following the procedure described above (see [3]
for details) we consider a symplectic change of variables
which diagonalizes the Hessian. It is enough to use, both
for the ¢ and p variables the eigenbasis of A. As said
above the nonzero eigenvalues of () are positive. It follows
from Eq. (10) and (11) that

¢ NZ -1
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Linear stability is assured when Ap min > 0.

Then what about nonlinear stability?

It follows from the discussion above and from Dirichlet’s Cri-
terion, Theorem III.1, that nonlinear stability is assured when
the minimum eigenvalue of P is positive [3], as well!

Theorem IIL.2 (spherical case)
The equilibrium X™ (3) is (linearly and nonlinearly) stable if

)\P min > 0,

i.e. if
—~(N—-2)? -3 + 4(N-1)z
+ 4(1 + 20)°T'n + 4(1 — 20)*D's > 0,(13)

where § = 0 for N even, § = 1 for N odd. It is linearly
unstable if the inequality in (13) is reversed.

Remarks:

1) From the Theorem above we guarantee stability if

r

S (N=2)2+68—4(N —1)25 —4(1 — 20)°Ts
N 4(1 + 20)?

with § defined as before.

2) For I'v > 0 and I's > 0, notice the stabilizing influence
of the polar vortices — i.e. of the factor 4(1 + 2)°T'x +
4T's(1 — 2,) in the equations of the theorem above.

3) Concerning stability in the critical case Apmin = 0 it is
necessary to carry out a computation of higher order terms
of the Normal Form of the Hamiltonian around the fixed
point, as done in [4] for the planar case, N = 7.

4) Notice § = vV Kr where r is the geodesic distance from the
north pole and K = 1/v/R is the curvature of the sphere.
Then fixing 7, we recover the planar case ( see Figure 1) by
considering K — 0 (as fully discussed in [2]), obtaining

2
T
li =-=
isoPe 2
In an equivalent way we can recover the planar case by

letting 2o tend to 1. The previous theorem reduces to the
case already studied by Cabral and Schmidt [4]

Corollary II1.3 (planar limit)

2 2
o 2m(N_1 .
The equilibrium X* = <0,%",...,%,—%",...,—%’) 1s

(linearly and nonlinearly) stable if the vorticity strength of
the center vortez verifies

(N—2)°+§—4(N —1)
16 ’

where § = 0 for N even, § = 1 for N odd. It is linearly
unstable if the inequality is reversed.

I'n > (14)

A complete discussion about the planar limit is given in [2].
5) What is the relevance of having two polar vortices?

As shown in Figures 2 and 3 when I's = 0 the stability
region for N < 7 is quite different from the one of the case
N > 7. In the case N < 7 both polar cups exhibit a sta-
bility region, and the region grows with the increasing of
the value of I'y (see figures 2.a)-c) and 3.a)). More specif-
ically, for a give N < 7 there is a particular value of I'y
above which the stability region is the whole sphere! The
situation is quite different for N > 7. As I'y increases the
stability region around the north polar cup increases (see
figures 2.b)-c) and 3.b)), but never reaches the south pole!

Now when I's # 0 things are quite different! Let us
illustrate this with an example. Consider the case of a ring
of eight vortices, i.e. N = 8, and let us see how the pres-
ence of a southern polar vortex could extend the assured
stability region — and equivalently reduce the linear insta-
bility region. In Figure 4 the curves delimiting the stability
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FIG. 2: Regions of stability and of linear instability for a)
N=4,b) N=7and c) N =4,6,7,8.

region are given for different values of the strength of the
southern polar vortex, I's. In particular, notice that if the
value of I's is above the critical one (i.e. I's > I's§=1/2) the
stability region can extend to the southern polar region for
negative values of I'y, as well. Analogously, in the case of a
ring of four vortices, i.e. N = 4, if the southern polar vor-
tex has a strength I's < I's = —1/2 the assured stability
region does not include a neighborhood of the south pole
see Figure 5).
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FIG. 3: I's = 0. Stability region of a ring of N identical
vortices with a vortex of vorticity I'n held fixed at the North
Pole. Notice how the stability band increases with I'x. a) for
N =4;b) for N=1.
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FIG. 4: For N = 8, different stability regions for different
values of I's > I'§.

Conclusions

On a sphere, we investigated the linear and nonlinear stabil-
ity of a latitudinal polygonal ring of identical point-vortices,
in the presence of two fixed polar vortices. The purpose of our
study was to show the full symmetry of the stability problem.
In fact as already widely discussed in the literature for over a
century (see [4, 6, 8, 12]), in the planar case it would appear
that a ring of seven vortices is a special case. When consider-
ing a ring of vortices with a central vortex (as in Figure 1.a))
the stability behaviour is quite different for rings with more or
less than seven vortices. The Thomson Heptagon appears as
a mysterious boundary case! In this article we showed that on
the sphere— that can be thought as the plane plus the point at
infinity— when letting I's varying we are accordingly setting
new boundary values for N. In particular our study gives the
critical value of I'g for all NV, i.e.

Iy = (N° —8N +8—14)/16,

where § = 0 for N even, § = 1 for N odd. To obtain this
critical value it is enough to set equality to zero in (13) and
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FIG. 5: For N_= 4, different stability regions for different
values of I's > I'§.

let zo tend to —1. To illustrate this more clearly in Figure
4 we showed that for I's = 1/2 the boundary value for N is
8. In other words, N = 7 is a special boundary case only for
I's = 0, and somehow the planar setting can be viewed as a
case of bifurcation at infinity!
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