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Abstract. The purpose of this paper is the semi-analytical computation of the bounded
orbits of Hill’s equations, describing the relative motion of two particles in their Keplerian
motion around a central body. We have considered the case in which one of the particles
moves along a circular reference orbit. The solutions obtained are the generalisation of
the usual periodic orbits obtained for the linearised equations and also of the third-order
solution computed by D.L. Richardson and J.W. Mitchell (2003). With the algorithm pre-
sented, those orbits can be computed in a fast and efficient way up to a high-order in
the in-plane and out-of-plane amplitudes.
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1. Introduction

Hill’s, or Clohessy–Wiltshire, equations describe the relative motion of two
point-mass bodies under the gravitational influence of a point-mass central
body. The bounded solutions of these equations are useful for several prob-
lems, such as the determination of formation flight suitable trajectories or
the description of rendezvous manoeuvres. Usually, Hill’s equations are con-
sidered in their linear approximation with one of the bodies moving along a
circular orbit. For these linear equations is easy to get a bi-parametric family
of periodic orbits. In a recent paper by Richardson and Mitchell (2003) the
linear approximation is extended to a third order solution in the two param-
eters of the family (the in-plane and the out-of-plane amplitudes). In the
present paper, using also the Lindstedt–Poincaré procedure for their deter-
mination, we extend the computations of Richardson and Mitchell to an
arbitrary order, providing in this way more accurate results.

2. The Model

As it has already been said, Hill’s equations can be used to describe the
relative motion of two spacecrafts subjected to the gravitational influence
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of a point-mass central body. We will assume that one of the spacecrafts,
the leader, moves in a circular reference orbit of radius rl about the cen-
tral body and that the second spacecraft, the follower, moves close to the
leader, at a distance δr from it. If rl and rf denote the inertial positions of
the leader and the follower, respectively, with respect to the central body,
then rf = rl + δr (see Figure 1).

For the description of the motion, is useful to introduce Hill’s non–inertial
reference system, er , eθ , ec, centred at the leader and defined by

er = rl

rl

, ec = rl ∧ r′
l

‖rl ∧ r′
l‖

, eθ =−er ∧ ec,

where rl =‖rl‖ and the prime denotes the time-derivative. To obtain the rel-
ative equations of motion in Hill’s coordinates, we write the follower satel-
lite position vector as

rf = rl + δr = (X + rl)er +Y eθ +Zec.

Using that e′
r = neθ , e′

θ = −ner , where n is the mean motion of the leader
on its circular orbit, we get that the follower acceleration is given by

r′′
f = (X′′ −2nY ′ −n2(X + rl))er + (Y ′′ +2nX′ −n2Y )eθ +Z′′ec. (1)

The follower equations of motion are given by

r′′
f =− µ

r3
f

rf =− µ

r3
f

⎛
⎝

X + rl

Y

Z

⎞
⎠ , (2)

with

rf =
√

(X + rl)2 +Y 2 +Z2.

δr
rf e

e

r

rl

c
e θ

Central body

Follower

Leader

Figure 1. Reference system for the description of the relative motion of the follower
spacecraft with respect to the leader.
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Equating (1) and (2) we get the nonlinear relative equations of motion

X′′ −2nY ′ −n2(X + rl)=− µ

r3
f

(X + rl),

Y ′′ +2nX′ −n2Y =− µ

r3
f

Y,

Z′′ =− µ

r3
f

Z.

Introducing dimensionless coordinates x, y, z, dimensionless time t via

X = rlx, Y = rly, Z = rlz, dt =ndτ,

and using that µ=n2r3
l , the relative equations of motion can be written as

ẍ −2ẏ = �x,

ÿ +2ẋ = �y,

z̈ = �z,

(3)

where

�(x, y, z)= (x +1)2 +y2

2
+ 1√

(x +1)2 +y2 + z2
.

In order to expand the nonlinear terms of (3), we use that

1√
(x −A)2 + (y −B)2 + (z−C)2

= 1
D

∑
n�0

( ρ

D

)n

Pn

(
Ax +By +Cz

Dρ

)
,

where D2 =A2 +B2 +C2, ρ2 =x2 +y2 + z2 and Pn is the Legendre polyno-
mial of degree n (see Abramowitz and Stegun, 1972). In this way, and since
in our case A=−1, B =C =0, Equations (3) become

ẍ −2ẏ −3x = ∂

∂x

∑
n�3

ρnPn

(
−x

ρ

)
,

ÿ +2ẋ = ∂

∂y

∑
n�3

ρnPn

(
−x

ρ

)
,

z̈+ z = ∂

∂z

∑
n�3

ρnPn

(
−x

ρ

)
.

(4)

The above equations are the starting point of our computations, which fol-
low closely those done for the determination of Lissajous orbits around
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the collinear libration points of the Restricted Three Body Problem (RTBP)
(see Gómez et al. 2001; Masdemont, 2005). This is a very convenient for-
mulation of the equations of motion, from the point of view of algebraic
manipulation, and was introduce for the first time in Richardson (1980)
for the computation of halo orbits around the collinear libration points
of the RTBP. The equations for the problem under consideration can be
also obtained from the ones of the RTBP just setting the cn constants that
appear in these equations equal to one.

It is convenient to write down the right-hand side of (4) using functions
which can be computed (and stored) in a fast and easy way. This is done
by introducing the functions

Tn(x, y, z)=ρnPn

(
−x

ρ

)
, Rn−1(x, y, z)= 1

y

∂Tn+1

∂y
.

Is easy to verify that Tn and Rn are polynomials of degree n satisfying

Rn−1 = 1
z

∂Tn+1

∂z
,

∂Tn+1

∂x
=−(n+1)Tn.

Using these relations, Equations (4) become

ẍ −2ẏ −3x = −
∑
n�2

(n+1)Tn,

ÿ +2ẋ = y
∑
n�2

Rn−1,

z̈+ z = z
∑
n�2

Rn−1,

(5)

where Tn and Rn can be obtained using the recurrences that follow from
the properties of the Legendre polynomials:

Tn(x, y, z)= 1−2n

n
xTn−1 − n−1

n
ρ2Tn−2,

Rn(x, y, z)=−2n+3
n+2

xRn−1 + 2n+2
n+2

Tn − n+1
n+2

ρ2Rn−2,

starting with: T0 =1, T1 =−x, R0 =−1, R1 =3x.

3. The Lindstedt–Poincaré Procedure

If we remove from (5) the nonlinear right-hand side terms, the bounded
solutions of the linear system obtained are 2π -periodic and can be written
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as

x = α cos(t +φ1),

y =−2α sin(t +φ1),

z= β cos(t +φ2).

(6)

The parameters α, β are the in-plane and out-of-plane amplitudes of the
orbit and φ1, φ2 the phases. When the nonlinear terms of (5) are consid-
ered, one can look for formal series solutions expanded in powers of the
amplitudes α and β, having (6) as first order terms, of the type

⎧⎨
⎩

x

y

z

⎫⎬
⎭=

∞∑
i+j=1

⎛
⎝ ∑

|k|�i,|m|�j

⎧⎨
⎩

x

y

z

⎫⎬
⎭

ijkm

⎧⎨
⎩

cos
sin
cos

⎫⎬
⎭ (kθ1 +mθ2)

⎞
⎠αiβj ,

where θ1 =ωt +φ1, θ2 =ωt +φ2. In order to avoid secular behaviours due to
the nonlinear terms, the frequency ω cannot be kept equal to 1 and must
be expanded also in powers of the amplitudes

ω=1+
∑

i+j�1

ωijα
iβj .

The goal is to recurrently compute the coefficients xijkm, yijkm, zijkm and ωij

up to an arbitrary finite order N , this is: for all the values of i and j such
that 1� i + j �N .

It must be remarked that x and z have been both written as a cosinus
series and y as a sinus one. This can be done due to the symmetries of the
differential equations of the problem and to the selected expression for the
solution of the linear part. One can see also that if j is odd, the coefficients
xijkm and yijkm are zero and if j is even, then the coefficients zijkm are zero.
As is usual in the Lindstedt–Poincaré method, we only use coefficients with
|k|� i and |m|� j and, moreover, k and m must be of the same parity as
i and j , respectively. Due to the symmetries of the sinus and cosinus, we
can assume that k �0 and when k =0 we can assume m�0. Finally, in the
expansion of the frequency ω only terms with both i and j even appear.

Denote by M, N , P the right-hand side terms of the first, second and
third Equation in (5), respectively, and assume that x, y, z have been
obtained to order n−1, so the series M, N and P are known up to order
n. Some terms of the left-hand side of (5) are also known: for instance,
writing x = x1 + x2 +· · ·+ xn−1 and ω = 1 +ω2 +ω4 +· · ·+ωn−2, where now
the subindex denotes the order (i + j ) of the term, then in

ẋ =ω
∂x

∂θ1
+ω

∂x

∂θ2
,
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there are known n-order terms such as

ω2

(
∂xn−2

∂θ1
+ ∂xn−2

∂θ2

)
+ω4

(
∂xn−4

∂θ1
+ ∂xn−4

∂θ2

)
+· · · .

Transferring to the right-hand side of (5) the known terms of order n,
computed when x, y, z are available at order n−1, we get new right-hand
side terms, whose components at order n are denoted by Mn, Nn, P n. In
this way we have

∂2xn

∂θ2
1

+2
∂2xn

∂θ1∂θ2
+ ∂2xn

∂θ2
2

−2
(

∂yn

∂θ1
+ ∂yn

∂θ2

)

−3xn + δn2ωn−1

(
∂2x1

∂θ2
1

− ∂y1

∂θ1

)
=Mn,

∂2yn

∂θ2
1

+2
∂2yn

∂θ1∂θ2
+ ∂2yn

∂θ2
2

+2
(

∂xn

∂θ1
+ ∂xn

∂θ2

)

+δn2ωn−1

(
∂2y1

∂θ2
1

+ ∂x1

∂θ1

)
=Nn,

∂2zn

∂θ2
1

+2
∂2zn

∂θ1∂θ2
+ ∂2zn

∂θ2
2

+zn + δn2ωn−1
∂2z1

∂θ2
1

=P n,

with δn =0 if n is even and δn =1 if n is odd. So, the linear system of equa-
tions for the unknown terms of order n can be written as

− (
3+ (k +m)2

)
xijkm −2(k +m)yijkm +2ωi−1,j δ1kδ0m = mijkm,

−(k +m)2yijkm −2(k +m)xijkm +2ωi−1,j δ1kδ0m = nijkm,

(
1− (k +m)2

)
zijkm −2ωi,j−1δ0kδ1m = pijkm,

where δij stands for the Kronecker symbol and mijkm, nijkm, pijkm are the
(known) coefficients of Mn, Nn and P n, respectively.

To solve the above system we start with the last equation, for which we
must consider the following two situations:

– If (k,m)=(0,1) the coefficient in zij01 is zero and we can solve for ωi,j−1.
In this way we can compute all the ωij (recall that i, j must be even).
For these values of k and m we set zij01 =0.

– If (k,m) �= (0,1) the coefficient of ωn is zero. In this situation the equa-
tion is solved for zijkm except if |k+m|=1. For this last situation we also
set zijkm =0.
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The determination of xijkm and yijkm is done as follows. Since all the ωn

are known after solving the last equation, the system to be considered is

− (
3+ (k +m)2

)
xijkm −2(k +m)yijkm = mijkm −2wi−1,j δ1kδ0m,

−2(k +m)xijkm − (k +m)2yijkm = nijkm −2wi−1,j δ1kδ0m.

(7)

The determinant of this reduced linear system is

(
(k +m)2 −1

)
(k +m)2,

so we can solve (7) for xijkm and yijkm except if k +m=0 or |k +m|=1.

– When k +m= 0, we normalise taking yijkm = 0 and solve the first equa-
tion for xijkm.

– When k +m=−1, we normalise taking xijkm =0 and solve for yijkm.
– When k +m=1:

• If (k,m)= (0,1), we take xij01 =yij01 =0.
• In any other case, we normalise the solution taking xij10 =0 and solve

the first equation for yij10.

The implementation of the above procedure allows a fast computation of
the asymptotic Lindstedt–Poincaré series (less than 5 seconds with an Intel
Mobile Centrino processor at 1.7 GHz, when the expansions are computed
up to order 25). Once the series are available, the computation of a partic-
ular orbit for given values of the amplitudes α and β is a trivial fact. In
Section 5, we will discuss the numerical results obtained.

4. A Second Procedure for the Determination
of the Lindstedt–Poincaré Series

In order to avoid the recurrences required for the evaluation of the right-
hand side of the equations of motion, one can introduce an additional var-
iable s through

1+ s = 1√
(x +1)2 +y2 + z2

.

This equation can also be written (gathering the different terms by orders)
as
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linear︷ ︸︸ ︷
2(s +x)+

quadratic︷ ︸︸ ︷
x2 +y2 + z2 + s2 +4xs

+ 2(x2 +y2 + z2)s +2xs2
︸ ︷︷ ︸

cubic

+ (x2 +y2 + z2)s2
︸ ︷︷ ︸

quartic

=0. (8)

Using the new variable s, the equations of motion become

ẍ −2ẏ +3s = m,

ÿ +2ẋ = n,

z̈ = p,

(9)

to which we must add the algebraic relation (8). The right-hand side terms,
m, n and p, of (9) are polynomials in x, y, z and s of degree at least 2.
Now, we look for the solution, at the different orders, of the system of
Equations (8) and (9).

– From the linear terms of Equation (8), we find that

s1 =−x1.

Substituting this value in (9) and retaining only the linear terms, we get

ẍ1 −2ẏ1 −3x1 = 0,

ÿ1 +2ẋ1 = 0,

z̈1 = 0,

whose solution is

x1 = α cos(t +φ1) = −s1,

y1 =−2α sin(t +φ1),

z1 = β cos(t +φ2).

– Once the linear part is solved, at each step we must solve for the
unknown part of order n. Proceeding in an analogous way as in the pre-
vious section we get the linear system of equations,

−(k +m)2xijkm −2(k +m)yijkm +3sijkm +2ωi−1,j δ1kδ0m = mijkm,

−(k +m)2yijkm −2(k +m)xijkm +2ωi−1,j δ1kδ0m = nijkm,

(
1− (k +m)2

)
zijkm −2ωi,j−1δ0kδ1m = pijkm,

xijkm + sijkm = qijkm,

(10)

where mijkm, nijkm, pijkm, qijkm are the (known) terms of the system.
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Combining the first equation of (10) with the last one, the system to be
solved for xijkm, yijkm, zijkm and ω becomes

− (
3+ (k +m)2

)
xijkm −2(k +m)yijkm +2ωi−1,j δ1kδ0m = mijkm −3qijkm,

−(k +m)2yijkm −2(k +m)xijkm +2ωi−1,j δ1kδ0m = nijkm,

(
1− (k +m)2

)
zijkm −2ωi,j−1δ0kδ1m = pijkm.

(11)

Note that the left-hand side of these system is the same as in the previ-
ous section so the discussion about how to solve it follows in the same
way. Once system (11) is solved we can set

sijkm =−xijkm +qijkm.

Of course, the values of the coefficients for the x, y and z series
obtained with any of the two procedures described are identical, so there is
no convergence improvement for any of both. The second method is much
more faster than the first one, since all the recurrences for the Legendre
functions are avoided.

5. Numerical Results

Table I shows the nonzero numerical values obtained for the coefficients of
the Lindstedt–Poincaré series of the coordinates up to the fourth order.1 Of
course, up to the third-order, these values agree with the ones computed by
Richardson and Mitchell (2003).

It has been found that all the coefficients of the frequency series (ω20,
ω02, ω40, ω22 and ω04) are zero. The same result has been obtained for all
the orders up to the maximum one explored (N = i + j = 35). This means
that the orbits of the two-parametric family obtained are 2π -periodic and,
as a consequence, the orbits of the leader and the follower have the same
semi-major axis. We have not been able to prove that ωij = 0 for all i, j

with i + j �2.
Some computations have been done to test the convergence of the formal

series solutions. Essentially, the tests consist in comparing the numerically
integrated trajectories against the series expansions evaluated during a cer-
tain time span, varying the values of the amplitudes α and β and the phases
φ1 and φ2. For fixed values of α and β, the convergence results are almost

1A file with the full set of coefficients up to a higher order can be obtained from
the authors.
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TABLE I

Values of the coefficients of the Lindstedt–Poincaré series of the coor-
dinates, up to order four. The values that do not appear in the table
are all equal to zero.

i j k m xijkm yijkm zijkm

1 0 1 0 1.000000 −2.000000
0 1 0 1 1.000000
2 0 0 0 −0.500000 0.000000
2 0 2 0 0.500000 0.250000
0 2 0 0 −0.250000 0.000000
0 2 0 2 −0.250000 0.250000
1 1 1 −1 1.500000
1 1 1 1 −0.500000
3 0 1 0 0.000000 1.125000
3 0 3 0 −0.375000 −0.291666
1 2 1 −2 0.000000 0.375000
1 2 1 0 0.000000 −0.000000
1 2 1 2 0.125000 −0.125000
2 1 0 1 0.000000
2 1 2 −1 0.000000
2 1 2 1 0.375000
0 3 0 1 0.000000
0 3 0 3 −0.000000
4 0 0 0 0.359375 0.000000
4 0 2 0 −0.708333 −0.604166
4 0 4 0 0.348958 0.302083
2 2 0 0 −0.374999 0.000000
2 2 0 2 0.250000 0.3.1250
2 2 2 −2 −0.343750 0.000000
2 2 2 0 0.187500 0.000000
2 2 2 2 −0.093749 0.093749
0 4 0 0 −0.062500 0.000000
0 4 0 2 −0.062500 0.062500
0 4 0 4 0.000000 0.000000
3 1 1 −1 0.000000
3 1 1 1 0.312500
3 1 3 −1 0.020833
3 1 3 1 −0.333333
1 3 1 −3 −0.187499
1 3 1 −1 0.937499
1 3 1 1 −0.124999
1 3 1 3 0.000000
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the same for any values of the phases, so here we will show only those corre-
sponding to φ1 =φ2 =0. In Figure 2 we give the results obtained for the max-
imum difference between the numerical integration and the values obtained
using the expansions for t ∈ [0,2π ]. This error is displayed as a function of
the α and β amplitudes. In the figure we display the results for both the order
5 and 25 solutions. Clearly, there is a great improvement in the convergence
region of the order 25 solution in front of the order 5.

In Table II we display, for different values of α, the maximum value
of β that can be reached for a given maximum threshold for the differ-
ence between the analytical solution of order 25 and the numerical inte-
grated trajectory for t ∈ [0,2π ]. The numerical integration was done using
a Runge–Kutta–Fehlberg 7-8 method with a bound for the local truncation

Figure 2. Convergence test results in the α − β plane for the orders 25 (left) and five
expansions (right).

TABLE II

For several values of α, the different columns display the maximum value of
β for which the difference between the order 25 analytical solution and the
numerical integrated trajectory is less than a given threshold (displayed in the
first row of the table).

α 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12 10−13

0.00 0.691 0.633 0.580 0.532 0.487 0.446 0.408 0.374 0.340
0.05 0.682 0.621 0.564 0.512 0.464 0.421 0.382 0.347 0.297
0.10 0.640 0.580 0.526 0.476 0.430 0.389 0.351 0.317 0.257
0.15 0.604 0.546 0.493 0.444 0.400 0.359 0.318 0.279 0.207
0.20 0.572 0.516 0.464 0.415 0.366 0.321 0.279 0.241 0.158
0.25 0.544 0.488 0.432 0.378 0.329 0.284 0.245 – –
0.30 0.517 0.456 0.396 0.342 0.294 – – – –
0.35 0.487 0.421 0.361 0.302 – – – – –
0.40 0.453 0.387 – – – – – – –
0.45 0.418 – – – – – – – –
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error, at each integration step, equal to 10−14. As it can be seen from the
table (and also from Figure 2), there is a large domain of practical conver-
gence, in the α −β plane, in which the expansions can be used instead of
the numerical integration without any significant loss of precision.

The main advantage of the use of the expansions is that, once the coeffi-
cients of x, y and z have been obtained, they provide in a closed form the
full family of bounded orbits. Any point of an orbit is computed just fixing
the values that identify the orbit within the family (the amplitudes α and
β and the phases φ1, φ2) and the epoch t at which we want to evaluate the
solution.

Figures 3 to 6 show the orbits computed for different values of the
amplitudes and the phases. For these representations we have used both the
inertial reference system, in which the orbits are elliptic Keplerian orbits,

-1  0  1
-1

 0
 1

-1

 0

 1
z

x
y

z

-0.15  0  0.15 -0.15
 0

 0.15

-1

 0

 1
z

x
y

z

-1  0  1
-1

 0
 1

-1

 0

 1
z

x
y

z

-0.15  0  0.15 -0.15
 0

 0.15

-1

 0

 1
z

x
y

z

-1  0  1
-1

 0
 1

-1

 0

 1
z

x
y

z

-0.15  0  0.15 -0.15
 0

 0.15

-1

 0

 1
z

x
y

z

-1  0  1
-1

 0
 1

-1

 0

 1
z

x

y

z

-0.15  0  0.15 -0.15
 0

 0.15

-1

 0

 1
z

x
y

z

Figure 3. From top to bottom, 3D representation and coordinate planes projections of orbits
with the same amplitudes, α = 0.1, β = 0, and different phases: (φ1, φ2)= (0,0), (π/2,0), (π,0)

and ((3/4)π,0). The orbits on the left column are represented in the inertial reference frame and
the ones on the right column in the Hill’s reference frame. In the inertial frame representations,
the circular reference orbit of radius rl =1 is also displayed. As is clearly seen in the projections,
the orbit of the follower is coplanar with the one of the leader, since β =0 in all the cases.
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Figure 4. From top to bottom, 3D representation and coordinate planes projections of
orbits with (α,β)= (0.1,0), (0.3,0), (0.5,0) and (φ1, φ2)= (0,0). The orbits on the left
column are represented in the inertial reference frame and the ones on the right column
in the Hill’s reference frame. In the inertial frame representations, the circular reference
orbit of radius rl =1 is also displayed. Note that the orbit with (α,β)= (0.5,0) is not in
the convergence domain of the expansions, but is rather close to a Keplerian orbit.
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Figure 5. From top to bottom, 3D representation and coordinate planes projections of
orbits with (α,β)= (0.0,0.1), (0.0,0.3), (0.0,0.5) and (φ1, φ2)= (0,0). The orbits on the
left column are represented in the inertial reference frame and the ones on the right
column in the Hill’s reference frame. In the inertial frame representations, the circular
reference orbit of radius rl =1 is also displayed.
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Figure 6. From top to bottom and left to right, 3D representation and coordinate planes
projections of orbits with (α,β)= (0.1,0.1), (0.3,0.3), (0.5,0.5) and (φ1, φ2)= (0,0). The
circular reference orbit of radius rl = 1 is also displayed. The orbits on the left column
are represented in the inertial reference frame and the ones on the right column in the
Hill’s reference frame. Clearly, the orbit computed for (α,β)= (0.5,0.5) is not a Keplerian
orbit, since for these values of the amplitudes the expansions are far form the practical
convergence region.

and Hill’s reference frame, which is the system where the orbits have been
computed. Of course, the expansions can be evaluated for values of the
amplitudes very far from the practical convergence region (see Figure 6),
in this case the shape of the orbit is far from a Keplerian one.
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