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(2) Dept. de Matemàtica Aplicada i Anàlisi, Univ. de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Abstract

We consider a family of 4-dimensional Hamiltonian time-periodic linear systems depend-
ing on three parameters, λ1, λ2 and ε such that for ε = 0 the system becomes autonomous.
Using Normal Form techniques we study stability and bifurcations for ε > 0 small enough.
We pay special attention to the d’Alembert case. The results are applied to the study of
the linear stability of homographic solutions of the planar three-body problem, for some
homogeneous potential of degree −α, 0 < α < 2 including the Newtonian case.

1 Introduction

Let us consider a family of real periodic linear systems

ẋ = A(t)x, A(t) =

(

0 I2

Ã(t) −2J2

)

, Ã(t) =

(

λ1G1(t, ε) 0
0 λ2G2(t, ε)

)

, (1)

where J2 =

(

0 1
−1 0

)

, λ1, λ2 are real parameters different from zero, ε is a small positive

parameter, and

Gi(t, ε) = 1 −
∑

j∈N

εjci,j(t), i = 1, 2, (2)

G1, G2 being analytic in (t, ε) with ci,j(t) even periodic functions of t with period T .
If ε = 0 then system (1) is linear with constant coefficients and one can obtain easily the

stability and instability regions in the (λ1, λ2)-plane. These regions are described in section
1.1. Our purpose is to study the bifurcations for ε small and positive.

System (1) can be written as a linear Hamiltonian system with Hamiltonian function

H(y, t) =
1

2
(y2

3 + y2
4) + y1y4 − y2y3 − V (y1, y2, t, ε), (3)

where

V (y1, y2, t, ε) = [λ1G1(t, ε) − 1]
y2
1

2
+ [λ2G2(t, ε) − 1]

y2
2

2
. (4)

The analysis of system (1) has several applications. One of them is the study of the
stability of equilibria of mechanical systems defined by a Hamiltonian function of type (3) with
a potential V(y1, y2, t, ε) even in t and such that the quadratic part in y1 and y2 has the form
(4). In this case, the linearized system at the equilibrium point can be written as (1).

On the other hand, (1) can be obtained as first order variational equations along a periodic
solution of an autonomous system. As we shall see in section 7, one example is given by the
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homographic solutions of the planar three-body problem with homogeneous potential of degree
−α, with 0 < α < 2. After some reductions the linear stability of these orbits is given by the
study of a non–autonomous linear system of type (1).

We are mainly interested in the d’Alembert case.

Definition 1. We say that Gi, i = 1, 2 satisfy d’Alembert property if an harmonic of order k
contains at least εk as factor.

Remark 1. In general, ci,j in (2) can contain all harmonics. But if (1) comes from the
variational equations along periodic orbits emanating from a fixed point, then (as follows from
Lindstedt-Poincaré method) Gi satisfy d’Alembert property. In this case ε can be seen as a
parameter related to the size of the periodic orbit. Hence, the domain of applicability of the
results extends to this larger setting.

Let us denote by µ1, µ−1
1 , µ2, µ−1

2 the characteristic multipliers of the system defined by
(3), that is, the eigenvalues of the monodromy matrix, and define tri = µi + µ−1

i , i = 1, 2, as
the stability parameters. Notice that tri, i = 1, 2, depend on the parameters λ1, λ2 and ε.
Moreover, if tri ∈ C \ R, i = 1, 2, then tr2 = tr1.

According to the values of the stability parameters, we shall use the following notation for
the different regions in the parameter space (λ1, λ2, ε)

• EE (elliptic-elliptic) if |trj| < 2, j = 1, 2

• EH (elliptic-hyperbolic) if |tr1| < 2, |tr2| > 2

• HH (hyperbolic-hyperbolic) if |trj| > 2, j = 1, 2

• CS (complex-saddle) for trj, j = 1, 2 complex, tr2 = tr1

In the case ε = 0 the stability parameters are trivially obtained. When ε moves away from
0 bifurcations can only appear if some |tr1| = 2 or tr1 = tr2. These conditions define some
curves, to be called resonant curves, in the (λ1, λ2)-plane.

Let (λ1, λ2) = (a1, a2) be a point on a resonant curve for ε = 0. Our purpose is to study
tr1, tr2 in a neighbourhood of (a1, a2) for ε > 0 small enough. To this end, we introduce small
parameters δ1, δ2 ∈ R and we shall consider λj = aj + δj , j = 1, 2. We shall apply the Normal
Form techniques (see [3]) in order to detect changes in the stability. The idea is to perform
some canonical transformations to cancel the time dependence up to high order in δ1, δ2, ε,
if this is possible. The analysis of the Normal Form obtained in this way gives us domains
in the parameter space λ1, λ2, ε with different linear stability characteristics as well as their
boundaries.

Remark 2. The boundaries, in the parameters (λ1, λ2, ε), of the regions with different stability
character are defined by |trj| = 2, for some j = 1, 2, or |tr1| = |tr2|. Let Φ(T ) be the mon-
odromy matrix of the linear system defined by (3). Using the symplectic character of Φ(T ) the
characteristic polynomial is of the form P (x) = x4 +α1x

3 +α2x
2 +α1x+1 where α1 = −(tr1+

tr2) and α2 = 2+tr1tr2. As α1 and α2 are analytic functions of the parameters ε, δ1, δ2, these
boundaries belong to the zero locus of some analytic functions of the parameters.

Remark 3. If the functions Gi are not even but general, similar tools can be used to study
the possible bifurcations. More terms remain in the Normal Form and the discussion becomes
more involved. See [3] for a simplest case in dimension 2.
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1.1 The case ε = 0

The case ε = 0 is studied in an elementary way by using the characteristic polynomial p(x) =
x4 − (λ1 + λ2 − 4)x2 + λ1λ2. We distinguish on the (λ1, λ2)-plane the following open regions
(see figure 1)

R1 = {(λ1, λ2) ∈ R
2|λ1λ2 < 0},

R2 = {(λ1, λ2) ∈ R
2|λ1λ2 > 0, (λ1 + λ2 − 4)2 > 4λ1λ2, λ1 + λ2 − 4 < 0},

R3 = {(λ1, λ2) ∈ R
2|λ1λ2 > 0, (λ1 + λ2 − 4)2 < 4λ1λ2},

R4 = {(λ1, λ2) ∈ R
2|λ1λ2 > 0, (λ1 + λ2 − 4)2 > 4λ1λ2, λ1 + λ2 − 4 > 0}.

The following table summarizes the characteristics of these regions

R1 : µ1 = eλT , µ2 = eiωT tr1 > 2, |tr2| ≤ 2
R2 : µ1 = eiω1T , µ2 = eiω2T , |tri| ≤ 2, i = 1, 2

R3 : µ1 = e(α+iβ)T , µ2 = e(α−iβ)T , tri ∈ C, i = 1, 2
R4 : µ1 = eα1T , µ2 = eα2T , tri > 2, i = 1, 2

where λ, ω, ω1, ω2, α, β, α1, α2 ∈ R
+.

On the λ1 axis one stability parameter is equal to two, and the other one is 2 cos (
√

4 − λ1T )
if λ1 < 4 and bigger than 2 if λ1 > 4. We obtain a symmetric behaviour on the λ2 axis. If
λ2 = (

√
λ1 − 2)2 then tr1 = tr2. In this case, if 0 < λ1 < 4 then |tr1| = |tr2| ≤ 2 and

tr1 = tr2 > 2 if λ1 > 4. On λ2 = (
√

λ1 + 2)2, we obtain tr1 = tr2 > 2 if λ1 6= 0. The points
(4, 0), (0, 4) in the (λ1, λ2)-plane correspond to degenerate cases in which 1 is a characteristic
multiplier with multiplicity 4. Therefore, on these points we have tr1 = tr2 = 2.

-4

0

4

8

-4 0 4 8

A

A

B1

B1

C

B2

B2

λ1

λ2

-8

-4

0

4

8

-8 -4 0 4 8

Figure 1: Stability domains for ε = 0 where A= R1, B1= R2, B2= R4, C= R3. Some resonant
curves for the case of homographic solutions with potential of degree −α being α = 0.5 (see
section 7). The period is T = 2π(2 − α)−1/2.

Resonant curves in the (λ1, λ2)-plane are easily obtained using |tr1| = 2 or tr1 = tr2.

Let be ν = T/π. In R1 ∪ R2 we find some resonant curves when ω = n/ν, for n ∈ N, and
so, one stability parameter equals ±2. These resonant curves are defined by

(λ1 + ω2)(λ2 + ω2) = 4ω2, ω = n/ν, n ∈ N. (5)

We note that in R1 we get a one parameter family of resonant curves (5) with n ∈ N. However,
in R2, two families are obtained corresponding to ω1 and ω2, respectively. For one of them,
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n ∈ N. The other family is defined for n > 2ν, n ∈ N, if λ1 < 0, and n < 2ν, n ∈ N, if λ1 > 0.
In R2, bifurcations can also take place for ω1 ±ω2 = 2n/ν, n ∈ N. In this case, tr1 = tr2. This
gives a new family of resonant curves defined by

λ2 = λ1 + 4
(

1 − n2/ν2
)

± 4
√

λ1 (1 − n2/ν2), (6)

with n ≤ ν if λ1 > 0, and n ≥ ν if λ1 < 0.
In R3 resonant curves are defined by tr1 = tr2, that is, Tβ = nπ, for n ∈ N. This happens

when (λ1, λ2) ∈ R3 satisfies

λ2 = (
√

λ1 ± 2
√

1 − β2)2, β = n/ν, (7)

for n ≤ ν, n ∈ N. Figure 1 shows some resonant curves in the different regions.

1.2 Main results

Let us assume that (λ1, λ2) = (a1, a2) belongs to a resonant curve for ε = 0. First, the Normal
Form is obtained for the different regions R1,R2,R3. The boundaries of the resonant regions
up to a given order in the parameters δ1, δ2, ε are determined in terms of the coefficients of the
Normal Form.

Then, we restrict to the d’Alembert case (see remark 1). We note that this is relevant
for the homographic solutions. The main results are obtained in this case under some generic
assumptions, in the sense that the expected dominant terms are different from zero.

Theorem 1. Assume the d’Alembert property holds and nondegeneracy conditions are satisfied.
Let (a1, a2) ∈ R1 ∪ R2 ∪ R3, a1 6= a2, be a point corresponding to a single resonance that is,
(a1, a2) ∈ R1 ∪ R2 with ω1 = nπ/T, n ∈ N or (a1, a2) ∈ R3 with β = kπ/T, k ∈ N. Then the
width of the resonant regions is at least, of order εn and εk respectively.

The richer case occurs in R2 at double resonances. For ε small enough an HH region such
that trj > 2, j = 1, 2 is created. The evolution of this region will determine qualitatively the
other ones.

Theorem 2. Assume the d’Alembert property holds and nondegeneracy conditions are satisfied.
Let (a1, a2) ∈ R2, a1 6= a2, be a point such that ωj = njπ/T, nj ∈ N, j = 1, 2. Then around
(λ1, λ2, ε) = (a1, a2, 0) one has

(i) if n1 = 3n2, regions EE, EH and CS exist and a region HH has either 0, 1 or 2 connected
components.

(ii) If n1 6= 3n2, then regions EE, EH, CS exist. A region HH always exists except if n1 < 3n2

and a1 > 0. No local changes in the topology of these domains occur in these cases.

Remark 4. In (i) of the theorem 2 the number of components of the region HH is determined
by some coefficient to be introduced in section 4.2.

Finally we study the linear stability of homographic solutions for a planar three-body
problem with an homogeneous potential of degree −α, 0 < α < 2. In the Newtonian case,
α = 1 the small parameter ε is taken as the eccentricity of the Keplerian orbit and G1(t; ε) =

G2(t, ε) =
1

1 + ε cos t
, being t the true anomaly. In the non-Newtonian cases ε is taken as a

generalized eccentricity.
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Theorem 3. Let us consider the Newtonian case and (a1, a2) ∈ R1 ∪ R2 such that a single
resonant frequency ω1 = n, n ∈ N occurs for ε = 0. Then the two boundaries of resonant
regions coincide and there is no bifurcation in this case.

Some numerical results for the general case, 0 < α < 2 and finite ε are given. We note that
the linear system for homographic solutions has a singularity for ε = 1, t = π which corresponds
to a collision. Stability properties for these systems when ε is near 1 are studied in [8].

The Normal Form is obtained in section 2 and the conditions for bifurcations in section 3.
In section 4 we consider the d’Alembert case and prove the theorems 1 and 2. Sections 5 and
6 are devoted to the proofs of results of section 2. In section 7 we study the linear stability of
homographic solutions and we prove theorem 3.

An announcement of some of the results in this paper can be found in [7].

2 Normal Form

In this section we reduce the Hamiltonian system associated to (3) to Normal Form. We are
interested in using the symmetries of the problem to have simpler formats for the Normal Form.

We take λj = aj + δj , j = 1, 2, where (a1, a2) ∈ R is a point on a resonant curve and |δj |,
j = 1, 2, are small enough. The Hamiltonian function (3) can be written as

H(y, t) = H0(y) + H̃(y, t), (8)

where

H0(y) =
1

2
(y2

3 + y2
4) + y1y4 − y2y3 + (1 − a1)

y2
1

2
+ (1 − a2)

y2
2

2
, (9)

H̃(y, t) = −δ1

2
y2
1 −

δ2

2
y2
2 + (a1 + δ1)

y2
1

2
F1(t; ε) + (a2 + δ2)

y2
2

2
F2(t; ε). (10)

The Hamiltonian (8) satisfies H(y, t) = H(y,−t) and H(Ly, t) = H(y, t) for all y ∈ R
4

and t ∈ R, where L is the involution with matrix L = diag(−1, 1, 1,−1).

The first step is to diagonalize H0(y). Let ẏ = A0y be the linear system defined by H0.
We denote by ±ρ1, ±ρ2, the eigenvalues of A0. In what follows, we will use ρ1 = λ, ρ2 = iω,
λ, ω ∈ R

+ if (a1, a2) ∈ R1, ρ1 = iω1, ρ2 = iω2 with ω1, ω2 ∈ R
+, ω1 > ω2 if (a1, a2) ∈ R2, and

ρ1 = α + iβ, ρ2 = ρ1, α, β ∈ R
+, if (a1, a2) ∈ R3.

Let us denote by u1,u2 ∈ C
4 the eigenvectors corresponding to eigenvalues ρ1, ρ2, respec-

tively. Then, v1 := Lu1 and v2 := Lu2 are eigenvectors of eigenvalues −ρ1,−ρ2, respectively.
The matrix

M = (k1u1, k2u2, k3v1, k4v2), (11)

where kj ∈ C, j = 1, . . . , 4, satisfy k1k3u
T
1 Jv1 = 1, k2k4u

T
2 Jv2 = 1 is symplectic. So, we can

define a canonical change of variables as y = Mz which diagonalizes the system associated to
H0, that is, if H(z, t) denotes the transformed Hamiltonian, then

H(z, t) = H0(z) + H̃(z, t), (12)

where

H0(z) = ρ1z1z3 + ρ2z2z4, (13)

and z = (z1, z2, z3, z4)
T . We recall that, for definiteness, λ, ω1, ω2, α, β are assumed to be

positive. This can always be done by defining suitable z variables.

5



Lemma 1. 1. If (a1, a2) ∈ R1 then uT
1 Jv1 > 0 if a1 > 0, and uT

1 Jv1 < 0 if a1 < 0.
Moreover, iuT

2 Jv2 > 0.

2. If (a1, a2) ∈ R2 then iuT
1 Jv1 > 0 and, iuT

2 Jv2 > 0 if a1 < 0, and iuT
2 Jv2 < 0 if a1 > 0.

The proof of this lemma is given in section 6.

After lemma 1 we can do the following choice for the constants kj , j = 1, . . . , 4.

1. If (a1, a2) ∈ R1, we take k1 = (suT
1 Jv1)

−1/2, k3 = sk1, k2 = (iuT
2 Jv2)

−1/2, k4 = ik2,

2. if (a1, a2) ∈ R2, we take k1 = (iuT
1 Jv1)

−1/2, k3 = ik1, k2 = (sivT
2 Ju2)

−1/2, k4 = −sik2,

3. if (a1, a2) ∈ R3, we take k1 = (uT
1 Jv1)

−1/2, k3 = k1, k2 = (uT
2 Jv2)

−1/2, k4 = k2,

where s = sgn(a1). We note that if (a1, a2) ∈ R3 then uT
1 Jv1 and uT

2 Jv2 are complex.

Remark 5. An alternative procedure can also be used. First, one reduces H0 to a simple form
with a real symplectic change. In R1,R2 and R3 these forms are, respectively

1

2
ω1(q

2
1 + p2

1) + λq2p2,
1

2
ω1(q

2
1 + p2

1) +
1

2
ω2(q

2
2 + p2

2) and α(q1p1 + q2p2) + β(q2p1 − q1p2).

Then the variables are complexified to solve in an easier way the homological equations. The
saddle parts do not need any change. The variables in the elliptic parts are changed via

qj = (xj + iyj)/
√

2, pj = (ixj + yj)/
√

2.

Finally, in the CS case one can use

q1 = (x1 + ix2)/
√

2, q2 = (ix1 + x2)/
√

2, p1 = (y1 − iy2)/
√

2, p2 = (−iy1 + y2)/
√

2.

The final Hamiltonians are of the form

iω1x1y1 + λx2y2, iω1x1y1 + iω2x2y2 and (α + iβ)x1y1 + (α − iβ)x2y2

respectively, giving rise to diagonal equations.

From now on, M will be the 4 × 4 symplectic matrix defined in (11) with k1, k2, k3 and k4

defined above according to the region considered.
Let us define the following matrices

S1 = M−1LM, S2 = −JMT JM. (14)

Lemma 2. The new variable z satisfies z = S2z, and the following equalities hold

H(z, t) = H(S1z,−t), H(z, t) = H(S2z, t), (15)

for all z ∈ C
4, t ∈ R. Moreover

1. if (a1, a2) ∈ R1 then S1z = (sz3, iz4, sz1,−iz2)
T , S2z = (z1, iz4, z3, iz2)

T ,

2. if (a1, a2) ∈ R2 then S1z = (iz3,−isz4,−iz1, isz2)
T , S2z = (iz3,−isz4, iz1,−isz2)

T ,

3. if (a1, a2) ∈ R3 then S1z = (z3, z4, z1, z2)
T , S2z = (z2, z1, z4, z3)

T .
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The proof of this lemma is given in section 6.

In order to get the Normal Form we introduce the variable K as the conjugate variable of
time t and we consider the Hamiltonian

H(z, t,K) = H0(z,K) + H̃(z, t), (16)

where H0(z,K) = H0(z) + K and H0(z) is given in (13).
Let be w = e2it/ν (we recall that ν = T/π). We can write the Hamiltonian as

H(z, w,K) = H0(z,K) +

∞
∑

k=1

Hk(z, w), (17)

where Hk(z, w) contains terms of order k in δ1, δ2 and ε. Moreover, Hk(z, w) is an homogeneous
polynomial of degree 2 in z whose coefficients depend on w and w−1.

We can use any Lie series method to perform some canonical transformations in order to
cancel the time dependence on the Hamiltonian up to high order. This is done in section 5.

In what follows we shall denote the new variables obtained by the canonical changes of
variables involved in the normalization as zj , j = 1, . . . , 4, again. The next proposition gives
the Normal Form depending on the region R1,R2 or R3. The proof is given in section 5.

Proposition 1. Let us denote by NF the Normal Form up to some arbitrary order in the
small parameters δ1, δ2, ε.

1. If (a1, a2) ∈ R1 and νω ∈ N, then

NF = K + λz1z3 + iωz2z4 + σ1z1z3 + iσ2z2z4 + σ3z
2
2w−νω − σ3z

2
4w

νω, (18)

where σj ∈ R, j = 1, . . . , 3, depend on δ1, δ2 and ε.

2. If (a1, a2) ∈ R2, then

NF =



















































































N0 + N1 if νω1 ∈ N, νω2 /∈ N,

N0 + N2 if νω1 /∈ N, νω2 ∈ N,

N0 + N1 + N2 if νω1 ∈ N, νω2 ∈ N,
and νω1 6≡ νω2(mod 2),

N0 + N3 if νωhs ∈ N, νωhd /∈ N,
(νω1 /∈ N, νω2 /∈ N),

N0 + N4 if νωhd ∈ N, νωhs /∈ N,
(νω1 /∈ N, νω2 /∈ N),

N0 + N1 + N2 + N3 + N4 if νω1 ∈ N, νω2 ∈ N

and νω1 ≡ νω2(mod 2),

(19)

where ωhs =
ω1 + ω2

2
, ωhd =

ω1 − ω2

2
, and

N0 = K + iω1z1z3 + iω2z2z4 + iσ1z1z3 + iσ2z2z4,

N1 = σ3z
2
1w

−νω1 − σ3z
2
3wνω1 ,

N2 = σ4z
2
2w

−νω2 − σ4z
2
4wνω2 , (20)

N3 = σ5z1z2w
−νωhs + sσ5z3z4w

νωhs ,

N4 = iσ6z1z4w
−νωhd − isσ6z2z3w

νωhd ,

where σj ∈ R, j = 1, . . . , 6 depend on δ1, δ2, ε, and s = sgn(a1).

7



3. If (a1, a2) ∈ R3 and νβ ∈ N then

NF = K + (α + iβ)z1z3 + (α − iβ)z2z4 + σ1z1z3 + σ1z2z4 + σ3z1z4w
−νβ +

σ3z2z3w
νβ , (21)

where σ1 ∈ C, σ3 ∈ R depend on δ1, δ2, ε.

Remark 6. Proposition 1 gives the Normal Form up to a given order, say n, when λ1 = a1+δ1,
λ2 = a2 + δ2 and (a1, a2) is a resonant point for ε = 0. The Normal Form can be written as
NF = N0 + Nn(w), where

N0 = K + (λ + σ1)z1z3 + i(ω + σ2)z2z4 if (a1, a2) ∈ R1,
N0 = K + i(ω1 + σ1)z1z3 + i(ω2 + σ2)z2z4 if (a1, a2) ∈ R2,
N0 = K + (α + iβ + σ1)z1z3 + (α − iβ + σ1)z2z4 if (a1, a2) ∈ R3,

and all the monomials in Nn(w) depend on w and so, they are time dependent. However, if
ε = 0 the initial Hamiltonian (9) is autonomous. In this case, the Normal Form does not
depend on w. Therefore, for the coefficients σ3, σ4, σ5, σ6 in Proposition 1 we have

σj = O(εk), j = 3, . . . , 6, (22)

for some k ≥ 1 which may depend on the index j. Furthermore, σ1 and σ2 depend on δ1, δ2, ε.
In fact σ1 and σ2 have terms of order 1 in δ1, δ2. These terms can be easily computed by taking
into account the variation of the eigenvalues of the system when ε = 0 and we perturb (a1, a2)
by (δ1, δ2). These terms will be explicitly computed in section 4.

Consider the general, non d’Alembert, case, and assume that there exists some relation
between the different harmonics and the minimal degree in ε of its coefficient in the expansion
of the Gi functions. Then is also possible to obtain the minimal degree in ε of the σj above by
examining the paths to reach the relevant resonances in the Normal Form process. See [2] on
how to use these methods in 2D examples in the case of quasi–periodic linear systems.

3 Bifurcations

In order to obtain the boundaries of the different regions in the parameter space when ε > 0 is
small enough we shall study the Hamiltonian system associated to the Normal Form given in
Proposition 1. In this section we get the equations for these boundaries.

Before starting this task we have to comment on the effect of the neglected remainder. If
the Normal Form is computed to order n and this is enough to show that the resonant curves
split when the effects of ε 6= 0 are taken into account, the effect of the remainder is O(εn+1).
The idea is similar to the study of the branches of analytics curves. If the branches separate
at order n, an application of the Implicit Function Theorem, after suitable scaling, shows that
higher order terms do not affect the separation between the branches.

Let us take (a1, a2) ∈ R1 a resonant point for ε = 0. For ε > 0, bifurcation occurs when
a pair of characteristic multipliers on the unit circle collide and become real. In this case, the
system goes from EH to HH.

Normal Form (18) defines the following uncoupled linear system

ż1 = (λ + σ1)z1, ż2 = i(ω + σ2)z2 − 2σ3z4w
νω,

ż3 = −(λ + σ1)z3, ż4 = −2σ3z2w
−νω − i(ω + σ2)z4,

(23)
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where νω = n ∈ N. The system for z1, z3 gives real characteristic exponents and, then, a
stability parameter is greater than two. This gives an hyperbolic behavior. In order to study
the system for z2, z4 we perform the change of variables u = z2w

−νω/2, v = z4w
νω/2 (the so-

called ‘co-rotating coordinates’). Then, this system transforms in the following linear system
with constant coefficients

u̇ = iσ2u − 2σ3v,

v̇ = −2σ3u − iσ2v. (24)

Remark 7. The characteristic multipliers µ, µ−1 associated to z2, z4 are obtained from the
monodromy matrix Φu(T ) of (24) when νω = 2k, k ∈ N. If νω = 2k + 1, k ∈ N ∪ {0} then
Φu(T ) gives −µ,−µ−1. So, in this case, we shall take from now on the matrix Φu(2T ) which
has eigenvalues µ2, µ−2.

For ε > 0 an instability region HH in the parameter space is created. The boundaries of
this region up to a given order in δ1, δ2, ε are defined by the equation

σ2
2 − 4σ2

3 = 0. (25)

Now we consider (a1, a2) ∈ R2 a resonant point for ε = 0. We study the general case in
(19), that is, NF = N0 + N1 + N2 + N3 + N4 where Ni, i = 0, . . . , 4, are given in (20). The
other cases in (19) are obtained by taking the suitable coefficients equal to zero. The linear
system defined by NF is the following

ż1 = i(ω1 + σ1)z1 − isσ6z2w
ν

2
(ω1−ω2) − 2σ3z3w

νω1 + sσ5z4w
ν

2
(ω1+ω2),

ż2 = iσ6z1w
− ν

2
(ω1−ω2) + i(ω2 + σ2)z2 + sσ5z3w

ν

2
(ω1+ω2) − 2σ4z4w

νω2 , (26)

ż3 = −2σ3z1w
−νω1 − σ5z2w

− ν

2
(ω1+ω2) − i(ω1 + σ1)z3 − iσ6z4w

− ν

2
(ω1−ω2),

ż4 = −σ5z1w
− ν

2
(ω1+ω2) − 2σ4z2w

−νω2 + isσ6z3w
ν

2
(ω1−ω2) − i(ω2 + σ2)z4.

We introduce new (‘co-rotating’) variables u1 = z1w
−νω1/2, u2 = z2w

−νω2/2, v1 = z3w
νω1/2,

v2 = z4w
νω2/2. Then, system (26) becomes the following constant coefficients linear system

u̇1 = iσ1u1 − isσ6u2 − 2σ3v1 + sσ5v2,

u̇2 = iσ6u1 + iσ2u2 + sσ5v1 − 2σ4v2, (27)

v̇1 = −2σ3u1 − σ5u2 − iσ1v1 − iσ6v2,

v̇2 = −σ5u1 − 2σ4u2 + isσ6v1 − iσ2v2.

This system splits in two uncoupled systems of order 2 in all the cases given in (19) except for
the last one corresponding to νω1 ∈ N, νω2 ∈ N, and νω1 ≡ νω2(mod 2). In the cases that (27)
becomes uncoupled it is easy to get the equations for the boundaries of the different regions.
They are summarized in table 1. We remark that if ωhs = k/ν, k ∈ N, the corresponding
equation has no real solution if s = 1, that is, a1 > 0, and so, there is no bifurcation in this
case. In a similar way there is no bifurcation for ωhd = k/ν if a1 < 0. This fact is well known
as a consequence of Krein’s theorem (see [5]).

Let us consider the case in which νω1 ∈ N, νω2 ∈ N with the same parity. We denote by
q(x) = x4 + d1x

2 + d2 the characteristic polynomial of (27). A simple computation shows that

d1 = σ2
1 + σ2

2 − 4(σ2
3 + σ2

4) + 2s(σ2
5 − σ2

6), d2 = D1D2, (28)

9



νω1 ∈ N, νω2 /∈ N EE↔EH σ2
1 − 4σ2

3 = 0
νω1 /∈ N, νω2 ∈ N EE↔EH σ2

2 − 4σ2
4 = 0

νω1 ∈ N, νω2 ∈ N EE↔EH σ2
1 − 4σ2

3 = 0 or σ2
2 − 4σ2

4 = 0
with different parity EE↔HH σ2

1 − 4σ2
3 = 0 and σ2

2 − 4σ2
4 = 0

νω1 /∈ N, νω2 /∈ N, ν
2 (ω1 + ω2) ∈ N EE↔CS (σ1 + σ2)

2 + 4sσ2
5 = 0

νω1 /∈ N, νω2 /∈ N, ν
2 (ω2 − ω2) ∈ N EE↔CS (σ1 − σ2)

2 − 4sσ2
6 = 0

Table 1: Summary of the cases in which (27) splits in two order 2 systems.

HE

EEHH

CS

d1

d2

d3=0

Figure 2: Stability regions in the (d1, d2)-plane.

where

D1 = (σ1 − 2sσ3)(σ2 + 2σ4) + s(σ5 + σ6)
2, D2 = (σ1 + 2sσ3)(σ2 − 2σ4) + s(σ5 − σ6)

2. (29)

Let d3 = d2
1 − 4d2 be the discriminant of q(x) = 0. Then, the different possibilities for the

character of the system, excluding boundary values, are represented in figure 2.
Finally we take (a1, a2) ∈ R3 a resonant point for ε = 0. By performing the change

of variables u1 = z1w
−νβ/2, u2 = z2w

νβ/2, v1 = z3w
νβ/2, v2 = z4w

−νβ/2, to the linear system
associated to (21), we obtain an uncoupled linear system with constant coefficients. A transition
CS↔HH occurs and the equations for the boundaries of the HH region are given by

Im(σ1) = ±σ3. (30)

4 The d’Alembert case

Now we consider the case when the perturbation, beyond being even in t, satisfies the d’Alem-
bert property (see remark 1). So, we assume that the functions Gj , j = 1, 2 in (2), are of the
form

∑

m≥0

εm
m

∑

l=0

cm,l cos

(

l
2πt

T

)

,

where cm,l ∈ R. This property is inherited by the Normal Form.

After remark 6 we know that for the coefficients σj , j = 3, 4, 5, 6 in the Normal Form, (22) is

10



satisfied for k ≥ 1. The d’Alembert property can be used to determine, under non degeneracy
conditions, the order of these coefficients. In fact, if σjw

±nzl with n ∈ N, l ∈ Z
4, is a resonant

monomial, using the standard notation (see section 5), then, it is not difficult to see that

σj = cjε
n(1 + O1) (31)

where cj is a coefficient, depending on the cm,l coefficients and eventually zero, and O1 contains
terms of order 1 in δ1, δ2, ε. We shall assume in the next, non degeneracy conditions such that
cj 6= 0, j = 3, 4, 5, 6.

4.1 Proof of theorem 1. Single resonances

We shall consider resonant points (a1, a2) which belong to a unique resonant curve. This kind
of points are found at regions R1,R2 and R3.

We begin with R1 and assume that (a1, a2) belongs to a resonant curve (5), that is,

γn(a1, a2) := (a1 + ω2)(a2 + ω2) − 4ω2 = 0, where ω = n/ν, (32)

for some n ∈ N. From now on, n is fixed.
The boundary surfaces which separate the EH and HH regions for ε > 0 are defined by

(25). The coefficient σ3 is given by (31). The following lemma gives the terms of σ2 which are
of order 1 in δ1, δ2.

Lemma 3. Let (a1, a2) ∈ R1 be such that γn(a1, a2) = 0. Then, the dominant terms in the
contribution of δ1 and δ2 to σ2 are

−
[

ω2 + a2

D(ω)
δ1 +

ω2 + a1

D(ω)
δ2

]

, (33)

where D(ω) = 2ω[2ω2 + a1 + a2 − 4] 6= 0.

Remark 8. This lemma is also true if Gj, j = 1, 2, do not satisfy the d’Alembert property.

Proof After remark 6, we consider σi = σi(δ1, δ2), i = 1, 2 for ε = 0. Then (33) is obtained by
looking at the zeroes of the characteristic polynomial p(x) for λ1 = a1 + δ1, λ2 = a2 + δ2, as
perturbations of ±λ and ±iω given by λ + σ1(δ1, δ2) and i(ω + σ2(δ1, δ2)) respectively. 2

In order to describe the boundary surfaces we shall consider perturbations of (a1, a2) in an
orthogonal direction to the resonant curve (32), that is, λ1 = a1 + δ1, λ2 = a2 + δ2 with

(

δ1

δ2

)

= δ∇γn(a1, a2), (34)

for some parameter δ, being |δ| small enough. Moreover, (33) becomes c‖∇γn(a1, a2)‖2δ where
c = −1/D(ω), ‖∇γn(a1, a2)‖ 6= 0 and so, we can write

σ2 = c‖∇γn(a1, a2)‖2δ + φ0(ε) + δφ1(ε) + δ2f(ε, δ), (35)

where φ0 and φ1 are functions of order 1 in ε and f(ε, δ) is of order 1 in ε, δ. Here the Euclidean
norm is used. The Implicit Function Theorem implies the existence of two analytic functions
δ+(ε), δ−(ε), for ε & 0 such that

σ2(δ+(ε), ε) − 2σ3(δ+(ε), ε) = 0,

σ2(δ−(ε), ε) + 2σ3(δ−(ε), ε) = 0. (36)

11



Therefore, in the direction of ∇γn(a1, a2), the boundaries of the HH region are given by

λ1 = a1 + δ+(ε), λ2 = a2 + δ−(ε),

for ε > 0 small enough. Using (31) for j = 3, (35) and (36) we get the following proposition.

Proposition 2. Let be (a1, a2) ∈ R1 such that γn(a1, a2) = 0 for some n ∈ N. Assume that the
d’Alembert property is satisfied. If c3 as defined in (31), is non zero then the width δ+(ε)−δ−(ε)
of the HH region is of order εn, being the dominant term

−8c3ω(2ω2 + a1 + a2 − 4)

‖∇γn(a1, a2)‖2
εn.

A similar analysis can be done in regions R2 and R3 in the case of a single resonance, that
is, (a1, a2) belongs to a unique resonant curve (5), (6) or (7). In any case we can take (δ1, δ2)
as (34) for the corresponding resonant curve.

4.2 Proof of theorem 2. Double resonances

Let (a1, a2) ∈ R2 be a resonant point which belongs to two or more resonant curves, that is we
assume that

νωj = nj, j = 1, 2, (37)

for some n1 > n2 natural numbers. We shall consider the richest case, that is, n1 ≡ n2(mod 2).
The Normal Form is N0 +N1 +N2 +N3 +N4 in (19). The analysis of the bifurcations amounts
to study the composition of the maps

N : (λ1, λ2, ε) 7→ (σ1, σ2, σ3, σ4, σ5, σ6),

and

P : (σ1, σ2, σ3, σ4, σ5, σ6) 7→ (d1, d2),

where N denotes the normalization map and P the characteristic polynomial of the Floquet
matrix.

Lemma 4. Let be (a1, a2) ∈ R2 and ω1 > ω2 the frequencies obtained for ε = 0. Then, the
dominant terms in the contribution of δ1 and δ2 to σ1, σ2 are

J
(

δ1

δ2

)

where J =

(

−(ω2
1 + a2)/D1 −(ω2

1 + a1)/D1

−(ω2
2 + a2)/D2 −(ω2

2 + a1)/D2

)

,

D1 = 2ω1[(a1 + a2 − 4) + 2ω2
1 ] 6= 0, D2 = 2ω2[(a1 + a2 − 4) + 2ω2

2 ] 6= 0. Moreover, the matrix
J is regular if a1 6= a2.

The proof follows the same idea as the one of lemma 3.
After lemma 4 we can use σ1 and σ2 as parameters instead of δ1, δ2. Then bifurcations will

be described in terms of σ1 and σ2. As the functions Gj in (2) satisfy d’Alembert property, we
have,

σ3 = m1ε
n1(1 + O1), σ4 = m2ε

n2(1 + O1),

σ5 = m3ε
n1+n2

2 (1 + O1), σ6 = m4ε
n1−n2

2 (1 + O1),

where mj, j = 1, . . . , 4, are real values and O1 denote terms of first order in ε, δ1, δ2. We shall
assume non degeneracy conditions in the sense that mj 6= 0, j = 1, . . . , 4.

First of all we study the magnitude of σj, j = 3, . . . , 6. We distinguish different cases.
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1. If n1 > 3n2, then n1 >
n1 + n2

2
>

n1 − n2

2
> n2 and therefore |σ3| << |σ5| << |σ6| <<

|σ4|.

2. If n1 = 3n2, then n1 >
n1 + n2

2
>

n1 − n2

2
= n2 and therefore |σ3| << |σ5| << |σ4| and

σ6 is of the same order of magnitude of σ4.

3. If n1 < 3n2, then n1 >
n1 + n2

2
> n2 >

n1 − n2

2
and therefore |σ3| << |σ5| << |σ4| <<

|σ6|.

We introduce the following scaled parameters

σ̃j =
σj

σ4
, j = 1, 2, 3, 5, A =

σ6

σ4
, (38)

and we define µ := ε
n1−n2

2 .
We begin with the second case. Then µ = εn2 and hence

σ̃3 = O(µ2), σ̃5 = O(µ), A = O(1).

Using the scalings we introduce new functions (see section 3)

d̃1 =
d1

σ2
4

, D̃1 =
D1

σ2
4

, D̃2 =
D2

σ2
4

, d̃2 = D̃1D̃2, d̃3 = d̃2
1 − 4d̃2.

Let be B := sA2 where s is the sign(a1) as defined in section 2. Notice that B 6= 0. We can
write these functions in terms of µ like

d̃1 = σ̃2
1 + σ̃2

2 − (4 + 2B) + O(µ2),

D̃1 = σ̃1(σ̃2 + 2) + B + O(µ), (39)

D̃2 = σ̃1(σ̃2 − 2) + B + O(µ), d̃2 = D̃1D̃2,

d̃3 = (σ̃2
1 − σ̃2

2 + 4)2 − 4B[(σ̃1 + σ̃2)
2 − 4] + O(µ).

The idea is to study the bifurcation diagram in the (σ̃1, σ̃2)-plane in terms of B.
First we will assume that µ = 0. We obtain the following result.

Proposition 3. Assume that the hypothesis of theorem 2 are satisfied and n1 = 3n2. Under
the generic assumptions m2 6= 0, m4 6= 0 in the Normal Form and neglecting σ3, σ5 terms (i.e.,
setting µ = 0) the unique changes in the bifurcation diagram are produced at B = −1 and

B = −27

16
.

Figure 3 shows the bifurcation diagram for µ = 0 in different cases. We note that, in
particular, no HH regions exists if B < −1.
Proof

The different stability regions are determined by the intersections of the zero sets of the
functions given in (39) for µ = 0 according to figure 2. Notice that we assume B 6= 0.

We consider first the set of zeroes of d̃2. The hyperbolas σ̃2 = ∓2 − B

σ̃1
defined by D̃1 = 0

and D̃2 = 0 respectively have no self intersections. The region d̃2 < 0, which corresponds to
an EH region, has 2 connected components.
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EE EH HH CSColor codes

Figure 3: A sample of the bifurcation diagrams near double resonance in the d’Alembert
case with n1 = 3n2 and µ = 0. Values of B from left to right and top to bottom:
1,−0.9,−1,−1.1,−27/16,−4. The horizontal (resp. vertical) variable is σ̃1 (resp. σ̃2).
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Now we consider the curve d̃3 = 0. We note that the zero set of d̃3 is symmetric with

respect to the origin. Self intersections are determined by the additional conditions
∂d̃3

∂σ̃1
= 0

and
∂d̃3

∂σ̃2
= 0. These equations only have common solutions for B = −1.

Now we go to study the intersections of d̃2 = 0 and d̃3 = 0. This is equivalent to look for
the intersections of d̃1 = 0 and d̃2 = 0. We recall that d̃2 = D̃1D̃2. So, we shall consider the
intersections of

d̃1 = 0, D̃1 = 0. (40)

Using the symmetry, the solutions of d̃1 = 0, D̃2 = 0 will be easily obtained.
The solutions of (40) are the intersection points of a circle of radius 4+2B and the hyperbola

σ̃2 = −2− B

σ̃1
. We assume B > −2, otherwise (40) has no real solutions. We begin by looking

for the points in D̃1 = 0 such that the distance to the origin is a relative minimum. To this
end, we use a Lagrange multiplier ρ with Lagrangian

L = σ̃2
1 + σ̃2

2 − ρD̃1.

We get a minimum (σ̃1,m, σ̃2,m) for

σ̃1,m =
4ρ

4 − ρ2
, σ̃2,m =

2ρ2

4 − ρ2
, (41)

where ρ satisfies

(4 − ρ2)2

ρ
= −32

B
. (42)

For any value of B, B 6= 0 (42) has two real solutions ρ1, ρ2 giving rise to points P1, P2,
respectively, in the (σ̃1, σ̃2)-plane. If B > 0 then ρ1 < −2 < ρ2 < 0 and, 0 < ρ1 < 2 < ρ2 if
B < 0.

Now we study the sign of d̃1 on P1, P2. Using (41) for B 6= 0 we get

d̃1(ρ) := d̃1(σ̃1,m, σ̃2,m) = −B

8

[

ρ(ρ2 + 4) + 16
]

− 4

Let ρ3 be the unique solution of d̃1(ρ) = 0. If B > 0, one has ρ1 < ρ3 < −2 < ρ2 < 0. Then,
d̃1(ρ1) > 0 and d̃1(ρ2) < 0, that is, only P2 is inside the circle defined by d̃1 = 0. In a similar
way, by analyzing the relative position of ρ1, ρ2 and ρ3, it is not difficult to show that

- if B < −27/16, P1 and P2 live outside the circle and so, (40) has no real solution
- if −27/16 < B < 0, only P1 is inside the circle and (40) has two different solutions
- if B = −27/16, (40) has a unique real solution (σ̃1, σ̃2) = (3/4, 1/4).

Therefore, if B < −27

16
there is no HH region (see figure 3 (f)), if −27

16
< B < −1 there

exists an HH region having two connected components (see figure 3 (d)) and, if −1 < B the
HH region has one connected component (see figure 3 (a), (b)). 2

Now we study the case µ 6= 0, that is, we analyze the effect of the neglected terms. We
obtain the following result.
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Proposition 4. Assume that hypothesis in theorem 2 are satisfied and n1 = 3n2. Under the
generic assumptions mj 6= 0, j = 1, . . . , 4 in the Normal Form (19) the only changes in the

bifurcation diagram are produced at B = −(1 + σ̃3)
2 and at B± = −27

16
± 1

2
sAσ̃5 + O(µ2).

Proof

We know from proposition 3 that in the case µ = 0, bifurcations are produced at B = −1
due to self intersections of d̃3 = 0 and, B = −27/16 when d̃1 = 0 and d̃2 = 0 have tangencies.
We recall that in this case no self-intersections of d̃2 = 0 occur.

Let us consider µ 6= 0 small enough. In this case, using (29) we see that self-intersections
of d̃2 = 0 occur if

D̃1 = (σ̃1 − 2sσ̃3)(σ̃2 + 2) + s(σ̃5 + A)2 = 0, D̃2 = (σ̃1 + 2sσ̃3)(σ̃2 − 2) + s(σ̃5 − A)2 = 0.

By subtracting these equations and substituting the relation obtained in D̃1 = 0 it turns
out that

σ̃2
2O(µ2) + σ̃2O(µ) + B + O(µ2) = 0.

Then, self-intersections of d̃2 = 0 can occur, but outside a local neighbourhood of the origin on
the (σ̃1, σ̃2)-plane. Hence, they should not be considered.

Now we study the self-intersections of d̃3 = 0. They are produced if d̃3 = 0,
∂d̃3

∂σ̃1
= 0

and
∂d̃3

∂σ̃2
= 0. If µ = 0, this system has the solution (B, σ̃1, σ̃2) = (−1, 0, 0). The Jacobian

with respect to B, σ̃1 and σ̃2 at that point is different from zero. Then, the Implicit Function
Theorem ensures the preservation of the intersection which will occur for a value of B equal, a
priori, to −1 + O(µ) and with values σ̃1, σ̃2 = O(µ).

An elementary computation shows that the self–intersections of d̃3 = 0 occurs exactly for
B = −(1 + σ̃3)

2 at σ̃1 = σ̃2 = σ̃5. Furthermore, for that value of B, the line σ̃1 + σ̃2 = 2σ̃5 is
one of the components of d̃3 = 0. We note that this is true even in the non d’Alembert case
(see figure 4 and remark 10).

It remains to study the modification of the tangencies of the zero sets of d̃1 = 0 and d̃2 = 0.
We note that symmetry is lost for µ 6= 0. So, one has to consider the cases d̃1 = 0, D̃1 = 0 and
d̃1 = 0, D̃2 = 0 separately. Let us consider the first case. We have

d̃1 = σ̃2
1 + σ̃2

2 − (4 + 2B) + O(µ2) = 0,

D̃1 = σ̃1(σ̃2 + 2) + B + ν + O(µ2) = 0,

where ν := 2sAσ̃5 = O(µ). Up to order µ, d̃1 = 0 is a circle. Following the same steps as in
the proof of Proposition 3, we look for the points of D̃1 = 0 which are at minimum distance
to the origin. Using the Lagrangian L = σ̃2

1 + σ̃2
2 − ρD̃1 we get a minimum (σ̃1,m, σ̃2,m) as (41)

where the Lagrange multiplier ρ satisfies

D̃1(σ̃1,m, σ̃2,m) =
32ρ

(4 − ρ2)2
+ B + ν = 0.

Furthermore,

d̃1(σ̃1,m, σ̃2,m) =
16ρ2

(4 − ρ2)2
+

4ρ4

(4 − ρ2)2
− (4 + 2B).
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We must solve the following system

32ρ + (B + ν)(4 − ρ2)2 = 0, 16ρ2 + 4ρ4 − (4 + 2B)(4 − ρ2)2 = 0.

For µ = 0, we have the solution ρ =
2

3
, B = −27

16
. One step of Newton’s Method around that

solution gives the critical value of B

B+ = −27

16
+

1

2
sAσ̃5 + O(µ2),

A similar study for d̃1 = 0, D̃2 = 0 gives a second critical value

B− = −27

16
− 1

2
sAσ̃5 + O(µ2).

2

Remark 9. The geometrical interpretation is that the two narrow HH domains which in the

figure 3 (f) disappear on the (b) plot (B = −27

16
) when going from left to right, disappear for

slightly different values of B if µ 6= 0. No further changes occur in the bifurcation diagram for
ε small enough in case 2).

Proof of Theorem 2

Now the item (i) of theorem 2 follows from propositions 3 and 4. To prove (ii) we study
the cases n1 > 3n2 and n1 < 3n2. To this end we use the same scalings as in case n1 = 3n2.

We have that the parameter A in (38) is of order O(ε
n1−3n2

2 ). Then, the case n1 > 3n2, has
the same characteristics than a very small value of |B|. In case n1 < 3n2, we get the same
behaviour as the one for a very large value of |B|. 2

Remark 10. In the non d’Alembert case the discussion of the different bifurcations follows
from the analysis of (28) and (29) without making any assumption on the order of magnitude
of the different parameters involved. Assuming σ4 6= 0, scaled parameters can be introduced
as in (38). Then the number of selfintersections of d̃3 = 0 can increase. Figure 4 shows an
example.

5 Proof of Proposition 1

Let H(z, w,K) be the Hamiltonian defined in (16). Our purpose is to obtain the Normal Form
using the symmetries of H(z, w,K). Let be H(z, w) = H(z, w,K)−K. We recall that H(z, w)
is an homogeneous polynomial of degree 2 in z whose coefficients depend on w and w−1.

It will be useful to introduce the following functions

F(z, w) = f1z
2
1 + f2z

2
2 + f3z

2
3 + f4z

2
4 + f5z1z2 + f6z1z3 + f7z1z4 + f8z2z3 +

+f9z2z4 + f10z3z4, (43)

where fk = fk(w), k = 1, . . . , 10 can be written as

f(w) =
∑

j≥0

(c̃jw
j + d̃jw

−j), (44)
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Figure 4: An example of self-intersections of d̃3 = 0 in the general case. Scaled parameters
used: σ̃3 = −1.3, σ̃5 = −0.5, A = −0.3, s = −1. Variables plotted and color code as in figure
3. The central plot shows a global view, the left and right ones are magnifications. Up to 19
connected components can be seen.

the coefficients c̃j , d̃j being analytic functions on δ1, δ2, ε. We shall denote by HT
2 the vector

space of functions of the form (43). For a given F(z, w) in HT
2 , F(z, w) will be obtained from

(43) by a substitution of fk by fk = fk(w), for k = 1, . . . , 10, where the bar stands for the
complex conjugate.

From lemma 2 and taking into account that w has been defined in section 2 as w = e
2it

ν ,
we get

H(z, w) = H(S1z, w
−1). (45)

Moreover, as far as H(z, t) in (15) is an even function of t, we get

H(z, w) = H(S2z, w). (46)

We shall see that these two symmetries will be preserved to the Normal Form. This will allow
us to compute it in an easy way.

Using, for instance, the Giorgilli–Galgani algorithm ([4]) we can write N = N0 +N1 +N2 +
. . . + Nm where

Nk =
k

∑

j=0

Hj,k−j, Hk,j =

j
∑

l=1

l

j
[Gl,Hk,j−l], Hk,0 = Hk, (47)

and Gk is a solution of the homological equation

Mm + [Gm,H0] = Rm

being H0 = H0(z,K) = ρ1z1z3 + ρ2z2z4 + K,

Mm =

m−1
∑

j=0

Hm−j,j +

m−1
∑

l=1

l

m
[Gl,H0,m−l]

and where Rm contains resonant terms of order m in δ1, δ2 and ε. Note that Hij, Gk,Mk belong
to HT

2 . We denote each term as

g = hzlwj , h = c δj1
1 δj2

2 εj3 , (48)

where c ∈ C is a constant, ji ∈ Z, ji ≥ 0, i = 1, 2, 3, j ∈ Z, and zl = zl1
1 zl2

2 zl3
3 zl4

4 with lk ∈ Z,
lk ≥ 0, k = 1, 2, 3, 4 satisfying l1 + l2 + l3 + l4 = 2. zlwj as in (48) is a resonant monomial if
[zlwj ,H0] = 0. From this equation it is easy to get the following lemma.
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Lemma 5. z1z3, z2z4 are resonant terms for all (a1, a2) ∈ R. Furthermore, additional resonant
monomials appear as follows:

1. z2
2w−νω, z2

4wνω when ων ∈ N if (a1, a2) ∈ R1,

2. if (a1, a2) ∈ R2 then

(a) z2
1w−νω1 , z2

3wνω1 when ω1ν ∈ N,

(b) z2
2w−νω2 , z2

4wνω2 when ω2ν ∈ N,

(c) z1z2w
− ν

2
(ω1+ω2), z3z4w

ν

2
(ω1+ω2) when

ν

2
(ω1 + ω2) ∈ N,,

(d) z1z4w
− ν

2
(ω1−ω2), z2z3w

ν

2
(ω1−ω2) when

ν

2
(ω1 − ω2) ∈ N,

3. z1z4w
−νβ, z2z3w

νβ when νβ ∈ N if (a1, a2) ∈ R3.

Let F(z, w) be in HT
2 .

Definition 2. F(z, w) satisfies the S2–property if

F(z, w) = F(S2z, w), (49)

for all z ∈ C
4, w ∈ C, |w| = 1.

Definition 3. F(z, w) satisfies the S+
1 –property if

F(z, w) = F(S1z, w
−1), (50)

for all z ∈ C
4, w ∈ C, |w| = 1.

Definition 4. F(z, w) satisfies the S−
1 –property if

F(z, w) = −F(S1z, w
−1), (51)

for all z ∈ C
4, w ∈ C, |w| = 1.

Lemma 6. The Normal Form up to order m, NF , satisfies the S2–property.

Proof

From lemma 2 we have that the initial Hamiltonian satisfies the S2–property. So, we only
need to prove the following statements

(i) The Poisson bracket on HT
2 preserves the S2–property.

(ii) Assume that M ∈ HT
2 satisfies the S2–property and let G be a solution of the homological

equation

[G,H0] + M = 0. (52)

Then, up to resonant terms, G satisfies the S2–property.

To prove (i) let us consider F ,G ∈ HT
2 satisfying the S2–property. Let be Q = [G,F ]. Using

(49) and the fact that S2JS
T
2 = J we get

Q(z, w) = ∇G(z, w)T J∇F(z, w) = ∇G(S2z, w)T S2JS
T
2 ∇F(S2z, w) = Q(S2z, w).
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Now we prove (ii). Let us define Y (z, w) = G(z, w) − G(S2z, w). Then, we only need to prove
that [Y,H0] = 0.

Let be D = diag(ρ1, ρ2,−ρ1,−ρ2) and consider the homological equation for G written as

M(z, w) +
∂G

∂t
(z, w) + ∇G(z, w)TDz = 0. (53)

From (53), using the assumption M(z, w) = M̄(S̄2z, w) and DS2 = S2D we get

∂G

∂t
(z, w) − ∂G

∂t
(S2z, w) + [∇G(z, w)T −∇G(S2z, w)T S2]Dz = 0

Using the equality above, a simple computation shows that [Y,H0] = 0 and then Y (z, w) has
only resonant terms. 2

Lemma 7. The Normal Form NF up to order m satisfies the S+
1 –property.

Proof

From lemma 2 the initial Hamiltonian satisfies the S+
1 –property. So, we shall prove the

following statements

(i) If F ∈ HT
2 satisfies the S+

1 –property and G ∈ HT
2 satisfies the S−

1 –property, then Q :=
[G,F ] satisfies the S+

1 –property.

(ii) Assume that M ∈ HT
2 satisfies the S+

1 –property. Let G ∈ HT
2 be the solution of the

homological equation (52). Then, up to resonant terms, G satisfies the S−
1 –property.

The proof of (i) and (ii) follows the same steps as the proof of lemma 6. For (i) one has to use
that S1JST

1 = −J . To prove (ii) we introduce Y (z, w) = G(z, w) + G(S1z, w
−1) and use that

S1D = −DS1 to get [Y,H0] = 0. 2

After lemmas 6 and 7 it is easy to get the relations between the coefficients in the Normal
Form. We give some hint in the case of the region R2. For the other regions the process is
similar.

Let be (a1, a2) ∈ R2. We consider the case for which the Normal Form contains all possible
resonant terms and we write it as

NF (z, w) = K + iω1z1z3 + iω2z2z4 + a6z1z3 + a9z2z4 + a1z
2
1w−νω1 + a3z

2
3w

νω1+

a2z
2
2w

−νω2 + a4z
2
4wνω2 + a5z1z2w

−νωhs + a10z3z4w
νωhs+

a7z1z4w
−νωhd + a8z2z3w

νωhd .

Using the S+
1 −property, that is, NF (S1z, w

−1) = NF (z, w) we get

a3 = −a1, a4 = −a2, a10 = sa5, a8 = −sa7.

In a similar way, using the S2–property we get

a6 = −a6, a9 = −a9, a3 = −a1, a4 = −a2, a10 = sa5, a8 = sa7.

Therefore a1, a2, a5 ∈ R, a6, a7, a9 ∈ iR and the equalities a3 = −a1, a4 = −a2, a10 = sa5,
a8 = −sa7 hold . This proves (19).
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6 Proof of auxiliary lemmas

Proof of lemma 1

It is easy to check that uρ = (2ρ, a1 − ρ2, a1 + ρ2,−ρ(ρ2 + 2 − a1))
T is an eigenvector of

eigenvalue ρ of A0. Let us define vρ := Luρ.
A simple computation shows that

uT
ρ Jvρ = 2ρ q(a1, a2; ρ

2), (54)

where q(a1, a2; ρ
2) = −ρ4 + 2a1ρ

2 + 4a1 − a2
1.

Using that p(ρ) = 0 with (λ1, λ2) = (a1, a2) and the fact that

ρ2 = α±, where α± =
a1 + a2 − 4 ±

√
∆

2
, with ∆ = (a1 + a2 − 4)2 − 4a1a2,

we have that

q(a1, a2;α±) = −
√

∆

2
[
√

∆ ∓ (4 + a1 − a2)],

where the sign − stands for α+ and + for α−.
If a1 > 0 (a1 < 0) we check that (4 + a1 − a2)

2 > ∆ ((4 + a1 − a2)
2 < ∆). Therefore, if

a1 < 0 then q(a1, a2;α±) < 0.
Furthermore, if a1 > 0, as far as (a1, a2) ∈ R1 ∪ R2, 4 + a1 − a2 > 0. So, q(a1, a2;α+) > 0

and q(a1, a2;α−) < 0. Now, using (54) the statement of the lemma follows. 2

Proof of lemma 2

The new variables z ∈ C
4 are defined by y = Mz where we recall that y ∈ R

4. Then

z = M−1y = −JMT JMz = S2z, (55)

where we have used the symplectic character of M . Now z = S2z follows from (55).
By the symmetry given by L, we have that

H(S1z, t) = H(MS1z, t) = H(MS1M
−1y, t) = H(Ly, t) = H(y, t) = H(z, t).

Then, using the parity of H we get the first equality in (15).
Furthermore, H(z, t) is real. Therefore

H(z, t) = H(z, t) = H(z, t) = H(S2z, t).

A simple computation gives

S1 =

(

0 S̃1

S̃−1
1 0

)

with S̃1 = diag

(

k3

k1
,
k4

k2

)

.

This expression gives S1z in the different regions.
We note that if (a1, a2) ∈ R1 then u1,v1 ∈ R

4 and u2 = v2. Moreover, kj ∈ R, j = 1, . . . , 3,
and k4 = −ik2. If (a1, a2) ∈ R2 then uj = vj , j = 1, 2, and k1, k2 ∈ R, k3 = −ik1, k4 = sik2.
Finally, if (a1, a2) ∈ R3, u2 = u1, v2 = v1 and k2 = k1, k4 = k3. The properties for kj ,
j = 1, . . . , 4, are given in lemma 1. Using that, one can compute S2. 2
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7 Homographic solutions

In this section we consider homographic solutions of a planar three-body problem for some
homogeneous potentials. After some reductions the non trivial characteristic multipliers are
given by a four–dimensional periodic linear system of the type (1) (see [8]). The Normal Form
technique can be applied in order to get the boundaries of the stability regions. To do that we
introduce briefly the homographic solutions to be studied (see [9], [12]).

Let us consider the Hamiltonian system defined by the Hamiltonian function

H(q,p) =
1

2
pT M−1p − U(q),

where q = (q1,q2,q3), p = (p1,p2,p3), qj ,pj ∈ R
2, j = 1, 2, 3, denote the position and the

conjugate momenta for the masses mj , M = diag(m1,m1,m2,m2,m3,m3) and

U(q) =
∑

1≤i<j≤3

mimj

‖qi − qj‖α
,

with 0 < α < 2. It is not restrictive to assume that m1 + m2 + m3 = 1.
Let us consider qc a central configuration, that is, a solution of the equation −Mq = ∇U(q)

(after suitable scalings). In a similar way to the Newtonian case, for any α ∈ (0, 2) there exist
three collinear central configurations, with the masses on a straight line, and two triangular
ones, where the masses are located at the vertices of an equilateral triangle. See [8] for some
details. A solution of the Hamiltonian system is called homographic if the position of the
masses at any time, q(t), is obtained from a central configuration, qc, by a rotation and an
homothety. It is well known that they can be written as

q(t) = r(t)Ω(f(t))qc, Ω = diag(Ω1,Ω1,Ω1), Ω1 =

(

cos f − sin f
sin f cos f

)

, (56)

where r is a solution of the potential equation

r′′ = −dV

dr
(r), V (r) = − 1

αrα
+

ω2

2r2
(57)

being ′ = d/dt, and f(t) =

∫ t

0

ω

r(s)2
ds. We shall denote the energy of (57) by

EK =
(r′)2

2
+ V (r).

It is not restrictive to our purposes to consider EK = −1/2. In the Newtonian case, that is,
α = 1, we get r(f) = ω2/(1 + e cos f), where e is the eccentricity and f is the true anomaly.
Moreover, ω2 = 1 − e2. So, the homographic solutions for α = 1 can be parameterized by e.

In the general case, 0 < α < 2, once a central configuration has been fixed we get a family
of homographic solutions that can be parameterized by 0 < ω ≤ ωc = ((2 − α)/α)(2−α)/2α (see

[8]). We can introduce a generalized eccentricity e :=

√

1 − α

2 − α
ω2α/(2−α). We note that for

ω = ωc one has a relative equilibrium solution. In this case, e = 0. Our results can be applied
for e ≥ 0 small enough.

Homographic solutions can be seen as equilibrium points by introducing a rotating and
pulsating system. Using the integrals of the center of mass we can reduce to a nonautonomous
linear system of order 8. In ([8]) it is proved that this system uncouples in 2 linear subsystems
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of order 4. We skip the details of this reduction and from now on we only consider the non
trivial subsystem, that is,

ẋ = A(f)x, A(f) =

(

0 I2

Ã(f) −2J2

)

, Ã = gα−2

(

λ1 0
0 λ2

)

, (58)

where · = d/df , g = ω
2

2−α r−1 and λ1, λ2 are constants which depend on the masses and the
central configuration. Furthermore g(f) is a periodic solution of

z̈ = −dV
dz

(z), with V(z) =
z2

2
− zα

α
(59)

for the energy level E = −(1/2)ω2α/(2−α) (see [8] for details). We note that V(z) has a minimum
at z = 1 which corresponds to a relative equilibrium that is, ω = ωc and e = 0. Therefore, the
linear system (58) is of the form (1) with t = f and G1 = G2 = gα−2. The small parameter ε
will be here the (generalized) eccentricity e. We remark that for e = 0, g(f) is constant and
(58) is autonomous. For e 6= 0 small enough, in the Newtonian case we have g(f) = 1 + e cos f
and d’Alembert property is trivially satisfied. In section 7.2 we prove that this property is also
satisfied in the general case, 0 < α < 2.

In both cases, triangular and collinear, λ1, λ2 depend on a mass parameter βt and βc

respectively, according to table 2. We note that in the collinear case the mass parameter
βc depends on the solution of, the well known Euler quintic’s equation if α = 1, and some
generalization of this equation if α 6= 1 (see [8] for details).

Triangular λ1, λ2 zeroes of p(λ) = λ2 − (α + 2)λ + βt

4 ,
βt = 3(α + 2)2κ

Collinear λ1 = (α + 1)βc + α + 2, λ2 = −βc,
βc ∈ (0, 2α+2 − 1)

Table 2: Values of λ1, λ2 being κ = m1m2 + m1m3 + m2m3.

For a triangular configuration, (λ1, λ2) describes a segment with endpoints (α+2, 0), ((α+
2)/2, (α + 2)/2), going from region R2 to R3, using the notation introduced in section 1.1.
Table 3 summarizes the critical values of βt such that bifurcations are expected for e > 0
small enough, in the non-degenerate cases. For the Newtonian case see figure 5 for a global
description of the different kinds of linear stability. For other values of α we refer to [8].

β∗
t

3
4(2 − α)2 (2 − α)2 (2 − α)2(n2 − 1)2 for n ∈ N

2 ≤ n ≤ 2√
2−α

transition EE↔EH EE↔CS CS↔HH

Table 3: Resonances for e = 0 in the triangular case and expected transitions for small e.

In the collinear case, (λ1, λ2) describes a segment in the plane on the region R1 with
endpoints (α + 2, 0) and ((α + 1)2α+2 + 1, 1− 2α+2). Let us denote by ω the frequency. In this
case, resonance can be attained when ωT = nπ for some n ∈ N. A simple computation shows
that this is accomplished for n ∈ N satisfying

2 < n <
2ωM√
2 − α

,
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being ωM =
√

1 − 2α+1α + 2
α

2

√

2α+2(α + 2)2 − 8α the maximum value of ω (see [8]). For
these values of ω a transition EH ↔ HH is expected. We note that in this case the number of
resonant points increases as α increases tending to 2. The same occurs in the last case of table
3 for a triangular configuration.

7.1 The Newtonian case

Let us consider α = 1. So, g(f) = 1 + e cos f .
In the triangular case, we obtain a resonant point for β∗

t = 3/4. For this value, (λ1, λ2) ∈ R2

and the resonant frequency is ω2 = 1/2. Using the results of section 4 we obtain that a resonant
tongue of order O(e) is born at the point (βt, e) = (3/4, 0), whose boundaries are given by

β−
t = 3/4 − de + O(e2), β+

t = 3/4 + de + O(e2), d = 0.4903894921666... . (60)

Figure 5 shows the bifurcation diagram on the (βt, e)-plane computed numerically. The
behaviour for e . 1 is detailed in [8].

0

0.5

1

0 3 6 9

Figure 5: Bifurcation diagram of the triangular Newtonian homographic solutions in the (βt, e)-
plane. The color code is the same used in figure 3.

In the collinear case there are three resonant points corresponding to frequencies ω =
3/2, 2, 5/2. First we consider the cases ω = 3/2 and ω = 5/2. Let β∗

c the value of βc at
resonance. By taking βc = β∗

c + δ, from (25) we get the following boundaries of the resonant
tongues

βc − β∗
c = −0.4208699 . . . e2 ± 0.0336193 . . . e3 + O(e5) if ω = 3/2,

βc − β∗
c = −1.9578204 . . . e2 − 0.5109419 . . . e4 ± 0.0003288 . . . e5 + O(e6) if ω = 5/2.

We note that, in agreement with the results of section 4, the resonant tongues T 3
2
, T 5

2
are of

order O(e3), O(e5), respectively, due to the fact that the suitable coefficient is different from
zero.

The existence on the tongue (60) in the triangular case, was proved by G. Roberts ([10]) in
a different way. We note that in this case only lower order terms in e are needed. However, to
detect T 3

2
and T 5

2
in the collinear case, one has to compute terms of order 3 and 5 respectively,

in the eccentricity. In these cases, the method used in [10] becomes impracticable.

Now we study the case ω = 2 for the collinear solutions. Although λ1, λ2 depend on the
mass parameter, βc or βt, we can consider the system for arbitrary (λ1, λ2) ∈ R1 ∪ R2. To
prove theorem 3 we shall use the following lemma.
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Lemma 8. Assume that (58) has a 2π–periodic solution, ϕ, for a fixed value of e ∈ (0, 1) and
λj 6= 0, j = 1, 2. Then, there exists a second periodic solution with the same period which is
independent of ϕ.

Proof

System (58) can be written as the following system of second order equations

(1 + e cos f)ẍ1 = λ1x1 − 2ẋ2(1 + e cos f),

(1 + e cos f)ẍ2 = λ2x2 + 2ẋ1(1 + e cos f). (61)

A 2π–periodic solution of the system above can be written as

x1(f) = a0 +
∑

n≥1

an cos(nf) +
∑

n≥1

bn sin(nf),

x2(f) = c0 +
∑

n≥1

cn cos(nf) +
∑

n≥1

dn sin(nf). (62)

Then, the coefficients must satisfy the following uncoupled sets of recurrences

λ1a0 = e
(

d1 −
a1

2

)

,

eA2u2 = B1u1, (63)

eAn+1un+1 = Bnun − eAn−1un−1, n ≥ 2, u = (an, dn)T ,

λ2c0 = −e
(

b1 +
c1

2

)

,

eA2Sv2 = B1Sv1, (64)

eAn+1Svn+1 = BnSvn − eAn−1Svn−1, n ≥ 2, v = (bn, cn)T ,

where An = −n

2

(

n −2
−2 n

)

, Bn =

(

λ1 + n2 −2n
−2n λ2 + n2

)

and S = diag(1,−1).

We note that if un, n ≥ 1 is a non trivial solution of the last two equations in (63) then
vn = Sun = (an,−dn)T , n ≥ 1, is a non trivial solution of the second and third equations
in (64). Moreover, An is a non singular matrix for n > 2. However, det(A2) = 0. But if
det(B1) = (λ1 + 1)(λ2 + 1) − 4 6= 0, given u2 we can compute u1 from the second equality in
(63), and from the last equation we obtain un for n ≥ 3.

We assume that (62) is a non trivial 2π–periodic solution of (61). Then, both (63) and (64)
have a solution. We assume that (63) admits a non trivial solution. Then,

∑

n≥1 an cos (nf)
and

∑

n≥1 dn sin(nf) are convergent. Therefore vn = Sun, that is, bn = an and cn = −dn, for
n ≥ 1, is a solution of (64). Then, we can built two independent periodic solutions of (61) as

x
(1)
1 (f) = a0 +

∑

n≥1 an cos (nf), x
(1)
2 (f) =

∑

n≥1 dn sin (nf),

x
(2)
1 (f) =

∑

n≥1 an sin (nf), x
(2)
2 (f) = c0 −

∑

n≥1 dn cos (nf),
(65)

where a0 =
e

λ1

(

d1 −
a1

2

)

and c0 =
e

λ2

(

d1

2
− a1

)

. 2

Proof of theorem 3

For ω = n, n ∈ N, one stability parameter, tr2, is equal to 2 for e = 0. Then the
boundaries of the resonant region are defined by tr2 = 2. Furthermore, if (λ1, λ2, e) belongs to
the boundary, the linear system (58) has a 2π–periodic solution.
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Let us define Φ(2π) the monodromy matrix of (58). After lemma 8, if (λ1, λ2, e) belongs to
the boundary of the resonant region then Φ(2π) can be written (in a suitable basis) as

Φ(2π) =

(

Q 0
0 I2

)

,

for some 2 × 2 matrix Q. Using the Normal Form we can compute Φ(2π) up to a given order
in δ1, δ2, e. As we are in a single resonance case we know that the reduced system becomes
uncoupled. Assume that (a1, a2) ∈ R1. Then the subsystem that defines tr2 is (24) (in the
case (a1, a2) ∈ R2 a similar subsystem is obtained). We define for this system the symplectic
change of coordinates

(

η1

η2

)

=

√
2

2

(

1 i
i 1

)(

u
v

)

.

Then the new system is

(

η̇1

η̇2

)

= S1

(

η1

η2

)

,

where S1 =

(

0 σ2 − 2σ3

−(σ2 + 2σ3) 0

)

. The corresponding monodromy matrix is exp(2πS1).

Let us assume that (λ1, λ2, e) belongs to the boundary such that σ2 − 2σ3 = 0. Then,

S1 =

(

0 0
−(σ2 + 2σ3) 0

)

and exp(2πS1) =

(

1 0
−2π(σ2 + 2σ3) 1

)

.

Assume that for these values of the parameters, σ2 + 2σ3 6= 0. Then system (58) would
have a unique 2π–periodic solution. This gives a contradiction with lemma 8. In this way we
have proved that the two boundaries coincide up to an arbitrary order in e, once δ1 = δ1(e)
and δ2 = δ2(e). Using the analyticity they coincide for any value of the eccentricity. 2

The left part of figure 6 shows the bifurcation diagram on the (βc, e)-plane computed nu-

merically for βc ∈ (0, 7), e ∈ [0, 1). The first tongue is born at β∗
c =

3

16
(
√

41 − 1) = 1.013 . . .,

which corresponds to ω = 3/2. We recall that the width of T 3
2

is of order e3. So, to distinguish

the two boundaries we have to look at big values of the eccentricity. In the figure the line
inside the resonant tongue corresponds to a minimum of the stability parameter. The second
’tongue’, T2, is only a curve defined by points (βc, e) for which the second stability parameter
is equal to 2, as predicted by theorem 3. For the third tongue T 5

2
the width is of order e5. We

can distinguish the two boundaries in the magnification displayed on the right part of figure 6

for big values of e. Other curves in these plots are resonant tongues Tω for ω =
m

2
, m ∈ N,

m > 5. They are born at values β∗
c > 7 and, hence, they are not relevant for small values of e.

However, infinitely many resonant zones enter the domain when e increases. The behaviour of
Tω as e goes to 1 is described in [8].

7.2 The general case

For the general case we do not know explicitly the expression of gα−2. In this section we shall
see that gα−2 satisfies d’Alembert property, and then we can use the results given in section 4
to compute the boundaries of the resonant regions.
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Figure 6: Left: Resonant tongues in the (βc, e)-plane for the collinear Newtonian homographic
solutions. Right: A magnification for e close to 1.

Let g(f) be the solution of (59) such that ġ(0) = 0 and g(0) is the minimum of g(f). We
introduce a new variable v = gα−2 − 1. Then, the second order equation for v is

v̈ = 2(α − 2)(α − 3)E(v + 1)
4−α

2−α + (α − 2)2(v + 1)

(

3

α
(v + 1) − 1

)

, (66)

where E denotes the energy of (59), that is, E =
ż

2
+ V(z).

Let ε > 0 be small enough. We look for a solution of (66) which satisfies initial conditions
v(0) = ε and v̇(0) = 0. We shall write

v(f) = v1(f)ε + v2(f)ε2 + v3(f)ε3 + . . . , (67)

where v1(0) = 1, vj(0) = 0 for j ≥ 2 and v̇j(0) = 0 for j ≥ 1. We remark that writing the
energy of (59) in terms of v we have that

E =
1

2
(ε + 1)

2
α−2 − 1

α
(ε + 1)

α

α−2 = E1 + ∆, E1 = −2 − α

2α
, (68)

and ∆ = α2ε
2 + α3ε

3 + α4ε
2 + O(ε5) with

α2 =
1

2(2 − α)
, α3 = − 4 − α

3(2 − α)2
, α4 =

(4 − α)(3 − α)

4(2 − α)2
, . . .

To get v(f) we use a Lindstedt–Poincaré method. So, we introduce a new independent variable
τ = νf with

ν = ν0 + ν1ε + ν2ε
2 + . . . .

The coefficients νj, j ≥ 0 will be determined in order to eliminate resonant terms. Using (68)
the equation (66) can be written as

ν2 d2v

dτ2
= f(v) + g(v)∆, (69)

where

f(v) = E1g(v) + (α − 2)2(v + 1)

(

3

α
(v + 1) − 1

)

,

g(v) = 2(2 − α)(3 − α)(v + 1)
4−α

2−α .
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By substituting (67) in (69) we get

ν2
0

d2v1

dτ2
= −(2 − α)v1, v1(0) = 1,

dv1

dτ
(0) = 0.

We choose ν2
0 = (2 − α) and then trivially v1(τ) = cos τ . In a similar way we get

v2(τ) =
1

2(2 − α)
+

α − 4

3(2 − α)
cos τ − 2α − 5

6(2 − α)
cos (2τ),

v3(τ) =
α − 4

3(α − 2)2
+

(

(α − 4)(7 − α)

9(2 − α)2
− 9α2 − 47α + 62

96(2 − α)2

)

cos τ

−(2α − 5)(α − 4)

9(2 − α)2
cos (2τ) +

9α2 − 47α + 62

96(2 − α)2
cos (3τ),

ν1 = 0 and

ν2 = −
√

2 − α

2(2 − α)2

(

1

6
(2α − 5)(11 − 2α) − 3

4
(α − 3)(4 − α)

)

.

In this way we can obtain g2−α = 1 + v(τ) up to a given order. Then, g2−α = 1 + v(νf) is a

periodic function of f with period T =
2π

ν
.

Now we shall see that g2−α is an even function of f and satisfies the d’Alembert property.

Lemma 9. Let v(τ) =
∑

m≥1 vm(τ)εm be the solution of (69) such that v1(0) = 1, vj(0) = 0
for j ≥ 2 and v̇j(0) = 0 for j ≥ 1. Then, vm(τ), m ∈ N, is an even function on τ which
satisfies the d’Alembert condition, that is, for m ∈ N,

vm(τ) =

m
∑

l=0

aml cos (lτ). (70)

Proof

We know that g(f) is an even periodic function of f . So, v(τ) is also an even function.
Moreover v1(τ) = cos τ . Assume that vm(τ) for m = 1, 2, . . . , k − 1 are known and satisfy the
(70). If we define w = eiτ then vm(τ) contains terms wl with l ≤ m.

The equation for vk(τ) is obtained by equating in (69) terms of order k in ε. It is clear that
v1(τ), . . . , vk−1(τ) give terms with wl, with l ≤ k − 1, in v̈.

Concerning the right part of (69) to get the terms of order k in ε from f(v) it is sufficient
to consider

f(v) = f ′(0)vk(τ) +
k

∑

j=2

f (j)(0)

j!
(v(k))j,

where v(k)(τ) = v1(τ)ε + . . . + vk(τ)εk.
The terms of order k in ε which come from (v(k))j can be written as

(v(k))j =
∑

l1 + . . . + lk = j,
l1 + 2l2 + . . . + klk = k

vl1
1 vl2

1 · · · vlk
k εk. (71)

In (71) we consider j ≥ 2. This implies lk = 0 in the sum (71). Using the hypothesis
on v1(τ), . . . , vk−1(τ) we get that the highest term in w which appears in v l1

1 vl2
2 · · · vlk

k is

28



wl1+2l2+...+(k−1)lk−1 = wk. In a similar way it can be proved that g(v)∆ contributes to the
equation of vk with terms wl, l ≤ k − 2. Therefore we can write the equation for vk(τ) as a
linear non homogeneous differential equation

ν2
0 v̈k = f ′(0)vk + F (τ),

where F (τ) depends on v1(τ), . . . , vk−1(τ). The terms of F (τ) contain wl with l ≤ k. This
proves the lemma. 2

Remark 11. In contrast with the Newtonian case, if α 6= 1 the second periodic solution given
by lemma 8 does not exist. Analysis of the corresponding normal forms shows that the tongues
are open.
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