
Parking a spacecraft near an asteroid pair

Frederic Gabern∗, Wang S. Koon† and Jerrold E. Marsden‡

Control and Dynamical Systems,

California Institute of Technology,

107-81, Pasadena, CA 91125, USA

The purpose of this paper is to study the dynamics of a spacecraft mov-

ing in the field of a binary asteroid. The asteroid pair is modeled as a rigid

body and a sphere moving in a plane, while the spacecraft moves in their

field in space. This model is interesting because it is one of the simplest

that captures the coupling between rotational and translational dynamics.

By assuming that the binary dynamics is in a relative equilibrium, a re-

stricted model for the spacecraft in orbit about them is constructed that

also includes the direct effect of the Sun on the spacecraft dynamics. The

standard Restricted Three Body Problem (RTBP) is used as starting point

for the analysis of the spacecraft motion. In particular, how the triangu-

lar points of the RTBP are modified through perturbations is investigated

by taking into account two sorts of perturbations, namely that one of the

primaries is no longer a point mass but is an extended rigid body, and sec-

ond, taking into account the effect of orbiting the Sun. The stable zones

near the modified triangular equilibrium points of the binary and a normal

form of the Hamiltonian around them are used to compute stable periodic

and quasi-periodic orbits for the spacecraft, which enable it to observe the

asteroid pair while the binary orbits around the Sun.
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I. Introduction

In the last decade, asteroid satellites and double asteroids have had a prominent place

in the discovery of new Solar System objects1 . Since 1993, when the Galileo spacecraft

discovered Dactyl, the first natural satellite of an asteroid ever found—in this case of the

asteroid (243)-Ida (see Figure 1(a))—over 50 binary asteroids have been discovered and the

interest in studying asteroid pairs has grown significantly1 . Examples of these discoveries

include the pairs (22)-Kalliope and Linus and (45)-Eugenia and Petit-Prince, in the main

belt; or the Near–Earth Asteroids (3671)-Dionysus and S/1997 and 2000 DP107 and S/2000

(see Figure 1(a)).
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Figure 1. (a) Top: Ida and Dactyl (source: JPL). Bottom: A schematic diagram represent-
ing the sizes of the 2000 DP107 components and their separation, drawn to scale (source:
J. L. Margot, Caltech). (b) The five equilibrium points of the RTBP.

Therefore, the study of spacecraft motion about an asteroid pair is an extremely relevant

topic for future missions to asteroids as 16% of Near-Earth Asteroids (NEA) are thought to

be binaries2 . Binaries can be used as real-life laboratories to test rigid-body gravitational

dynamics1 . For instance, an important question is to find stable zones and orbits near the

asteroid pair where a spacecraft can “park” to carry out measurements and observations of

the binary as the pair orbits around the Sun. See Figure 2(a).

In solving this problem, we draw on some basic facts of the circular Restricted Three

Body Problem3 (RTBP). The RTBP describes the motion of a massless particle under the
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gravitational attraction of two massive bodies (primaries) which presumably revolve in circu-

lar orbits around their common center of masses. Usually, the system is studied in a rotating

frame (synodical), where the two massive bodies are fixed on the x axis. The details on how

to derive the corresponding equations of motion can be found, for instance, in Ref. 3.

As it is well known, the RTBP has five equilibrium points (in synodical coordinates).

Three of them are on the x axis and they are known as collinear points or L1, L2 and L3.

The remaining two form equilateral triangles with the massive bodies and are known as

triangular points or L4 and L5. See Figure 1(b).

While the collinear points are always unstable, the stability of the triangular points

depends on the value of µ = m/(M + m), where m and M are the masses of the primaries.

If µ < µR, where µR = 1
2
(1 −

√
23/27) (known as the Routh critical value), the triangular

points are spectrally stable, otherwise they are unstable. These “equilateral” points are of

interest to us because their stability properties will vary due to the rigid body effects.

The main aim of this paper is thus to study how these triangular equilibria are perturbed

in two important ways:

(1) When one of the primaries is not a point mass any more but an extended rigid body.

(2) When the effect of orbiting the Sun is also considered.

Under this situation, the coupling between the dynamics of the relative translational motion

of the two bodies and the rigid body rotation has to be taken into account. Furthermore, a

time-dependency will appear due to the perturbation of the Sun.

As for the collinear unstable points, they are also worth studying since we known, via

Genesis Discovery Mission, for example, that it can be cheap to park a spacecraft near them

by using the so-called Center Manifold4 . But, the study of the collinear points under the

perturbation of rigid body effects will be taken up in a future work.

We use a simple model for the asteroid pair, a planar system made up of a rigid body

and a sphere. This model is known as “sphere restriction” of the Full Two Body Problem5

(F2BP). The F2BP considers the gravitational interaction between two general distributed

bodies. See Ref. 6, for a formal definition of the problem and some initial stability studies.

See Refs. 7–9 for more studies on stability of the F2BP, including the sphere restriction case.

To model the spacecraft motion, we assume the binary to be in a relative equilibrium

and we also consider the direct effect of the Sun on the spacecraft. Other studies in the
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literature10,11 use the approach taken in Hill’s problem, in which the Sun is taken at infinity,

to tackle the influence of the perturbation of the Sun.
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Figure 2. (a) Schematic diagram showing the two stable zones for the spacecraft (gray circles)
to observe the binary (M and m) as the asteroid pair orbits around the Sun (S). (b) A high
inclination observation orbit for the spacecraft.

The basic techniques used in the present paper are taken from geometric mechanics and

dynamical systems theory. The use of Hamiltonian reduction methods allows us to reduce

the dimension of the problem and Normal Form techniques are central to our numerical

explorations. The software is “handcrafted” (adapted from the programs in Refs. 12 and 13;

see also Ref. 14) and uses an algebraic manipulator to obtain high-order expansions (Taylor

and Fourier-Taylor series) of the functions involved in the computations. These high-order

expansions cannot be achieved with a commercial-type manipulator and are important, for

instance, to obtain relatively high inclination observation orbits for the spacecraft. See

Figure 2(b).

The paper is organized as follows: In Section II, we derive the reduced equations for

the asteroid pair via reduction theory and make a preliminary study of this reduced model.

Abelian reduction theory used in obtaining the binary model is reviewed in the Appendix.

In Section III, we construct the models for the spacecraft motion based on the a particular

relative equilibrium solution of the asteroid pair. Only the direct effect of the Sun on the

spacecraft (and not on the asteroid pair) is considered in the modeling. In Section IV, we

study the dynamics of these models in the vicinity of the stable triangular points and use

this study to find stable periodic and quasi-periodic orbits suitable for parking the spacecraft
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while it observes the binary. Finally, in Section V, the conclusions and future work are

presented.

II. A Model of the Asteroid Pair

To obtain a model of asteroid pair, we apply the general Abelian reduction process (the

details of which are recalled in the Appendix) to the particular case of the planar F2BP with

the sphere restriction.

A. Equations of motion for the binary

Consider the mechanical system of a rigid body and a sphere in space, but that are moving

in a plane, as in Figure 3.
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Figure 3. Gravitational interaction of a rigid body and a sphere in the plane.

1. Reduction of the translational symmetry

Relative to a given inertial reference frame, the kinetic energy of the system is

K =
1

2
m‖ṙ‖2 +

1

2
M‖Ṙ‖2 +

1

2
Izz θ̇

2,
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where r and R are the positions of the sphere’s center and the barycenter of the rigid body,

m and M are the masses of the sphere and the rigid body, Izz is the inertia tensor of the

rigid body and the angle θ is as shown in Figure 3.

It is straightforward to perform a first reduction using the invariance of the system under

translations. This can be achieved by using the fact that at the system’s center of mass,

mr + MR = 0. After defining q = r −R, which is the relative position of the sphere with

respect to the rigid body, one gets r = M
m+M

q and R = −m
m+M

q, and the kinetic energy can

be re-written as

K =
1

2

mM

m + M
‖q̇‖2 +

1

2
Izz θ̇

2.

Furthermore, if the unit of mass is defined such that mM
m+M

= 1, the unit of length is taken

to be the longest axis of inertia of the rigid body, and the unit of time is chosen such that

G(m + M) = 1, then the kinetic energy can be simplified as

K =
1

2
‖q̇‖2 +

1

2
Izz θ̇

2.

Notice that the configuration space Q of this reduced system is the planar Euclidean

group SE(2). Its Lagrangian is of the type kinetic minus potential and can be locally

written as

L(q, θ, q̇, θ̇) =
1

2
‖q̇‖2 +

1

2
Izz θ̇

2 − V (q, θ). (1)

From the Lagrangian, we obtain the momenta conjugate to the variables (q, θ) via the

Legendre transformation: p = ∂L
∂q̇

= q̇, pθ = ∂L
∂θ̇

= Izz θ̇. Thus, its corresponding Hamiltonian

is

H =
1

2
‖p‖2 +

1

2Izz

p2
θ + V (q, θ). (2)

This system still has an overall rotational symmetry, with respect to which we will reduce

next.

2. Reduction of the rotational symmetry

We first perform two preliminary (canonical) changes of variables that will simplify the action

of the symmetry group G = S1 on the configuration space Q = SE(2). The first change is
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the introduction of polar coordinates:

qx = r cos φ, px = pr cos φ− pφ

r
sin φ,

qy = r sin φ, py = pr sin φ +
pφ

r
cos φ.

The second one is the use of the relative angles

α = φ− θ, pα = pφ,

β = θ, pβ = pφ + pθ,

as shown in Figure 3. These changes are the first steps in rewriting the equations of the sys-

tem using the body frame of the rigid body. After performing these changes, the Lagrangian

becomes

L =
1

2
ṙ2 +

1

2
r2α̇2 +

1

2
(r2 + Izz)β̇

2 + r2α̇β̇ − V (r, α).

Note that the potential does not depend on the “orientation” angle θ due to its invariance

under rotations. Also notice that the action of the symmetry group G on the (r, α, β)

variables is trivial:

Φϕ(r, α, β) = (r, α, β + ϕ).

Moreover, the Hamiltonian in these new coordinates is given by:

H =
1

2
p2

r +

(
1

2r2
+

1

2Izz

)
p2

α +
1

2Izz

p2
β −

1

Izz

pαpβ + V (r, α), (3)

where pα = r2α̇ + r2β̇ and pβ = r2α̇ + (r2 + Izz)β̇. Notice that β is a cyclic variable of the

Hamiltonian (3) and therefore, its conjugate momentum pβ is conserved.

To perform the reduction on the Hamiltonian side, we apply the theory reviewed in the

Appendix (for more details, see Refs. 15 and 16). The momentum map is given by

J(r, α, β, pr, pα, pβ) = pβ.

which corresponds to the angular momentum of the system in the new coordinates. The

locked inertia tensor is I(r, α, β) = r2 + Izz, which is the instantaneous inertia tensor when

the relative motion of the two body is locked. The mechanical connection is the 1-form given
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by

A(r, α, β) =
r2

r2 + Izz

dα + dβ.

For a fixed pβ = γ, we can perform the momentum shift from J−1(γ) to J−1(0) by means of

p̃r = pr, p̃α = pα −
γr2

r2 + Izz

, p̃β = 0.

The reduced Hamiltonian in J−1(0)/S1 has only two degrees of freedom

H =
1

2
p̃2

r +
1

2

(
1

r2
+

1

Izz

)
p̃2

α + V (r, α) +
γ2

2(r2 + Izz)
(4)

with the non-canonical reduced symplectic form given by

ωγ = dr ∧ dp̃r + dα ∧ dp̃α −
2γIzzr

(r2 + Izz)2
dr ∧ dα. (5)

Finally, the reduced Hamiltonian equations can be easily derived from the Hamiltonian

(4) and the symplectic form (5). It is a system with two degrees of freedom, which describes

the motion of the sphere in the body frame of the rigid body

ṙ = p̃r,

α̇ =

(
1

r2
+

1

Izz

)
p̃α,

˙̃pr =
p̃2

α

r3
− ∂V (r, α)

∂r
+

γ2r

(r2 + Izz)2
+

2γIzzr

(r2 + Izz)2

(
1

r2
+

1

Izz

)
p̃α,

˙̃pα = −∂V (r, α)

∂α
− 2γIzzr

(r2 + Izz)2
p̃r,

where V (r, α) is the potential of the rigid body in the body-frame.

3. Simple potential of the rigid body

For simplicity, we approximate the potential of the rigid body by the gravitational potential

of three masses stuck together with two massless rigid rods. The two external masses will

be assumed to be identical (see Figure 4).
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Figure 4. Simple model for the potential of the rigid body. (a) Unreduced system. (b) System
in the body-frame.

Following the results obtained in the last section, the Hamiltonian with this potential is

H =
1

2
p̃2

r +
1

2

(
r2 + Izz

r2Izz

)
p̃2

α + Vγ(r, α), (6)

where

Vγ = −1− 2µ

r
− µ

(
1

ru

+
1

rd

)
+

γ2

2(r2 + Izz)
.

Here, (see Figure 4(b)), γ ∈ R, µ = ms

mb+2ms
, ν = m

m+M
, r2

u = r2 + 2dr cos α + d2 and

r2
d = r2− 2dr cos α + d2. The moment of inertia of the system is Izz = µ

2ν
. Sometimes it will

be useful to use Izz as a parameter instead of ν. The Hamiltonian equations can be readily

derived from Hamiltonian (6) and the symplectic form (5).

B. Relative equilibria for the binary

The relative equilibria of the asteroid pair in the reduced system can be obtained from the

Hamiltonian (6). They satisfy the following equations:

p̃r = p̃α = 0,
∂Vγ

∂r
=

∂Vγ

∂α
= 0.
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After some straightforward computations, we obtain

pr = 0, pα =
γr2

r2 + Izz

, µdr sin α

(
1

r3
d

− 1

r3
u

)
= 0,

1− 2µ

r2
− γ2r

(r2 + Izz)2
+ µ

(
r + d cos α

r3
u

− r − d cos α

r3
d

)
= 0.

The third equation gives us the solution for the orientation angle α and the last one the

distance r. From the first two equations, we can compute the momenta once the relative po-

sitions are known. There are two types of solutions, depending on the value of the orientation

angle:

• Collinear configurations, with sin α = 0, α ∈ {0, π};

• T-configurations, with rd = ru, which is equivalent to α = ±π

2
.

In this paper, we do not intend to do a general study of the stability of these relative

equilibria. Instead, we will focus our attention only on the cases when the rigid body is

“big” (ν << 1), and when the binary is in a stable configuration which enables us to study

the motion of a spacecraft near the pair. Our preliminary numerical experiments show

that the collinear configurations are likely to be unstable (see Ref. 9 for a related problem).

These results motivate one to study the T-configuration in more detail. By computing the

eigenvalues of the linearized vector field at the relative equilibria for a range of parameter

values, we can establish the spectral stability of these relative equilibria as parameter values

vary.

An example of the results is shown in Figure 5. Here, we have fixed the relative mass

of the binary ν to two typical values10 : ν = 10−2 and ν = 10−3. For instance, the mass

parameter for some known binaries are: ν ∼ 10−4 for Ida, ν ∼ 10−3 for Kalliope, ν ∼ 2×10−3

for Eugenia, ν ∼ 2× 10−2 for Dionysus and ν ∼ 5× 10−2 for 2000 DP107.

In Figure 5, the parameter values corresponding to spectrally stable relative equilibria

are colored in gray. The values of the parameters studied here are µ ∈ (0, 0.2) and ω ≡ γ

Izz

∈
(0, 5). The moment of inertia of the rigid body is taken as Izz = µ

ν
.

In Section III, we use the result summarized in Figure 5 to choose concrete values for the

parameters such that the T-configuration is spectrally stable.
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Figure 5. Spectral stability for the T-configuration (gray zone). (a) ν = 10−3. (b) ν = 10−2.

1. Reconstruction of the Relative Equilibria

Since we are interested in visualizing the relative equilibria in the initial configuration space,

we need to reconstruct the dynamics from the reduced coordinates. In our case, it is not

difficult to see that the reconstruction equations for the group variables are given by

θ̇ =
pθ

Izz

, pθ = γ − pα. (7)

If a solution in the reduced space (r(t), α(t), pr(t), pα(t)) is known, one may integrate equation

(7) to obtain the evolution of the orientation angle of the rigid body θ(t).

For instance, if the reduced system is in one of the relative equilibria described above,

the conjugate momenta of the orientation angle variable is constant; that is, pθ = constant,

and the equation for the attitude (7) is trivial to integrate:

θ̇ =
pθ

Izz

≡ ωL which implies that θ = ωLt + θ0.

Hence, in the unreduced system, the relative equilibria are periodic orbits of period TL = 2π
ωL

.

For example, for one of the T-configuration points (r ≡ rL, α = π
2
), the solution for a rigid

body and a sphere is a T-shaped object which is rotating uniformly at rate ωL. See Figure

6(a).
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Figure 6. (a) Relative equilibria for the T-configuration visualized in the unreduced reference
frame. The system is rotating uniformly with angular velocity ωL. (b) Basic T-model for the
spacecraft (S/C).

III. Models for the Motion of the Spacecraft

In this section, we will construct two models for the motion of a spacecraft near the

asteroid pair. Let us assume that the binary is in a specific relative equilibrium with α = π/2

and the system is rotating uniformly with frequency ωL, as in Figure 6(a). In the first

model, we will assume that the motion of the spacecraft is affected only by the gravitational

interaction of the asteroid pair. In the second model, we will add the effect of the perturbation

of the Sun on the equations of motion of the spacecraft.

A. Basic T-model

Suppose that Q0 and {Qu,Qd} are, respectively, the position vectors of the central and the

two external masses of the rigid body in an inertial reference frame centered at the system’s

barycenter. Let us also call Qs the position of the sphere and Q the position of the spacecraft

in the same frame.

In this inertial reference frame, the kinetic energy of the spacecraft is given by K =
1
2
‖Q̇‖2, and thus the corresponding momenta can be defined as P = Q̇. The equations of
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motion for the spacecraft can be written as

Q̇ = P, Ṗ = −∂V

∂Q
,

where the potential is given by

V = −G

(
mb

‖Q0p‖
+

ms

‖Qup‖
+

ms

‖Qdp‖
+

m

‖Qsp‖

)
,

with M = mb + 2ms, ν = m/(m + M), and Qjp = Q−Qj, for j = 0, u, d, s.

We now perform a rotation to fix the rigid body’s longest principal axis orthogonal to

the x-axis: Q = RθL
q, where q = (x, y, z) and RθL

is the counterclockwise rotation of angle

θL = ωLt + θ0 in the xy plane,

Rθ =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .

In this rotating frame, the equations of motion for the spacecraft are:

ẋ = px + θ̇Ly, ṗx = θ̇Lpy −
∂V

∂x
,

ẏ = py − θ̇Lx, ṗy = −θ̇Lpx −
∂V

∂y
,

ż = pz, ṗz = −∂V

∂z
,

where

V = −G

(
mb

‖q0p‖
+

mu

‖qup‖
+

md

‖qdp‖
+

m

‖qsp‖

)
.

Here, θ̇L = ωL and qjp = q − qj, for j = 0, u, d, s. Note that qj (position vectors of

the masses in the rigid body frame) are known from the T-configuration relative equilibria:

q0 = (−νrL, 0, 0), qu = (−νrL, 1/2, 0), qd = (−νrL,−1/2, 0) and qs = ((1− ν)rL, 0, 0).

These equations are Hamiltonian (in a canonical way) with the following Hamiltonian

function:

H =
1

2

(
p2

x + p2
y + p2

z

)
+ ωL (ypx − xpy) + V (x, y, z).
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Let us redefine non dimensional units for the spacecraft model as follows: take the new unit

of length to be the distance between the center of masses of the rigid body and the sphere,

the unit of time to be such that ωL = 1, so that the asteroid pair does a complete revolution

in 2π units of time, and the unit of mass such that GmM = 1.

Then, the Hamiltonian for the motion of the spacecraft can be written as an O(µ)-

perturbation of the RTBP with mass-ratio ν

H =
1

2

(
p2

x + p2
y + p2

z

)
+ (ypx − xpy) + V (x, y, z), (8)

where

V = −(1− ν)(1− 2µ)

r1

− ν

r2

− µ(1− ν)

(
1

ru

+
1

rd

)
.

Here, r2
1 = (x + ν)2 + y2 + z2, r2

2 = (x − (1− ν))2 + y2 + z2, r2
u = (x + ν)2 + (y − d)2 + z2,

r2
d = (x + ν)2 + (y + d)2 + z2 and d =

1

2rL

, as in Figure 6(b).

B. T-Model: Perturbation of the Sun

We now take into consideration the direct effect of Sun’s perturbation on the spacecraft. We

assume, as a first approximation, that the uniform rotation of the binary is not affected by

the Sun and that the center of masses of the binary is also rotating uniformly around the

Sun with a rate denoted by ωs, as in Figure 7(b). This idea is similar to the construction

of the well-known Bicircular Problem17 (BCP) that has been used to model some restricted

four-body problems in the Solar System18,19 .

Let us sketch the construction of the model. We start in inertial coordinates, where we

denote Q the position vector of the spacecraft measured from the Sun and {Q1,Qu,Qd,Q2}
the ones corresponding, respectively, to the center, upper and lower mass of the rigid body,

and to the sphere. In these coordinates, the equations of motion for the spacecraft are

Q̈ = −∂V

∂Q
,

where the Newtonian potential is:

V = − m1

‖Q−Q1‖
− mu

‖Q−Qu‖
− md

‖Q−Qd‖
− m2

‖Q−Q2‖
− ms

‖Q‖
.

We perform two changes of variables to write the equations in the so-called synodical
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Figure 7. (a) Schematic diagram showing the triangular equilibria of the RTBP persist when
one of the primaries is not a point mass but an extended rigid body. (b) Perturbation of the
Sun on the T-model.

coordinates relative to the binary. The first one is a translation from the Sun to the center

of masses of the asteroid pair: Q = QCMT
+ R, where QCMT

= (as cos θ̄s, as sin θ̄s, 0), θ̄s =

nst + θ̄0
s and R = (X, Y, Z) is the position of the spacecraft from the center of masses of the

T-model (CMT ). After this (time-dependent) translation, the equations for the spacecraft

are

R̈ = asn
2
s(cos nst, sin nst, 0)− ∂V

∂R
.

The second change of variables is a (time-dependent) rotation which fixes the binary to

the x-axis:

X = x cos t− y sin t,

Y = x sin t + y cos t,

Z = z.

From here, it is easy to write:

ẍ− 2ẏ − x = Ẍ cos t + Ÿ sin t,

ÿ + 2ẋ− y = Ÿ cos t− Ẍ sin t.
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Recall that, in the relative equilibria of the binary, (X1, Y1) = (−ν cos t,−ν sin t), (X2, Y2) =

((1 − ν) cos t, (1 − ν) sin t) and similar expressions for mu and md hold. If we denote r =

(x, y, z) to be the position of the spacecraft in these rotating coordinates, we obtain

ẍ = 2ẏ + x +
ms

a2
s

cos θs −m1
x + ν

‖r− r1‖
−m2

x− (1− ν)

‖r− r2‖

−mu
x + ν

‖r− ru‖
−md

x + ν

‖r− rd‖
−ms

x + as cos θs

‖r− rs‖
,

ÿ = −2ẋ + y − ms

a2
s

sin θs −m1
y

‖r− r1‖
−m2

y

‖r− r2‖

−mu
y − d

‖r− ru‖
−md

y + d

‖r− rd‖
−ms

y − as sin θs

‖r− rs‖
,

z̈ = −m1
z

‖r− r1‖
−m2

z

‖r− r2‖
−mu

z

‖r− ru‖
−md

z

‖r− rd‖
−ms

z

‖r− rs‖
,

where θs = t− θ̄s = t−nst−π and the third Kepler law has been used in the computations.

Finally, defining the momenta in the usual way via the Legendre transform, we get

ẋ = px + y,

ẏ = py − x,

ż = pz,

the equations of motion are Hamiltonian and the Hamiltonian function can be written as a

periodic perturbation of the T-model:

H =
1

2

(
p2

x + p2
y + p2

z

)
+ (ypx − xpy)−

ms

a2
s

(x cos θs − y sin θs) + V (x, y, z, θs), (9)

where

V = −(1− ν)(1− 2µ)

r1

− ν

r2

− µ(1− ν)

(
1

ru

+
1

rd

)
− ms

rs

. (10)

Here, r2
s = (x + as cos θs)

2 + (y − as sin θs)
2 + z2 and θs = ωst + θ0

s .
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IV. Nonlinear Dynamics near the Perturbed Lagrange Points

Recall that the triangular libration points of the RTBP are spectrally stable if the mass

parameter is smaller than the Routh critical value. In this case, the nonlinear dynamics

around these points can be studied by means of Normal Form techniques.12,20–22 In this

section, we study the effect of the rigid body and the Sun near the triangular points and use

similar techniques to describe the nonlinear dynamics near them. Furthermore, many quasi-

periodic trajectories can be found near these fixed points that will be useful for spacecraft

orbiting around the asteroid pair.

To choose the parameters for the models developed in Section III, we use the stability

results of the asteroid pair relative equilibria described in Subsection IIB. In particular, we

choose the parameters such that the binary is in a stable T-configuration. The mass ratio

between the sphere and the rigid body is taken as a typical value for certain type of binaries,

ν = m/(m + M) = 0.001. The grade of mass dispersion µ of the rigid body is chosen to

be relatively small, µ = 0.02, and its moment of inertia is taken as Izz = 20. The angular

momentum is also taken moderately small, γ = 4, so that the T-configuration is spectrally

stable with ω = 0.2 as its corresponding frequency. See Figure 5(a). With these parameters,

the T-configuration solution is found at rL = 5.07830172847938 times the largest dimension

of the rigid body. Also, the selection of these particular values ensures that the perturbed

triangular points will be spectrally stable.

When the perturbation of the Sun is taken into account, we assume that the binary is

in the main asteroid belt (as ≈ 3 A.U.) and that its total mass is that of a medium/large

size asteroid (1017 kg). This gives us the rest of the parameters for the second model in

adimensional units: as = 1.5 × 106 and ms = 1013. The relative frequency of the Sun, ωs,

can be easily obtained from the third Kepler law: ωs = 0.998278674068352.

Using these parameter values to make the actual computations, we proceed to make a

local study of the dynamics for the spacecraft near the Lagrangian stable regions, knowing

that the qualitative results will be valid for a wide range of parameters.

The Implicit Function Theorem shows that, if the perturbations are small and under some

non-resonance conditions, the RTBP triangular points persist in the basic T-model and are

replaced by stable periodic orbits after taking into consideration of the Sun’s perturbation.

See Figure 7(a).

In this paper, we focus on the L4 case, although the same results can be obtained for
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L5. The new fixed point that plays the role of L4 in the T-model will be called L′
4 and the

periodic orbit that has the same period as the Sun’s perturbation Ts = 2π
ws

will be named

PO(L′
4).

A. Study of the dynamics at L′
4 and PO(L′

4)

It is not difficult to compute the eigenvalues of the linearized vector field at L′
4 or the Floquet

multipliers of the periodic orbit PO(L′
4). For the actual example, they correspond to elliptic

objects and are displayed in Table 1.

Thus, the T-model system is elliptic at L′
4 and around PO(L′

4) and we can study the

nonlinear dynamics around these objects by constructing a high-order Normal Form around

the fixed point L′
4 and around the periodic orbit PO(L′

4).

We briefly describe the main points of the procedure as follows—the reader can consult

Refs. 12 and 13 for details.

1. Translate the origin of coordinates to L′
4 or PO(L′

4). In the second case, the translation

depends periodically on time.

2. Construct the quadratic Normal Form using the real Jordan form of the linearization of

the vector field in the autonomous case and the Floquet Theorem in the time-periodic

case.

3. Perform an expansion of the Hamiltonian in a Taylor series (Fourier–Taylor series in

the time-periodic case) up to degree N .

4. Construct a high-order Normal Form with a Lie series method12 .

Next, we explain these main steps in more detail.

1. Quadratic Normal Form

We focus on the time-periodic case (for the autonomous system, the quadratic normal form

corresponds to the real Jordan form of the linear differential equations): After having moved

the origin to the periodic orbit PO(L′
4) (this translation is Ts-periodic), the linear part of

the vector field is of the form u̇ = L(t)u, where L(t) is a 6×6 Ts-periodic real matrix.

The Floquet theorem ensures the existence of a linear Ts-periodic change of variables

v = C(t)u such that the linear part of the vector field reduces to a linear system with

constant coefficients v̇ = Λv, where Λ is a 6×6 real constant matrix.
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It is possible13 to choose the change of variables such that C(t) is symplectic (the method

requires this condition because the changes are made directly on the Hamiltonian function)

and the matrix Λ takes the form

Λ =

 03 Ω

−Ω 03

 ,

where 03 is the 3×3 zero matrix and Ω = diag(ω1, ω2, ω3) is the diagonal matrix containing

the frequencies wj corresponding to the three normal modes of the periodic orbit (recall that

the periodic orbit PO(L′
4) is elliptic).

Implementing these changes of variables, the Normal Form up to degree 2 only contains

monomials of order 2. The order 0 is irrelevant in the equations of motion and the order 1

terms are eliminated because the origin is a fixed point after the translation. So, the normal

form up to degree two is a quadratic form given by

H2 = ω1
x2

1 + y2
1

2
+ ω2

x2
2 + y2

2

2
+ ω3

x2
3 + y3

2

2
.

Finally, it is convenient, before starting the high-order Normal Form, to implement a com-

plexification of the variables

xj =
qj + ipj√

2
, yj =

iqj + pj√
2

, j = 1, 2, 3 ,

which rewrites the quadratic part of the Hamiltonian in the following form:

H2 = iω1q1p1 + iω2q2p2 + iω3q3p3,

where the values for the frequencies wj can be found in Table 1.

L′
4 PO(L′

4)
ω1 −0.10702011607983 −0.10702058242758
ω2 0.99366842989866 0.99366615570514
ω3 1.00058470215019 1.00058692342681

Table 1. Normal frequencies for the linear oscillators around the elliptic fixed point L′
4 and

periodic orbit PO(L′
4).

19 of 33

Parking a spacecraft near an asteroid pair, Gabern et al.



2. High-order Normal Form

Prior to the construction of the high-order Normal Form, we expand the Hamiltonian in

Fourier-Taylor series (Taylor series in the autonomous case) and insert the previous linear

changes to this expansion to obtain

H = iω1q1p1 + iω2q2p2 + iω3q3p3 +
∑
j≥3

Hj(q, p, θs),

which will be the starting input object of the following construction. For details on how to

expand the current type of potential functions, see Ref. 13.

To build the Normal Form of order higher than 2, we use the Lie series method (see

Ref. 23 or Ref. 24, for an introduction) implemented as in Ref. 12. We use a hand-made

software that contains an algebraic manipulator that is able to deal with the Taylor and

Fourier–Taylor series appearing in the computations. We sketch one step of the process for

the time-periodic case. For the autonomous case, just skip the dependence with time.

Let us assume that the Hamiltonian is already in normal form up to degree r − 1:

H = ωspθs + H
(n)
2 (qp) +

r−1∑
j=4, j=2̇

H
(n)
j (qp) + Hr(q, p, θs) + Hr+1(q, p, θs) + · · ·

where Hr(q, p, θs) =
∑

|k|=r hk
r(θs)q

k1
pk2

, θs = ωst+ θ0 and k = (k1, k2) ∈ Z3×Z3. The extra

term ωspθs has been introduced to autonomize the Hamiltonian and pθs is the momenta

conjugated to the θs variable.

We are interested in making a change of variables such that the homogeneous polynomial

Hr(q, p, θs) takes a form that is as simple as possible. In particular, we want this change to

make the monomials contained in it autonomous. It is easy to see that the canonical change

given by the following generating function satisfies these requirements:

Gr = Gr(q, p, θs) =
∑
|k|=r
k1 6=k2

−hk
r(θs)

〈ω, k2 − k1〉
qk1

pk2

,

where 〈·, ·〉 denotes the dot product.

The new Hamiltonian obtained with this change of variables is obtained with the Lie
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series23,24 :

H ′ = H + {H, Gr}+
1

2!
{{H, Gr}, Gr}+

1

3!
{{{H, Gr}, Gr}, Gr}+ · · ·

and can be written as:

H ′ = ωspθs + H
(n)
2 (qp) +

r−1∑
j=4, j=2̇

H
(n)
j (qp) + H(n)

r (qp) + H ′
r+1(q, p, θs) + · · ·

We iterate this process and perform all the changes up to a high-order N . More concretely,

we use N = 32 in the autonomous case and N = 24 in the time-periodic one. These

particular choices are due to RAM memory limitations, but they are already high enough

for our purposes. We will give more details in the next section.

Finally, we write the Hamiltonian in action-angle variables (I, ϕ), by defining Ij = iqjpj,

j = 1, 2, 3,

H = N (I) +R(I, ϕ, θs) , N (I) =

N/2∑
|k|=1

hkI
k1
1 Ik2

2 Ik3
3 , (11)

where the term R(I, ϕ, θs) is the remaining part of the Hamiltonian that has not been

transformed to Normal Form, and thus it still depends on the angles and time. This term is

of, at least, order N + 1.

We can now assume that the dynamics in a vicinity of L′
4 and PO(L′

4) is given by the

Normal Form Hamiltonian N (I). The coefficients of the Normal Forms up to order 6 in the

square root of the actions are given in Table 2.

Since the Normal Form only depends on actions, it is trivially integrable. All motions

in a (small) vicinity of L′
4 and PO(L′

4) are periodic or quasi-periodic. They take place on

invariant tori of dimensions 1, 2 and 3 (autonomous case) or 2, 3 and 4 (periodic case). See

Figures 8 and 9 for some examples.

3. Test and validity of the Normal Form approximation

Along with the Normal Form computation, we have constructed the transformations (using

the generating function written as a Fourier–Taylor expansion) that send points from the

Normal Form space to the initial one and vice versa. These changes of variables not only

provide a way to visualize the dynamics in the initial coordinates, but also they are very
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k1 k2 k3 hk(T-model) hk(T-model + Sun)

1 0 0 -1.07020116079827e-01 -1.07020582427575e-01

0 1 0 9.93668429898665e-01 9.93666155705138e-01

0 0 1 1.00058470215019e+00 1.00058692342681e+00

2 0 0 1.98209282337547e+00 1.98210606475071e+00

1 1 0 -8.41335633534186e-02 -8.41363103519259e-02

0 2 0 3.34451789294228e-02 3.34473273382156e-02

1 0 1 9.77435542208162e-02 9.77447151079432e-02

0 1 1 1.62579166640980e-02 1.62670378418912e-02

0 0 2 -7.22623320607685e-04 -7.23728487410444e-04

3 0 0 7.23164870868422e+01 7.23172271456241e+01

2 1 0 2.40637121303353e+01 2.40641088603377e+01

1 2 0 6.06695219686117e+00 6.06715074575221e+00

0 3 0 -9.09462225134519e-02 -9.09462282070405e-02

2 0 1 -3.51875180623665e+00 -3.51880095271078e+00

1 1 1 3.17368174336265e+00 3.17373202727457e+00

0 2 1 -1.72093135781978e-01 -1.72064978874555e-01

1 0 2 -1.02419399482606e-01 -1.02420550719694e-01

0 1 2 -6.60967536055335e-03 -6.64293506149859e-03

0 0 3 3.82965067009504e-05 3.82868741518696e-05

Table 2. Coefficients of the normal forms up to order 6 in the square root of the actions. The
first three columns contain the exponents of the actions. The fourth column corresponds to
the autonomous case and the fifth one to the time-perturbed model.
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Figure 8. Examples of stable orbits near the Lagrangian zones of the asteroid pair I.
Left/Center: Projection into the xpx and ypy planes, respectively, of a 3D torus. Right:
Projection into the xy plane of 4D torus for the time-periodic case.
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Figure 9. Examples of stable orbits near the Lagrangian zones of the asteroid pair II. Left:
Periodic orbit in the autonomous case. Center/Right: Two examples of 3D tori for the time-
periodic case.

helpful to test the programs.

In order to check the correctness of the computations, we proceed as follows (see Ref. 12

for a more detailed description of these tests): First, we take a fixed value for the actions

I1 = I2 = I3 = λ, with λ small, transform this point back to the initial coordinates and

integrate it numerically using the vector field corresponding to (8) and (9) during a time span

T . Let us call this final point x(λ). Then, we use the Normal Form (11) to integrate (this

integration is a trivial tabulation) the same initial condition (Ij = λ) in the “Normal Form

space” for the same interval of time T and transform back the final point of the integration

to the initial coordinates. We call now this point x′(λ).

The norm of the difference between x(λ) and x′(λ) is an increasing function of λ and gives

an estimation of the error that we are doing when approximating the dynamics of models

(8) and (9) by the corresponding Normal Forms. Moreover, if we denote

e(λ) = ‖x(λ)− x′(λ)‖2, (12)

the order of the error approximately behaves like

N ≈
ln

(
e(λ1)

e(λ2)

)
ln

(
λ1

λ2

) ,

where N corresponds to the order of the Normal Form. This test is performed using different

(small) values of λs and successfully passed by all our programs.
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B. Spacecraft Parking Orbits

We can construct prescribed stable trajectories for the spacecraft near the elliptic objects

L′
4 and PO(L′

4) by using the dynamics given by the Normal Form (11). Some of these

stable orbits are very interesting because we can use them to “park” the spacecraft to do

observations of the binary as the pair orbits around the Sun.

Notice that, essentially, the I1 and I2 actions correspond to planar motion (in the xy

plane) and I3 to the vertical direction zpz. This observation is not exact because the presence

of nonlinear terms, but it will be very useful for some applications.

For instance, if we are interested in performing observations of the asteroid pair with

relatively high inclinations, we can prescribe values for the initial conditions with I1 = I2 = 0

and I3 = λ3. The concrete value of λ3 should be taken as large as possible. This is determined

by asking that the Normal Form approximation error (12) is smaller than certain tolerance,

e(λ3) < Tol. In our computations, for instance, if we choose Tol = 10−10, we can take

λ3 = 0.02.

With this particular choice of actions, we obtain trajectories for the spacecraft that

correspond to a periodic orbit in the autonomous case and a 2-D invariant torus in the time-

dependent model. These particular trajectories are shown in Figure 10. Notice that they

are quite extended in the vertical direction.
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Figure 10. Examples of relatively high inclination orbits suitable for binary observations. Left:
Periodic orbit for the autonomous case. Right: 2D invariant torus for the time-periodic case.

V. Conclusions and Future Work

In this paper we have studied a simple model for the motion of the spacecraft near an

asteroid pair. First, we have computed the relative equilibria for the Full 2 Body Problem
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(whose bodies are moving in a plane) and made a preliminary exploration of their stability.

Then, we have modeled the motion of the spacecraft assuming that the asteroid pair remains

in this relative equilibria while it evolves in a circular orbit around the Sun.

The Lagrangian points of the Restricted Three Body Problem have served as a starting

point to find zones of practical stability suitable for placing the spacecraft. We have studied

how these points are modified by the effects due to the fact that (1) one body is an extended

body, and (2) the perturbation of the Sun. Moreover, we have used dynamical systems tools,

such as the construction of a high-order Normal Form, to study the non-linear dynamics

around these Lagrangian points. Finally, these accurate numerical methods have enabled us

to construct periodic and quasi-periodic orbits very convenient for doing observations of the

asteroid pair.

Future work will consider other interesting aspects of the problem. For instance, different

solutions of the F2BP (i.e. not in relative equilibria) may bring us to quasi-periodic models25 ,

where the primary rigid body rotates with a different angular velocity than the translational

rotation of the second spherical body around the primary. These models can be studied

for example with the methods developed in Ref. 14. We also plan to study more realistic

potentials for the non-spherical body. Furthermore, the problem of two full bodies, without

the sphere restriction, seems to be a challenging system to study.

As mentioned before, it is also of our interest to investigate rigid body perturbations on

orbits in the Central Manifolds of the collinear points, as these orbits have already been used

in real missions (b.g. Genesis).

In a current work in progress26 , we analyze the problem of finding binary observation

orbits for the spacecraft from another point of view. We use a completely different compu-

tational tool, namely the frequency map analysis27 , to obtain the global dynamics of the

stability region near the Lagrangian points of the Restricted Full 3 Body Problem. From this

global picture, we are able to identify (almost) invariant tori and quasi-periodic trajectories

on these invariant tori that are very convenient for “parking” the spacecraft on them, while

the spacecraft is observing the asteroid pair.

Appendix: Abelian reduction. General setting

In this appendix, we review the reduction process for a system that is invariant under the

abelian Lie group SO(2). We perform the reduction on both sides of the problem, Lagrangian
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and Hamiltonian, and show that they are equivalent via the reduced Legendre transform.

Let us start by assuming that the configuration space Q can be written as a product of

the circle S1 and a manifold B called shape space, i.e., Q = S1×B and q = (q0, qα) = (θ, rα),

with q ∈ Q, θ ∈ S1 and rα ∈ B ⊆ Rn.

Let us assume that the symmetry group G = SO(2) = S1 acts trivially in the following

way:

Φ : G×Q −→ Q

(ϕ, q) 7−→ Φϕ(q) = Φϕ(θ, rα) = (θ + ϕ, rα)

where G is a Lie group with Lie algebra g = R and dual Lie algebra g∗ ∼= R.

We also assume that the Lagrangian is of the type kinetic minus potential. It can be

written, in a local trivialization of TQ, as follow:

L(q, q̇) = K(q, q̇)− V (q) =
1

2
gij q̇

iq̇j − V (q).

where gij is a Riemannian metric and summations over i, j = 0, 1, . . . , n are understood. The

corresponding Hamiltonian on T ∗Q is given by

H(q, p) = K(FL(q, q̇)) + V (q) =
1

2
gijpipj + V (q),

where gij is the inverse of the metric gij, (q, p) = FL(q, q̇) is the Legendre transform of (q, q̇)

((qi, pi) = (qi, gij q̇
j)) and the symplectic form is canonical, i.e., Ω = dqi ∧ dpi.

A. Lagrangian reduction

We start with the Lagrangian re-written in the following form:

L(rα, θ̇, ṙα) =
1

2
g00θ̇

2 + g0αθ̇ṙα +
1

2
gαβ q̇αq̇β − V (rα).

Thus, θ is a cyclic variable and the corresponding conjugate momenta pθ = g00θ̇ = ∂L
∂θ̇

is

conserved. While the classical theory of Routh reduction is valid, we will use modern Routh

reduction28 that applies in a much more general framework.

The ingredients needed in the reduction process (see Ref. 28 for details) are:
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• Infinitesimal generator: The infinitesimal generator corresponding to the group

action can be computed as follow:

ξQ(θ, rα) =
d

dt
(exp(tξ) · (θ, rα)) |t=0 = ((θ, rα), (ξ, 0)).

• Lagrangian momentum map: The associated momentum map JL : TQ ← g∗. is

given by

JL((q, q̇)) · ξQ = 〈FL(q, q̇), ξQ(q)〉 =
〈
(g0j q̇

j, gαj q̇
j), (ξ, 0)

〉
= g0j q̇

jξ.

Thus, JL(q, q̇) = g00θ̇ + g0αṙα.

• Locked inertia tensor: The locked inertia tensor is the instantaneous tensor of inertia

when the relative motion of the two bodies is locked. If we denote 〈〈·, ·〉〉 the scalar

product induced by the metric gij, the locked inertia tensor I(θ, rα) : g −→ g∗ is given

(locally) by

〈I(θ, rα)η, ξ〉 = 〈〈((θ, rα), (η, 0)), ((θ, rα), (ξ, 0))〉〉 = g00ηξ.

Then, I(θ, rα) = g00(r
α).

• Mechanical connection: The connection A : TQ −→ g can be written (locally) as

A(θ, rα)(θ, rα, θ̇, ṙα) = I−1J(FL(θ, rα, θ̇, ṙα)) = g−1
00 g0j q̇

j. Thus,

A(θ, rα)(θ, rα, θ̇, ṙα) = θ̇ + g−1
00 g0αṙα.

From A, we can obtain the related one-form: A(θ, rα) = dθ + Aαdrα, where Aα =

g−1
00 g0α, and the curvature B = dA = Bαβdrα ∧ drβ has components given (locally) by

Bαβ =
(

∂Aα

∂rβ − ∂Aβ

∂rα

)
. For a given µ ∈ g∗ ∼= R, the mechanical connection on the fiber

Q→ Q/G is

αµ(θ, rα) = µdθ + µAαdrα.

• Amended potential: For µ ∈ g∗, the amended potential is defined as

Vµ(q) = V (q) +
1

2

〈
µ, I−1(q)µ

〉
= V (q) +

1

2
g−1
00 µ2.
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• Routhian: The Routhian is a function on TQ defined as

Rµ =
1

2
‖Hor(q, q̇)‖2 − Vµ,

where Hor(q, q̇) = (−g−1
00 g0αṙα, ṙα) is the horizontal component of (q, q̇) and the norm

is given by the gij metric. Then, locally, we can write

Rµ =
1

2
(gαβ − g−1

00 g0αg0β)ṙαṙβ − 1

2
g−1
00 µ2 − V (rα). (13)

The general reduction theory16,28 tells us that if a curve q(t) in Q satisfying JL(q, q̇) = µ

is a solution of the Euler-Lagrange equations for the Lagrangian L(q, q̇), then the

induced curve on Q/Gµ satisfies the reduced Lagrangian variational principle; that is,

the variational principle of Lagrange and d’Alembert on Q/Gµ with magnetic term B
and the Routhian dropped to T (Q/Gµ).

Let be R̂µ the reduced Routhian, that is the Routhian (13) dropped to the reduced

space J−1
L (µ)/S1. Then (locally),

R̂µ =
1

2
hαβ ṙαṙβ − Vµ(rα), (14)

where hαβ = gαβ−g−1
00 g0αg0β is a metric in the reduced space and Vµ(rα) is the amended

potential.

• Equations of Lagrange-Routh: The equations of motion in the reduced space

J−1
L (µ)/S1 are given by

d

dt

∂R̂µ

∂ṙα
− ∂R̂µ

∂rα
= −µBαβ ṙβ,

where Bαβ = ∂Aα

∂rβ − ∂Aβ

∂rα and Aα = g−1
00 g0α.

More concretely,

hαβ r̈β +

(
∂hαβ

∂rγ
− 1

2

∂hβγ

∂rα

)
ṙβ ṙγ = −∂Vµ(rα)

∂rα
− µBαβ ṙβ. (15)
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B. Cotangent Bundle Reduction

Now, we perform the corresponding reduction in the Hamiltonian side. See Ref. 15 for the

details.

Let us consider that the initial Hamiltonian can be written (locally) as

H(rα, pθ, p
α
r ) =

1

2
g00p2

θ + g0αpθpα +
1

2
gαβpαpβ + V (rα),

where the metric elements gij correspond to the inverse of the metric gij. That is, gijg
jk = δk

i ,

where i, j, k = 0, . . . , n, and δk
i denotes the Kronecker delta function.

Thus, we assume that the initial Hamiltonian is invariant under the action of the abelian

symmetry group G = SO(2) = S1.

Let us perform the computations of all the extra ingredients needed in the reduction in

the Hamiltonian side15 :

• Momentum map: The momentum map corresponds to the angular momentum of

the system: J : T ∗Q −→ g∗

〈J(θ, rα, pθ, prα), ξ〉 = 〈(pθ, pα), (ξ, 0)〉 = pθξ.

Thus, J(θ, rα, pθ, prα) = pθ.

• Momentum shifting: In this case, it is convenient to perform a shift of the momenta

from J−1(µ) to J−1(0) (and also in the corresponding reduced spaces) in the following

way:

J−1(µ) = {(θ, rα, µ, pα)} tµ−→ J−1(0) = {(θ, rα, 0, p̃α)}
↓ ↓

J−1(µ)/Gµ = J−1(µ)/S1
tµG−→ J−1(0)/S1 = J−1(0)/G

where

tµ(θ, rα, µ, pα) = (θ, rα, µ, pα)− (θ, rα, µ, µAα)

= (θ, rα, 0, pα − µAα) = (θ, rα, p̃θ, p̃α).

Thus, the shifting is given by p̃α = pα − µAα and p̃θ = 0.
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• Reduced Hamiltonian: In J−1(0)/G, we have Hαµ = 1
2
‖p̃‖2 + Vµ, where ‖ · ‖ is the

norm related to the gij metric and Vµ = V + 1
2
I−1µ2 is the amended potential. Thus,

recalling that p̃θ = 0, the Hamiltonian in the reduced space J−1(0)/G is:

Hµ(rα, pα) =
1

2
gαβ p̃αp̃β + V (rα) +

1

2
µ2g−1

00 .

• Reduced Symplectic Form: In general, in the reduced space, the symplectic form

is not canonical. The projection is given by the map:

((T ∗Q)µ, Ωµ)
Pµ−→ ((T ∗(Q/G), ω −Bµ)

where the “reduced” symplectic form is

ωµ = ω −Bµ = drα ∧ dp̃α − µ
∂Aα

∂rβ
drβ ∧ drα.

• Hamiltonian equations: The Hamiltonian equations are given by16

i(ṙα∂rα+ ˙̃pα∂p̃α )ωµ = dHµ,

where iXΩ denotes the interior product (or contraction) of the vector field X and the

1-form Ω. Computing both sides of this identity,

i(ṙα∂rα+ ˙̃pα∂p̃α )ωµ = ṙαdp̃α − µ
∂Aα

∂rβ
ṙβdrα + µ

∂Aα

∂rβ
ṙαdrβ − ˙̃pαdrα,

dHµ =
∂Hµ

∂rα
drα +

∂Hµ

∂p̃α

dp̃α,

we obtain the equations of motion in the reduced J−1(0)/G space:

ṙα =
∂Hµ

∂p̃α

, ˙̃pα = −∂Hµ

∂rα
− µ

(
∂Aα

∂rβ
− ∂Aα

∂rβ

)
ṙβ.

Finally, we can write them more explicitly as:

ṙα = gαβ p̃β, ˙̃pα = −1

2

∂gβγ

∂rα
p̃β p̃γ −

∂V (rα)

∂rα
− 1

2
µ2∂g−1

00

∂rα
− µBαβgβγ p̃γ. (16)
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C. Reduced Legendre transformation

Finally, the correspondence between the reduced equations of motion on the Hamiltonian

and Lagrangian sides is given by the reduced Legendre transform. We start with the reduced

Routhian (14),

R̂µ =
1

2
(gαβ − g−1

00 g0αg0β)ṙαṙβ − 1

2
g−1
00 µ2 − V (rα)

and the shifted momenta,

p̃α =
∂R̂µ

∂ṙα
= (gαβ − g−1

00 g0αg0β)ṙβ.

Using the identities

g0αg0β + gαγg
γβ = δ β

α ,

gαβgβ0 + gα0g00 = 0, (17)

we obtain the first equation in (16): gαβ p̃β = ṙα.

Now, in order to recover the reduced Lagrange-Routh equations (15), we compute the

time-derivative of the shifted momenta

˙̃pα = (gαβ − g−1
00 g0αg0β)r̈β +

∂

∂rγ

(
gαβ − g−1

00 g0αg0β

)
ṙγ ṙβ,

and the derivative with respect to rα of the identities (17),

∂g0ε

∂rα
g0β + g0ε

∂g0β

∂rα
+

∂gεγ

∂rα
gγβ + gεγ

∂gγβ

∂rα
= 0,

∂gβγ

∂rα
gγ0 + gβγ ∂gγ0

∂rα
+

∂gβ0

∂rα
g00 + gβ0∂g00

∂rα
= 0.

If we substitute the last three identities together with (17) in the second equation of (16),

we obtain:

(gαβ − g−1
00 g0αg0β)r̈β +

∂

∂rγ

(
gαβ − g−1

00 g0αg0β

)
ṙγ ṙβ =

1

2

∂

∂rα

(
gβγ − g−1

00 g0βg0γ

)
ṙβ ṙγ − ∂V (rα)

∂rα
− 1

2
µ2∂g−1

00

∂rα
− µBαβ ṙβ,

which exactly corresponds to the Lagrange-Routh equations (15).
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19Gómez, G., Jorba, À., Masdemont, J., and Simó, C., Dynamics and mission design near libration
points. Vol.IV , Vol. 5 of World Scientific Monograph Series in Mathematics, World Scientific Publishing
Co. Inc., River Edge, NJ, 2001, Advanced methods for triangular points.

20Giorgilli, A., Delshams, A., Fontich, E., Galgani, L., and Simó, C., “Effective stability for a Hamilto-
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