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Abstract

We characterize natural transformation between Weil Bundles that are

endowed with a canonical affine structure and show several cases. Those

transformations are often passed down to Jet Spaces, and we characterize

the cases in which the affine structure is also passed down. We prove that

the classical situation is an example and give some practical generaliza-

tion.

Introduction

Theory of Weil Bundles and Jet Spaces is developed in order to understand
the geometry of PDE systems. C. Ehresmann formalized contact elements of S.
Lie, introducing the spaces of jet of sections; simultaneously A. Weil shown [1]
that the theory of S. Lie could be formalized easily by substiting the spaces of
contact elements by the more formal spaces of “point proches”, known as Weil
Bundles. The general theory of jet spaces [3] recovers the classical spaces of
contact elements J lmM of S. Lie, from the ideas and metodology of A. Weil.

In theory of Weil Bundles, morphisms A→ B of Weil algebras induce natural
transformations [5] between Weil Bundles. There are well known cases in which
these natural transformations are affine bundles that often appear in differential
geometry [5]. In [4] I. Kolář showed that this is the behaviour of MAl →MAl−1 .
In this paper we characterize natural transformation that are affine bundles. It
is done easily adopting a diferent point of view on the tangent space on MA [3]:
there are a canonical affine structure for natural transformation MA → MB

induced by surjective morphisms A→ B whose kernel has null square. It is true
for MAl →MAk with l > k ≥ 0 where 2k + 1 ≥ l.

∗Mathematical Subject Classification 58A20, 58A32.
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1 WEIL BUNDLES 2

In some cases the natural transformations induce maps between Jet Spaces,
as in [4]. We will characterize this situation, and moreover, we will determine
when an affine structure on the Weil Bundles is passed down to the Jet Spaces.
Adding to that we will prove that in this case, there also exists an affine structure
between the Groups of Automophisms of Weil Algebras. It is true for spaces
J lmM → JkmM with l > k > 0 and 3k + 1 ≥ 2l.
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Notation and conventions

All manifolds and maps are assumed to be infinitely differentiable. All results
involving a manifold M assume that it is not empty, and all results involving
jet spaces JAM assume that the jet space JAM is also not empty (in such case,
maybe the algebraic conditions for existance of affine structure are satisfied, but
there is not structure at all).

1 Weil bundles

By a Weil algebra we shall mean a finite dimensional, local, commutative R-
algebra with unit. If A is a Weil algebra, let us denote by mA its maximal
ideal. If A, B are Weil algebras, by a morphism A → B we mean a R-algebra
morphism.

Example 1 Let be R[[ξ1, . . . , ξm]] the ring of formal series with real coefficients
and variables ξ1, . . . , ξm. Let m be the maximal ideal generated by those free
variables. Then, for all non-negative integer l, the ring

R
l
m = R[[ξ1, . . . , ξm]]/ml+1

is a Weil algebra.

For every Weil algebra A, there is a non-negative integer l such that ml
A 6= 0

but m
l+1

A = 0; we will write that l is the height of A. The width of A is the
dimension of the vectorial space mA/m

2
A. In fact R

l
m is of height l and width

m. If A is of height l and width m, then there exist one surjetive morphism
R
l
m → A [3, 4].

Definition 1 Let M be a smooth manifold, and A a Weil algebra. The set MA

of the R-algebra morphisms,

pA : C∞(M) → A,

is the so-called space of near-points of type A of M (also called A-points of M).
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Let us consider a basis {ak} of A. For each f ∈ C∞(M) we can define real
valued functions {fk} on MA by setting:

pA(f) =
∑

k

fk(p
A)ak.

We shall say that {fk} are the real components of f , related to the basis {ak}.

Theorem 1 ([3]) The space MA is endowed with an unique structure of smooth
manifold such that the real components of smooth functions on M are smooth
functions on MA.

Example 2 It is well known that each morphism C∞(M) → R is a point of M .
Since the real components on MR of smooth functions coincide with themselves,
then we can write MR = M .

Example 3 For each Weil algebra R
l
m let us denote M l

m to the space of near
points of type R

l
m. Then M1

1 is the tangent bundle TM . In general M l
m is the

space of germs at origin of smooth aplications R
m →M up to order l [1].

A Weil algebra morphism, φ : A → B induces, by composition, a smooth map
φ̂ : MA →MB [4, 3] which is called a natural transformation, φ̂(pA) = φ ◦ pA.

Example 4 Let us notice that a Weil algebra A is provided with an unique
morphism A → R. It induces a canonical map : MA → M , which is a fiber
bundle. This bundle is the so-called Weil Bundle of type A on M . Let be
pA ∈ MA and p its projection in M . Then we say that pA is an A-point near
p. For each smooth function f the value pA(f) depends only on the germ at p
of f .

A smooth map f : M → N of smooth manifolds, induces by transposition a
R-algebra morphism

f∗ : C∞(N) → C∞(M), f∗(g) = g ◦ f

we can compose this morphism with A-points of M obtaining A-points on N .
Then Weil algebra morphisms and smooth maps transforms near-points by com-
position, and it suggest a functorial behaviour of Weil Bundles with respect
those transformations.

We can formalize this situation in the following way. Let us consider the
category M of smooth manifolds, and the category W of Weil algebras. In the
direct product category, M × W , objects are pairs (M,A) and morphims are
pairs (f, φ). We define w(M,A) = MA, and then the natural way of defining
the functorial image of the pair

f : M → N, φ : A→ B,
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is
w(f, φ) : MA → NB , pA 7→ φ ◦ pA ◦ f∗.

Then, the following result holds:

Proposition 1 The assignment

w : M×W ; M, (M,A) ; MA,

is a covariant functor.

Remark 1 There are two remarkable cases of induced maps:

• If X ⊂M is an embedding, then for all A the induced map XA →MA is
an embedding.

• If A → B is an surjective morphism, then for all M , the induced natural
transformation MA →MB is a fiber bundle.

Example 5 Let A be of order l. For each k ≤ l let us define Ak = A/mk+1

A .
Then Ak is a Weil algebra of order k, and Al = A. For k ≥ r we have a natural
proyection MAk → MAr which is a bundle. In particular we have canonical
bundles Mk

m →Mr
m.

1.1 Tangent Estructure

Given pA ∈MA, let us denote DerpA(C∞(M), A) the space of derivations from
C∞(M) into A, where the structure of A is induced by pA. It means, R-linear
maps δ : C∞(M) → A satisfying Leibnitz’s formula:

δ(f · g) = pA(f) · δ(g) + pA(g) · δ(f). (1)

If D is a tangent vector to MA to pA, then it defines a derivation by setting:

δ(f) =
∑

k

(Dfk)ak,

and it is easy to proof that the spaces DerpA(C∞(M), A) and TpAMA are iden-
tified in this way [3]. From now on we will assume this identification. It is not
only as vector spaces, it is compatible with proposition 1, in the following way.

Theorem 2 ([3]) Let us consider a smooth map f : M → N , a Weil algebra
morphism φ : A → B, and the induced smooth map

w(f, φ) : MA → NB , pA 7→ qB = φ ◦ pA ◦ f∗.

Then the linearizated map w(f, φ)′ : TpAMA → TqBNB coincides (under the
identification assumed above) with the map:

DerpA(C∞(M), A) → DerqB (C∞(N), B), δ 7→ φ ◦ δ ◦ f∗.
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1.2 Affine Structure

In this section we will analize the stucture of the fiber bundles induced by a
surjective morphism A → B that has been introduced in remark 1. In some
specific cases, [4, 3] it has been proved that those bundles are endowed with
a canonical stucture of affine bundles. We will see that this structure has its
foundation in the algebraic construction of near-points spaces. Indeed, it is an
easy task give an algebraic characterization of this fact. A morphism will induce
affine structure if and only if its kernel ideal has null square.

The key point is to consider both near-points and tangent vectors to MA

as R-linear maps from C∞(M) into a Weil algebra. Then they are provided of
an addition law as R-linear maps. Under some adequate assumptions we will
obtain a new near-point when adding a near-point and a derivation.

Lemma 1 Let us consider pA ∈ MA and D ∈ TpAMA. Then, pA + D is an
A-point of M if and only if (Im(D))2 = 0.

Proof. Let us define, τ = pA +D, then for all f, g ∈ C∞(M),

τ(f · g) = τ(f) · τ(g) −D(f) ·D(g),

since τ is R-linear, it is an algebraic morphism if and only if for all f, g ∈ C∞(M),
D(f) ·D(g) = 0. 2

Lemma 2 Let us consider pA, qA ∈MA, then δ = qA − pA is a derivation and
belongs to TpAM if and only only if (Im(δ))2 = 0.

Proof. For all f, g ∈ C∞(M),

δ(f · g) = pA(f) · δ(g) + pA(g) · δ(f) + δ(f) · δ(g),

then δ satifies Leibnitz’s formula if and only if for all f, g ∈ C∞(M), δ(f) · δ(g)
is null. 2

Lemma 3 Let I be an ideal of a ring R. The following conditions are equiva-
lent:

1. I2 = 0

2. for all x ∈ I, x2 = 0.

Proof. Let us assume 2., then for x, y ∈ I ,

0 = (x+ y)2 = x2 + y2 + 2xy = 2xy.

2
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Let φ : A → B be a surjective morphism of Weil algebras, and let I be its
kernel ideal. Let us consider a smooth manifold M , and the induced bundle
φ̂ : MA →MB . The linearization φ̂′, gives rise to the exact sequence,

0 → TV φ̂
pAM

A → TpAMA φ̂′

−→ TpBM → 0

that defines the tangent vertical sub-bundle TVMA ⊂ TMA. Assuming that
tangent vectors are derivations from C∞(M) into A, we will notice that D ∈

TpAM belongs to TV φ̂
pAM

A if and only if Im(D) ⊂ I .

If I2 = 0, then for all D ∈ TV φ̂
pAM , we have (ImD)2 ⊂ I2 = 0, and we have

a map,

τpA : TV φ̂
pAM

A → φ̂−1(pB), D 7→ pA +D,

wich attending to lemma 1, and lemma 2 is an isomophism (because for all

qA ∈ φ̂−1(pB), qA−pA takes values in I). Adding to that, for pA, qA ∈ φ̂−1(pB),

the spaces TV φ̂
pAM

A and TVqAMA are identified in a canonical way. For each

a, b ∈ A such that φ(a) = φ(b), c ∈ I , the product a · c = b · c, so that pA

and qA define the same structure on I , so the space of derivations C∞(M) → I
concides. Then, we can define the vector bundle

TV φ̂ →MB ,

whose fiber TV φ̂
pB is the space of derivations C∞(M) → I , where the structure of

I if given by any pA ∈ φ̂−1(pB). Then, TV φ̂ is the vector bundle that modelizes

the affine bundle φ̂ : MA →MB ,

MA ×MB TV φ̂ →MA, (pA, D) 7→ pA +D.

On the other hand, if I2 6= 0, then aplying lemma 3 we can find a derivation
D : C∞(M) → I such that (Im(D))2 6= 0 and then pA +D does not belong to
MA. We have proved:

Theorem 3 Let φ : A → B be a surjective morphism of Weil algebras, and
let I be its kernel ideal. For all manifold M , the addition of derivations and
morphisms induces an affine structure on the fiber bundle φ̂ : MA →MB, if and
only if I2 = 0.

Corolary 1 Let A of height l, then the natural projection MA → MAk is en-
dowed with a canonical structure of affine bundle if and only if 2k + 1 ≥ l.

Corolary 2 The natural projection M l
m → Mk

m is endowed with a canonical
estructure of affine bundle if and only if 2k + 1 ≥ l.
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2 Jet Spaces

Definition 2 A jet of M is an ideal p ⊂ C∞(M) such that the quotient algebra
Ap = C∞(M)/p is a Weil algebra. p is said of type A, or A-jet, if Ap is
isomorphic to A. The set JAM of A-jet is de so-called A-jet space of M .

An A-point pA ∈ MA is said regular if it is a surjective morphism. The
set of regular A-points is denoted M̌A. It is a dense open subset of MA. It is
obvious that an A-point is regular if and only if its kernel is an A-jet. Thus, we
have a surjective map:

ker: M̌A → JAM (2)

Let us consider Aut(A) the group of automorphisms of A; it is an algebraic
Lie Group. Thus, Aut(A) acts on M̌A by composition. Two A points related by
an automorphism have the same kernel, moreover two A-points with the same
kernel are related by an automorphism. Then JAM is identified the space of
orbits M̌A/Aut(A), and its manifold structure is determined in this way.

Example 6 The group Glm of automorphisms of R
l
m is called l-prolongation of

the linear group of order m as can be seen at [6]. In particular G1
m is the linear

group or order m. Glm is the group of transformations of R
l
m around a fix point

up to order l.

Theorem 4 ([2]) There is an unique structure of smooth manifold on JAM
such that JAM such that ker (2) is a principal bundle of structural group
Aut(A).

Example 7 Let us denote J lmM to the space of jets of type R
l
m. Then J lmM

is the spaces of germs m-submanifolds of M up to order l.

JAM is a bundle over M . We will say that p ∈ JAM is a jet on p ∈ M if
p ⊂ mp,

mp = {f ∈ C∞(M) : f(p) = 0}.

If pA is an A-point near p, then ker(pA) is a jet on p.

2.1 Functorial behaviour

Let us notice that jet spaces do not show the functorial behaviour that Weil
bundles shown. A smooth map f : M → N induces a smooth map in jet spaces,
but in general case it is defined only on an open dense subset of JAM , wich de-
pends on f . There is not a natural object associated to a Weil algebra morphism
A → B. The natural object associated to the pair (A,B) is some subespace
ΛA,BM ⊂ JA ×M JBM ,

ΛA,BM = {(p, p̄) ∈ JAM ×M JBM : p ⊆ p̄}

that we call the Lie correspondance.
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This subespace is empty if and only if there is not a surjective morphism from
A to B. There is an special case to be analized in wich the Lie correspondance
ΛA,BM is the graph of a bundle JAM → JBM .

Let I be an ideal of A. Then, for each σ ∈ Aut(A), the space σ(I) is another
ideal of A. We will say that I is an invariant ideal if for all σ ∈ Aut(A), we have
σ(I) = I . For each k, mk

A is an invariant ideal, and any other ideals obtained
from those by general processes of division or derivation are also invariant; some
examples are shown at [7]. Let I ⊂ A be and φ : A → A/I = B the canonical
projection. Then, whe have a commutative diagram:

M̌A

��

φ̌ // M̌B

��
JAM

φj

// JBM

pA //

��

φ̌(pB) = φ ◦ pA

��
p // p̄ : p ⊂ p̄

(3)

Sumarizing, the following result holds:

Theorem 5 If I ⊂ A is an invariant ideal, and B = A/I is the quotient
algebra, then there is a canonical bundle estructure JAM → JBM .

On the opossite hand it can be shown that if the Lie correspondance ΛA,BM
takes the form of the graph of a bundle JAM → JBM then for each surjective
morphism φ : A → B, ker(φ) is an invariant ideal.

2.2 Tangent structure

In order to study a linearization of φj (3), we need some characterization of the
tangent space to JAM on a jet p.

Theorem 6 ([2, 3]) Tp(J
AM) realizes itself canonically as a quotient of the

space of derivations C∞(M) → Ap. A derivation δ defines the null vector if and
only if δ(p) = 0, thus:

Tp(J
AM) ' Der(C∞(M), Ap)/Der(Ap, Ap).

Let us give some sketch of proof. Let us recall that the Lie algebra of
Aut(A) is the space of derivations Der(A,A) [3], as can be shown in a matrix
representation of the group. Taking pA ∈ M̌A such that ker(pA) = p, the
representation of Der(A,A) as fundamental vector fields gives rise to an exact
sequence:

0 → Der(A,A)
∗

−→ TpA(MA) → TpJ
AM → 0,

taking account that TpA(MA) = Der(C∞(M), A), and that pA induces an unique
isomorphism between Ap and A, we will have isomorphism of the theorem. This
isomorphism does not depend on wich pA we choose for representing p. It is
seen easily using the principal estructure (theorem 4).
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3 Affine Structure on Jet Spaces

3.1 Space of regular Points

Let I be an ideal of the Weil algebra A, and φ : A→ B the canonical projection
into the quotient algebra B.

Lemma 4 ([3]) A finite set {a1, . . . , am} ⊂ mA is a system of generators of A,
if and only if {ā1, . . . , ām} ⊂ mA/m

2
A is a basis of mA/m

2
A.

Lemma 5 If I 6⊂ m2
A then exist a non trivial sub-algebra S ⊂ A such that

S/(S ∩ I) ' B.

Proof. If I 6⊂ m2
A, then the canonical projection mA/m

2
A → mB/m2

B has
non trivial kernel. There exist a finite set {a1, . . . , am} ⊂ mA such that { ¯φ(ak)}
is a basis of mB/m

2
B, but {āk} is not a basis of mA/m

2
A. Then S = R[{ak}]

verifies S/(S ∩ (I)) = B. 2

Note that each sub-algebra of A is a Weil algebra. For each subset X ⊂ mA,
R[X ] is a Weil algebra and its maximal ideal is spanned X .

Lemma 6 The following conditions are equivalent:

1. I ⊂ m2
A.

2. ∀pA ∈ MA, if φ̂(pA) is regular, then pA is also regular.

Proof. Let us assume I ⊂ mA, and consider pA ∈ MA such that φ̂(pA)
is a regular B-point. Then there are functions f1 . . . , fm ∈ C∞(M) such that
{φ(pA(fk))} ⊂ mB is a system of generators of B. Then { ¯φ(pA(fk)} is a basis
of mB/m

2
B . Since I ⊂ mA and mB = mA/I , we have mA/m

2
A ' mB/m

2
B. Then

{ ¯pA(fk)} is a basis of mA/m
2
A, and {pA(fk)} is a system of generators of A, so

that pA is regular.
Reciprocally, if I 6= m2

A let us consider S ⊂ A as in the lemma 5. Then
MS → MB is a bundle. Let pB ∈ M̌B a regular B-point, and pS any preimage
of pB . pS is a S-point, thus it is a non-regular A-point, but φ̂(pA) = pB . 2

From now on we will consider the anihilator ideal of I , it is the ideal Ann(I)
of elements of A that anihilate I ,

Ann(I) = {a ∈ A : ∀b ∈ I, ab = 0},

let us notice that I ⊆ Ann(I) if and only if I2 = 0.

We will write φ̌ for the restriction of φ̂ to the space of regular A-points M̌A.

Theorem 7 The bundle φ̌ : M̌A → M̌B is endowed with a canonical structure
of affine bundle (given by addition of morphism and derivations) if and only if
I ⊂ (m2

A ∩ Ann(I)).
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Proof. Suppose that I ⊂ (m2
A ∩ Ann(I)). Then the addition of A-points

and derivations induces an affine structure on φ̌. Let be pA ∈ M̌A, then

φ̂−1(φ̌(pA)) = {pA +D : D ∈ TV φ̌M̌A}

and attending to lemma 6, φ̂−1(φ̌(pA)) = φ̌−1(φ̌(pA)), so that the addition of
a regular A-point and a derivation is also a regular A-point. Then the affine
structure of φ̂ induces an affine structure on M̌A.

On the other hand, let us assume I 6⊆ (m2∩Ann(I)). If I 6⊆ Ann(I), then the
addition of an A-point and a derivation is not in general an A-point and there
is not affine structure. Last, let us assume that I ⊆ Ann(I) but I 6⊆ m2

A. Then

there is affine estructure on φ̂, but applying lemma 6, there are non-regular A-
points pA ∈ MA such that φ̂(pA) is regular. Let us consider qA ∈ φ̌−1(φ̂(pA)),

and D = pA − qA ∈ TV φ̌
qAM̌

A. Then qA +D 6∈ M̌A. 2

Corolary 3 Let A be of height l. Then for each l > k > 0 the natural projection
M̌A → M̌A

k is an affine bundle and only if 2k + 1 ≥ l.

Corolary 4 For any l > k > 0, the natural projection M̌ l
m → Mk

m is an affine
bundle if and only if 2k + 1 ≥ l.

3.2 Affine Structure on the Group of automorphisms

Let I ⊂ A be an invariant ideal of the Weil algebra A, and φ : A → B the
canocical projection into the quotient algebra. Each automorphism σ ∈ Aut(A)
verifies σ(I) = I , thus it induces an automorphism φ∗(σ) ∈ Aut(B).

Definition 3 We call affine sequence asociated to I the the following sequence:

0 → K(I) → Aut(A)
φ∗

−→ Aut(B) → 0,

where

K(I) = {σ ∈ Aut(A) : ∀a ∈ A σ(a) − a ∈ I, ∀b ∈ I σ(b) = b},

is the subgroup of automophisms of A inducing the identity both on B and I.

We will say that the affine sequence is exact on the left if K(I) = ker(φ∗),
in the same way we will say that it is exact on the right if φ∗ is surjective. Note
that if it is exact on the right and on the left, then it is an exact sequence.

Let us notice that if I ⊆ Ann(I), then I is an A-modulus, but it is also a B-
modulo. By composition we have a canonical inmersion Der(B, I) ⊆ Der(A, I)
identifying derivationos from B with derivatios from A wich anihilate I .

Proposition 2 Let us assume I ⊂ Ann(I), then the affine sequence is exact on
the left then if and only if Der(A, I) ' Der(B, I).
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Proof. Assuming that the affine sequence is exact on the left let us take
the sequence of Lie algebras. Note that the Lie algebra of K(I) is the space of
derivations which takes values on I , and anhililates I , it is Der(B, I).

Reciprocally let us assume that Der(A, I) = Der(B, I), and let be σ ∈
ker(φ∗), then Id − σ is a derivation A → I , and by hypothesis, it anihilates
I , so that σ induces the identity on I and then σ ∈ K(I). 2

Theorem 8 If I ⊆ (Ann(I)∩m2
A) and the affine sequence is exact then φ∗ is en-

dowed of a natural estructure of affine bundle modeled over the space Der(A, I),
whit the law of addition:

σ ⊕D = σ + σ ◦D

Proof. Let D ∈ Der(A, I). Then IdA + D is an automorphism of A.
Reciprocally, let σ an automorphism of A such that φ∗(σ) = IdB , then σ− IdA
is a derivation, and takes values in I .

Der(A, I) ' ker(φ∗)

By definition σ ⊕D = σ ◦ (Id +D), so that σ ⊕Der(A, I) = σ ◦ ker(φ∗). We
must assure that

σ ⊕D ⊕D′ = σ ⊕ (D +D′).

It comes from proposition 2,

σ ⊕D ⊕D′ = σ + σD + (σ + σ ◦D) ◦D′ = σ ⊕ (D +D′) + σ ◦D ◦D′

since each derivation in Der(A, I) is zero on I , D ◦D′ = 0. 2

Lemma 7 If I ⊂ Ann(I)2 then the affine sequence associated to I is exact on
the left.

Proof. Let D be a derivation A → I , and a ∈ I , then a =
∑

k bkck,
bk, ck ∈ Ann(I), and

D(a) =
∑

k

bkD(ck) + ckD(bk) = 0,

so D anihilates I . The Der(A, I) = Der(B, I) and we conclude by lemma 2. 2

Corolary 5 If numbers l > r > 0 verify 3r+1 ≥ 2l, then the natural projection
Glm → Grm is an affine bundle.

Proof. In generalGlm → Gkm is a surjective morphism. Now we may apply
lemma 7 to the case A ' Rlm, I = m

k+1

A . Then Ann(I) = m
l−k
A and I ⊂ Ann(I)2

if and only if k + 1 ≥ 2(l − k). 2
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3.3 Affine structure on Jet Spaces

Let I ⊂ A an invariant ideal as above, and I ⊂ (Ann(I) ∩ m2
A).

For each p let us denote by πp : C∞(M) → Ap the canonical projection,
p̄ = φj(p). Then Ap ' p and p̄/p ' I . For each D ∈ Der(C∞(M), p̄/p) let us
define

p +D = ker(πp +D); (4)

then p +D ∈ JAM and φj(p +D) = p̄. Let us notice that this is well defined
because I ⊂ (Ann(I) ∩ m2

A): πp +D is an Ap-point since I ⊂ Ann(I) and it is
regular because I ⊆ m2

A.

Lemma 8 Each derivation D : C∞(M) → p̄/p wich is zero on p is zero on p̄ if
and only if the affine sequence associated to I is exact on the left.

Proof. A derivation C∞(M) → p̄/p wich anihilates p is a derivation Ap →
p̄/p. Then the lemma is equivalent to lemma 2. 2

Theorem 9 The law of addition (4) defines an affine structure on the bundle
φj : JAM → JBM for all smooth manifold M if and only if the affine sequence
associated to I is exact.

Proof. A derivation C∞(M) → p̄/p defines a tangent vector [D] ∈ TpJ
AM ,

as shown in theorem 6. Moreover [D] ∈ TV φ
j

p JAM because it takes values on
p̄/p.

Let us prove that the following conditions holds if and only if the affine
sequence associated to I is exact.

1. If D and D′ define the same tangent vector [D], then p +D = p +D′.

2. The natural projecion Der(C∞(M), p̄/p) → TV φ
j

p JAM is surjective.

3. For each q ⊂ p̄ there is an unique [D] ∈ TV φ
j

p such that p + [D] = q.

4. For each q as above there is a canonical isomorphism TV φ
j

p JAM ' TV φ
j

q JAM .

Let D and D′ define the same tangent vector [D] ∈ TV φ
j

p JAM . Then,
δ = D′ −D is zero on p. By lemma 8 each δ that anhililates p, anihilates also
p̄ if and only if the affine sequence is exact on the left. Assuming that, since
p ⊂ p̄ and p +D ⊂ p̄ we have:

ker(πp +D) = ker(πp +D + δ)

so hat if the affine sequence es affine on the left, 1. holds.
We can prove 2. as an application of the classical snake lemma. We have a

natural diagram of exact columns and arrows,
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0

��

0

��

0

��
0 // Der(Ap, p̄/p) //

��

Der(Ap, Ap)
ψ //

��

Der(Ap̄, Ap̄)

��
0 // Der(C∞(M), p̄/p) //

ψ̄

��

Der(C∞(M), Ap) //

��

Der(C∞(M), Ap̄) //

��

0

0 // TV φ
j

p JAM // TpJ
AM //

��

Tp̄J
BM //

��

0

0 0

Attending to the snake lemma, if coker(ψ) = 0 we should have a sequence:

. . .→ 0 → coker(ψ̄) → 0 → . . .

and vieceversa. Thus coker(ψ) = 0 if and only if coker(ψ̄) = 0. Note natural
aplication ψ is the linearization of the Lie group morphism Aut(Ap) → Aut(Ap̄).
Since, Ap ' A and Ap̄ ' B we conclude that if the affine sequence associated
to I is is exact on the right, then 2. holds.

In order to prove 3. let us consider any other A-jet q ⊂ p̄, and an isomor-
phism τ : Ap → Aq.

C∞(M)
πp //

πq

##G
G

G

G

G

G

G

G

G

Ap

π̄p

  A
A

A

A

A

A

A

A

Aq
π̄q

//

τ

OO

Ap̄

Let us note that for each q, we can find τ such π̄p ◦ τ = π̄q if and only if the
affine sequence is exact on the right. If it was not, we could find q such that
there are A-points pA, qA representing p, q, and φ̌(pA), φ̌(qA), wich represent p̄

are not related by any automorphism of A.
Assuming that there is such τ , πp and τ ◦ πq are regular Ap points that are

projected on the same Ap̄ point πp̄. Then, D = πp − τ ◦ πq is a derivation of

C∞(M) and takes values on p̄/p; It defines a vertical vector of [D] ∈ TV φ
j

p JAM
and it is obvious that

p + [δ] = q.

Let τ be as above, and τ̄ : Ap → Aq under identical assumptions. Then
σ = τ ◦ τ̄ is an isomorphism of Ap that induces the identity on Ap̄ such as the
affine sequence is exact on the right, σ induces the identitiy on p̄/p. Then the
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restriction of τ to the space p̄/p is canonical and does not depends on τ . This
canonical identification τ : p̄/q → p̄/p, induces canonical isomorphisms:

Der(Ap̄, p̄/q) //

��

Der(C∞(M), p̄/q) //

��

TV φ
j

q JAM

τ∗

��
Der(Ap̄, p̄/p) // Der(C∞(M), p̄/p) // TV φ

j

p JAM

Thus, condition 4. is satisfied assuming that the affine sequence is exact.

We can conclude that if the affine sequence is exact, the spaces TV φ
j

p JAM ,

which depends only on p̄, define a vectorial bundle TV φ
j

→ JBM , that mod-
elizes the affine structure of φj

JAM ×JBM TV φ
j

→ JAM, (p, [D]) 7→ p + [D].

On the other hand, if the affine sequence is not exact, then 1. or 3. are not
satisfied for suitable manifolds (In fact it is enought that the dimension of M
to be bigger than the width of A). 2

Corolary 6 Let Al be of height l, and l > k > 0. Then natural projection
JAlM → JAkM is endowed with a canonical structure of affine bundle if 3k+1 ≥
2l and Aut(Al) → Aut(Ak) is surjective.

Corolary 7 The natural projection J lmM → JrmM , for l > r > 0, is endowed
with a canonical structure of affine bundle if 3r + 1 ≥ 2l.

Remark 2 Those results generalize the well known affine structure of the spaces
of jet of sections. First they show that this estructure is not only for the pro-
jection to lower order one-by-one, and second that this is inherent to the spaces
J lmM as spaces of ideals, and does not depend of its realization as recallment
of spaces of jets of sections.
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