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Chapter |

Introduction

I have yet more to say, which I have thought upon,
and | am filled, like the moon at the full.
Book of Sirach (Ecclesiasticus) 39:12

The purpose of this thesis is to study the reducibility and other dynamical properties of
linear quasi-periodic skew-products, with special emphasis to those arising from eigenvalue
equations of quasi-periodic Schrodinger operators. This study has revealed to be fruitful since
it combines dynamical and spectral methods to give a unified approach and new results, both
from the dynamical and spectral point of view.

In this Introduction we want to give an overview of the contents and main results of the
thesis. Chapters Il and 111 are devoted to preliminaries, whereas chapters IV, V, VI, VII and the
Appendix A contain novel results.

To present the results in this thesis and the motivation for studying this kind of problems,
let us focus on Hill’s equation with quasi-periodic forcing, which is the following second-order
linear differential equation

2"+ (a—bq(t))x =0, (1.1)

where a, b are real parameters and ¢ is a quasi-periodic function. This quasi-periodicity means
that there exists a continuous map from T¢ = (R/27Z)¢ to R, @, and a rationally independent
frequency vector w € R? such that

q(t) = Q(wt),

for all £ € R. In most of the thesis we will assume that () is real analytic and w satisfies some
standard Diophantine condition, which will be discussed in Section 11.2.2.

Hill’s equation with quasi-periodic forcing is a generalization of the classical Hill’s equa-
tion, where the forcing ¢ is a periodic function. This periodic equation was introduced by
George Hill in the 19th century and it is a prototypical example of the linearization of a non-
linear system with periodic forcing around a fixed point. The dynamical properties of this
linearization can be used to study the problem of stability of the fixed point in the non-linear
system. When the forcing is quasi-periodic and the same linearization process is followed,
Hill’s equation with quasi-periodic forcing also appears as a standard model.

To study (I.1) from a dynamical point of view it is convenient to consider the following flow

1



2 Chapter I. Introduction

<;>L«ﬁm£—aé>(§)’ 0 =w, (1.2)

where § € T¢. This is a linear differential equation with quasi-periodic coefficients, which we
will also call a quasi-periodic skew-product flow on R? x T¢. Such skew-products occur as the
linearization of a non-linear system around quasi-periodic orbits. Since many stable solutions
of non-linear systems are quasi-periodic, the stability properties of these linear equations have
implications for the dynamics of the non-linear system around these orbits. This is particularly
interesting for the problem of lower dimensional tori in Hamiltonian systems [Eli88, JV97,
Bou97].

A third motivation to study Hill’s equation with quasi-periodic forcing comes from the spec-
tral theory of Schrodinger operators because we can look at (I.1) as the eigenvalue equation of
the following one-dimensional Schrédinger operator with quasi-periodic potential

(Hiz) (t) = —a"(t) + ba(t)z(2), (1.3)

which appears in many models of Quantum Physics, notably in the comprehension of the
“Quantum Hall effect” [vKDP80, Fr694, OA01] and the electronic properties of quasi-crystals
[Jan92] (see the beginning of Chapter 111). From this point of view, the spectral parameter a
in (1.1) is called the energy. Using the quasi-periodicity of the potential, one can consider the
following family of quasi-periodic Schrodinger operators.

(H,;/’wa) (t) = —2"(t) + bQ(wt + ¢)x(t), (1.4)

which includes (I.3) if ¢ = 0. The operators Hy, , , have a unique self-adjoint extension to
L?(R), which we denote again by Hg,, , .

These physical applications have motivated that, in the last twenty years, a lot of attention
has been devoted to the spectral properties of Schrédinger operators with quasi-periodic poten-
tial. In this thesis we try to link the dynamical theory of the eigenvalue equation, Hill’s equation
(1.1), with the spectral properties of the corresponding Schrodinger operator (1.3).

A central topic of interest will be the study of the spectrum of Schrodinger operators as
above (and some discrete variants to be described later) as a function of the parameter b. Thanks
to the rational independence of the frequency vector w, the spectrum of the operators Hy, , ,
does not depend on the specific ¢ € T¢ chosen and will be denoted as

o°(bQ,w) = Spec (Hyg,, 4) -

To present the main results of this thesis in a natural way it is convenient to introduce briefly
the rotation number of a Hill’s equation (I.1), rot®(a — bQ,w), which is the following limit

on R? x T¢,

lim
t—o00

’

arg («'(t) + ix(t))
¢

where z is any non-trivial solution of (1.1). This rotation number does not depend on the chosen
solution, nor on ¢, and it has the property that the continuous map

a € R rot’(a — bQ,w)



is non-decreasing and increases exactly at the spectrum o¢(b@,w). Moreover, as it will be
explained in Section 111.2.2, the value of the rotation number in the open intervals of constancy
(which do not belong to the spectrum, they are spectral gaps), must be of the form

1
§<k’ w>a
where k € Zis such that (k, w) > 0. This is the Gap Labelling Theorem, by Johnson & Moser
[JM82]. Sometimes the spectral gaps above will be called non-collapsed, to distinguish them
from collapsed gaps, which are those {a,} for which there is a k € Z? such that ay is the only
a satisfying

rot’(a — bQ,w) = %(k, w). (1.5)

Therefore, and using this gap labelling, a convenient way to study the spectra o¢(bQ, w) as
a function of b is by means of “resonance tongues”. These are the connected components in the
(a, b)-plane where the rotation number is constant and of the form (1.5) for some k fixed.

In Chapter IV these resonance tongues are studied in the perturbative regime, |b| small. The
reason to restrict ourselves to this perturbative analysis is that, for these values of the parameter
b, the skew-product (1.2) is reducible to constant coefficients at the boundaries of resonance
tongues, thanks to a theorem by Eliasson [EIli92]. This property of reducibility, which will
be explained in chapters Il (in a general setting) and Il (in the Schrodinger case), describes
the existence of a quasi-periodic change of variables conjugating (1.2) to a linear system with
constant coefficients.

The combination of reducibility at tongue boundaries, normal form techniques and dynami-
cal characterizations of the spectrum and of the resolvent set, allow us to show that the formal
expressions for the Taylor expansion of the tongue boundaries given by normal form correspond
to the actual expansion of these tongue boundaries, which are C'* functions (for |b| small).
Using this procedure to construct the expansion of resonance tongue boundaries several results
analogous to the periodic case (where tongue boundaries are real analytic) are proved. These
include a criterion for the transversality of tongue boundaries at the origin and the creation of
instability pockets, which is the pinching of a tongue for two different values of b. The latter has
direct implications to the collapse of spectral gaps in the corresponding Schrédinger operators.

Although many results from Chapter IV are an extension of the periodic case, there is a subs-
tantial difference between the periodic and the quasi-periodic case. For the sake of simplicity
let us restrict to the perturbative regime, |b| small, where there is reducibility at tongue bounda-
ries both in the periodic and quasi-periodic case. We remind that this assumes real analyticity
of Q and a Diophantine condition on w. In the periodic case resonance tongues are separated
one from another at a positive distance, whereas in the quasi-periodic case (d > 2) the set of
possible rotation number of tongues

My (w) = {{k,w)/2;k € Z*and (k,w) > 0},

is dense in [0, +00). Due to the continuity and monotonicity of the rotation number, resonance
tongues are dense in the parameter plane, which implies that classical methods to study the
smoothness of tongue boundaries based on the separation of the eigenvalues fail [Rel69, Kat76].

In Chapter V the question of the analyticity of tongue boundaries in Hill’s equation is putin a
more general framework. There we study the existence of analytic families of linear differential
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equations with quasi-periodic coefficients which are reducible to constant coefficients with a
fixed Floquet matrix. The techniques are from KAM theory adapted to a Lie algebra formalism,
which is very convenient for this kind of problems.

Under the current hypothesis of real analyticity of Q and Diophantine character of w, tongue
boundaries are proved to be real analytic if |b| is small. In combination with the techniques of
Chapter 1V one can prove the following result on Cantor spectrum for quasi-periodic Schrodin-
ger operators.

Theorem. Let w satisfy a Diophantine condition and C%(T¢, R), for some fixed p > 0, be the
space of real analytic functions @ : T¢ — R with analytic extension to |Im 6| < p satisfying

|Ql, = sup |Q(0)] < oo.

Im 8|<p

Then, there exists a constant C' = C'(w, p) such that, for a generic potential in

{Q e C{(T%R), Q| <C},

with respect to the | - | ,-topology, the operator Hg , 4 has all spectral gaps open (and therefore,
it is a Cantor set if d > 2) for almost all || < 1.

We would like to stress that, compared to previous results on Cantor spectrum, our meth-
odology, based on the real analyticity of tongue boundaries, allows to prove Cantor spectrum
(and opening of all spectral gaps) for a fixed Q (with some generic checkable conditions) and
almost all values of b. An example is given by the following quasi-periodic generalization of
the operator associated to Mathieu’s equation, Hyg ., 0, Where

d
Q) = ch cos(w;t) (1.6)

and the constants c; are all different from zero.

Theorem. Let d > 2. Then there is a set A C R?, of zero measure, such that if w =
(wi,...,wq) & A, there exists a constant C = C(w) such that, for almost all values of b,
with |b] < C, the spectrum of Hyg ., 4, With () as in (1.6), has all spectral gaps open.

Apart from the significance of these results on Cantor spectrum from the point of view
of spectral theory of Schodinger operators, they serve as valuable examples of quasi-periodic
Hamiltonians whose Birkhoff Normal Form is divergent. In Appendix A these examples are ap-
plied, together with potential theory, to show that the Birkhoff Normal form of a quasi-periodic
Hamiltonian with fixed frequencies and a quadratic part which is totally elliptic at the origin is
generically divergent.

Up to now, the results that we have presented for quasi-periodic Schrodinger operators on
L?(R) are perturbative in the sense that the bound for |b| depends on the precise Diophantine
conditions on w. In the last years there has been significant progress on nonperturbative results
for discrete quasi-periodic Schrodinger operators with d = 1. In chapters VI and VII we try to
extend the perturbative analysis of chapters IV and V using these nonperturbative results.



Discretizing a Hill’s equation with respect to = one obtains an equation of the form
Tpt1 + Tt + bv(n)x, = azy, n € 7, (1.7)

where (z,)necz 1S @ sequence in R, a and b are real parameters (v(n))ncz i a real analytic
quasi-periodic sequence. This means that there is a real analytic function V : T¢ — R such that

v(n) =V (2rwn)

for all n € Z. The frequency w in this discrete case version will satisfy the following nonreson-
ance condition
(k,w) ¢ Z

for any k € Z¢ different from zero. The relation between rational independence and nonres-
onance, together with the corresponding Diophantine conditions, is described in Section 11.2.2.
Equation (1.7) is the eigenvalue equation of the following discrete Schrodinger operator with
quasi-periodic potential

(HE 2)n = Tny1 + Tp_1 + bv(n)zy, (1.8)

which is a bounded and self-adjoint operator on [%(Z). As in the continuous case of operators
Hy, and Hy, , 4, the quasi-periodicity of g defines a family of quasi-periodic operators

(H,;iv,w,(ﬁx)n = Tpi1 + Tp1 + OV (271wn + ¢)xy,

for ¢ € T?, whose spectrum does not depend on ¢. The spectral properties of these operators
are related to the dynamics of the following discrete skew-product on R? x T¢

Tny1 ) _ [ a—bV(0,) —1 Tp _
< z ) = ( 1 0 A Opi1 = 0, + 27w, (1.9)

As in the periodic case there exists a notion of reducibility of skew-product flows which des-
cribes the existence of a change of variables which transforms a discrete skew-product to the
iteration of a constant matrix.

In Chapter V1 a result on nonperturbative localization for the “Almost Mathieu” operator by
Jitomirskaya [Jit99] is used to solve the so-called “Ten Martini Problem”. In Chapter VII we
extend some ideas from Chapter V1 to prove a nonperturbative version of Eliasson’s reducibility
theorem. Let us now present the main results in these two chapters.

The best-studied discrete Schrodinger operator is probably the “Almost Mathieu” operator,

(Hp,6%)n = Tpt1 + Tp_1 + beos (2mrwn + @)
whose eigenvalue equation,
Tni1 + Tn_1 + beos (2rwn + @) T, = azy,

is sometimes called Harper’s equation. In 1981 Simon [Sim82], after an offer by Kac, proposed
the Ten Martini Problem: “for all b # 0 and nonresonant w the Almost Mathieu Operator has
Cantor spectrum”. In Chapter VI we solve this problem for b # +2 and Diophantine w.
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Corollary. If w is Diophantine and b # 0, +2, the spectrum of the Almost Mathieu operator is
a Cantor set.

Along Chapter VI we clarify why this result is a corollary as it illustrates the fruitful interac-
tion between spectral and dynamical points of view. On one hand it is a corollary of a theorem
by Jitomirskaya [Jit99] which, under the current hypothesis, states that for almost all ¢ and
|b| > 2 the Almost Mathieu operator above has only pure-point spectrum with exponentially
decaying eigenfunctions. On the other, it is a corollary of the dynamical theory of reducibility
for quasi-periodic skew-products like (1.9) as above. Aubry duality, which is the invariance
of Harper equations, with different parameters, by Fourier transform, is used to link these two
points of view. Let us now briefly sketch the argument.

According to Jitomirskaya’s theorem if |b| > 2, w is Diophantine, and ¢ belongs to a total
measure set which includes ¢ = 0, Harper’s equation has exponentially localized solutions for
a set of eigenvalues which is dense in the spectrum. Let a be one of these eigenvalues and
consider the Fourier transform of the associated eigenvector ¢ = (1) kez,

QZ(H) = Z wkeikﬂ’

kEZ

which, due to the exponential decay of ¢, is an analytic function. A computation shows that the
following analytic quasi-periodic Bloch wave

Ty, = ¢ (2mwn)

is a solution of

4
Tpa1 + Tp—1 + R cos (2rwn) T, = —xp,

b

which is Harper’s equation for other values of the parameters a and b.

In Chapter VI we prove that the existence of this Bloch solution implies that a is the endpoint
of a spectral gap of the operator H,, 4 and that this gap is collapsed if, and only if, the equa-
tion has another linearly independent Bloch wave as solution of the corresponding eigenvalue
equation. Undoing the Aubry duality process we would obtain, if the gap was collapsed, that
the original Harper’s equation (I.7) would have two linearly independent solutions decaying ex-
ponentially. This is a contradiction with the limit-point character of quasi-periodic Schrodinger
operators.

The argument above implicitly uses the notion reducibility of a quasi-periodic skew-product.
Eliasson’s Theorem can be extended to the discrete case for Harper-like equations (1.7) with real
analytic potentials and Diophantine frequencies if || < C, where C'is a constant which depends
on the precise Diophantine conditions on w. We can be use this to give a partial answer to the
Strong (or Dry) Ten Martini Problem. Indeed, in Chapter VI we show that, for these small
values of b and a Diophantine frequency, the Almost Mathieu operator has all spectral gaps
open.

For general Schrodinger operators we cannot expect that the constant C' in Eliasson’s the-
orem does not depend on the specific Diophantine condition. Nevertheless, in Chapter VII we
prove that, when d = 1, a nonperturbative version of Eliasson’s theorem can be obtained.



Theorem. Let p > 0 be a positive constant. Then there exists a g = ¢¢(p) such that, for any
real analytic V' and b € R satisfying
|bV‘p < &g,

the skew-product (1.9) is reducible to constant coefficients for almost every a € R (with respect
to Lebesgue measure) and for any Diophantine w.

This is only a partial generalization of Eliasson’s Theorem because the values of a for which
the above theorem grants reducibility are not characterized in terms of its rotation number.
This result has been recently obtained by Avila & Krikorian [AKO03] under more restrictive
hypothesis.

The main burden in the proof of Theorem I is to show that for almost every point in the
spectrum there exist analytic quasi-periodic Bloch waves. Indeed, on one hand, if a does not
belong to the spectrum, then the skew-product is reducible to constant coefficients thanks to the
exponential dichotomy. On the other, if a Harper-like equation like (1.7) has such a Bloch wave
as solution then the corresponding skew-product (1.9) is reducible to constant coefficients, as
we prove in Chapter VII.

To show the existence of analytic quasi-periodic Bloch waves of (1.7) for almost all values
of a in the spectrum of the associated operator we can try to use the trick of Aubry duality. In
this case, however, we will not recover the same operator under Aubry duality, but looking for
Bloch waves for (1.7) will lead us to study the existence of exponentially localized solutions of
the difference equation

Z Vin_ + 2 cos (2rwn + ¢) x, = azy, n € 4,
keZ

where ¢ € T and (V}), are the Fourier coefficients of V. This is the eigenvalue equation of the
long-range operator

(Lywex), = Z ViTn_k + 2 cos (2rwn + ) T,
kez

on [%(Z) which is also bounded and self-adjoint. The role of Jitomirskaya’s theorem for the Al-
most Mathieu operator is now played by an extension, due to Bourgain & Jitomirskaya [BJ02a],
which states the pure-point character of the spectrum with exponentially decaying eigenfunc-
tions of such long-range operators and almost all ¢ € T.

As this introduction has tried to present, the combination of dynamical and spectral points
of view has proved to be very fruitful and we believe that, exploiting even more this connection,
more interesting results can be obtained. From the spectral point of view, we have seen that it
is possible to accurately describe the behaviour of spectral gaps in terms of the dynamics of the
associated skew-products. It is expected that this analysis of gaps can be extended to more gen-
eral Schrodinger operators. From the dynamical point of view a valuable source of examples
and methods has been studied. These include non-uniform hyperbolicity, nonperturbative tech-
niques and accurate methods to describe the transition from regular to irregular behaviour in
these examples. We expect to apply these methods to fully nonlinear systems in the future.






Chapter |1

Linear quasi-periodic differential
equations, skew-products and cocycles

In this chapter some of the basic notions and formalism to be used in this thesis are introduced.
We begin with linear differential equations with quasi-periodic coefficients as a motivating e-
xample in Section 11.1 before giving the formalism of cocycles and skew-product flows in Sec-
tion 11.2. In both sections, the concept of reducibility is emphasized. Finally in Section 11.3, the
concepts of exponential dichotomy, Sacker-Sell spectrum and invariant splittings, together with
their properties, are discussed.

1.1 Linear quasi-periodic differential equations: a first ap-
proach

In this section we introduce the differential equations we shall study together with some basic
properties. These differential equations are linear, homogeneous and their coefficients depend
quasi-periodically on time. Let us try to give a meaning to all the terms used in this sentence.

I11.1.1 Linear equations with time-depending coefficients

A (homogeneous) linear differential equation is a differential equation of the form

2'(t) = a(t)z(t), (1.1)

where " stands for the derivative with respect to the time ¢, a(¢) is a square matrix of dimension
n and the function z = z(¢) is the unknown. We can look at a as a map from an interval to
gl(n,R), the set of square real matrices of dimension n.

Assuming continuity of the map t € R — a(t) € gl(n,R) (which is equivalent to the
continuity of each of its entries) the Cauchy problem associated to (I1.1),

2'(t) = a(t)z(t), z(ty) = o (11.2)
has a unique solution for any z, € R™ and ¢, € R which we denote by z(¢; o, zo).

9



10 Chapter Il. Linear quasi-periodic differential equations, skew-products and cocycles

Fixing to, € R and due to the linear character of the equation (11.1) the set of its solutions,
{.’L‘(t, to, 330), Xo € Rn}

is a linear space of dimension n. Let X = X(¢) be a matrix whose columns are n linearly
independent solutions of (11.1). Clearly, this matrix satisfies the equation

X'(t) = a(t) X (¢). (11.3)

and it is nonsingular for all ¢. Any nonsingular matrix X (¢) which satisfies this differential
equation is called a fundamental matrix of the equation (11.1). All the information of a li-
near differential system can be obtained from a fundamental matrix because, if z(¢; o, z¢) is a
solution of the Cauchy problem (11.2) and X is a fundamental matrix, then one can write

x(t; o, 20) = X (t) X (to) 0.
If X7 = X;(t) and Xy = X,(t) are two matrices satisfying (11.3) then, for any ¢, € R,
X ()Xo (to) ™ = X1 (t) Xa(to) "
This means that the solution of the Cauchy problem
X'(t) =a(t)X(t), X (tg) = Xo. (11.4)
being X, any square matrix of dimension n and ¢, € R is
X (t; to, Xo) = X (t) X (to) ™' Xo

where X is any fundamental matrix of (11.1).
The simplest example of linear systems are linear equations with constant coefficients

2'(t) = a x(t)

where a is a constant matrix of dimension n. The Cauchy problem (11.4) for these equations can
be solved explicitly,

X (t;t0, Xo) = exp ((t — to)a) Xo = (I + i": (t_ki!to)kak) Xo.

Linear equations and matrix Lie algebras

The example above of linear equations with constant coefficients shows that if a lies in a cer-
tain matrix Lie algebra, then the fundamental matrices can be chosen in the corresponding Lie
group (choosing an initial condition for the Cauchy problem (11.4) in the group, for example the
identity). This fact can be generalized to linear nonautonomous differential equations.

A matrix Lie group G C GL(n,R) is a smooth submanifold of GL(n,R), which we will
assume to be connected, such that the induced matrix product is a smooth operation. The
corresponding matrix Lie algebra is defined by means of the exponential map: all one-parameter
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subgroups of G are of the form (exp(tA)).cx, Where A belongs to some Lie subalgebra g of
gl(n,R). A Lie subalgebra of matrices is a vector space of gl(n,R), the space of square n-
dimensional real matrices, which is invariant by the Lie bracket or commutator of matrices

[A, B] = AB — BA.
In particular, for any A € g the adjoint operator of A,
Beg—ads(B)=[AB]€g

is a well-defined map. Regarded as a map from g to GG, the exponential map

=1
AEgi—)GXp(A)=I+ZEAk
k=1

defines a diffeomorphism between the Lie algebra g and a neighbourhood of the identity in G.
More generally, for any X € G the maps

Aeg— Xexp(A) and A€ g—exp(A)X

define diffeomorphisms between g and a neighbourhood of X in G. A computation shows that,
forany C € Gand A € ¢,

exp (C’IAC) = C texp(A)C,

so that C~1AC is also in g. Classical examples of Lie groups and corresponding Lie algebras
are

e g = gl(n,R) the algebra of real matrices of dimension n» and G = GL(n, R) the group
of real invertible matrices of dimension n.

e g = sl(n,R) the subalgebra of gi(n, R) of matrices with trace zero and G = SL(n,R),
the special linear group, which is the subgroup ofGL(n, R) of matrices with determinant
one.

e g = sp(n,R) the subalgebra of ¢gi(2n, R) of infinitesimally symplectic matrices, that is

sp(n,R) = {A € gl(2n,R) such that ATJ = —JA}

0 I
= (57

and I, the n-dimensional identity matrix. G = Sp(n, R) is the subgroup

where J is the matrix

Sp(n,R) = {A € gl(2n,R) such that A" JA = J} .

of symplectic matrices of dimension n.
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e g = so(n,R) the subalgebra of gl(n, R) of skew-symmetric matrices and G = SO(n,R),
the special orthogonal group, the subgroup ofGL(n, R) of orthogonal matrices with de-
terminant one.

As it happens with linear equations with constant coefficients, fundamental matrices of li-
near equations taking values on some matrix Lie algebras can always be chosen to be in the Lie
group. More specifically one has the following properties:

Proposition I11.1. Let g be a matrix Lie algebraand Y : R — g any smooth function. Then,
(i) Forallt € R the element (exp(Y (¢)))" exp(—Y'(¢)) belongs to g.
(i) Ifa,b: R — gl(n,R) are continuous functions which satisfy the equation
(exp(Y'(1))" = a(t) exp(Y(t)) — exp(Y (1)) b(t),  t€R,
then a(t) € g for¢t € R if, and only if, b(t) € g fort € R.
(iii) The solution of the Cauchy problem
Y =)y, Y(0)=Y
witha : R — gand Y,y € G belongsto G.

Proof: First of all, note that item (ii) is a direct consequence of item (i). Indeed, if X (¢) =
exp(Y'(t)), then one has the identities

b=—X"'X'+ X'aX = (X)X + X" 'aX,

and also

a=X'X"T1+XbX""
Then item (ii) follows from (i), applying (i) to —Y and Y respectively, and using the invariance
of g by conjugations by matrices in G. The proof of (i) makes use of the following property of
Lie algebras (see Postnikov [Pos86], for instance). Let Yy, Y7 € g. Then

Yi+ 0(t)>

exp(ady,) — I

exp(Yy + tY7) exp(—Yp) = exp (t 207,

where by % Is meant the sum of an operator series
k
[+ (ad ;) +...
2! (k+1)!

and ady, : ¢ — g is the adjoint operator of Y;. Let ¢, € R and write Y, = Y (¢y) and
Y1 = Y'(ty), belonging both to g. Note that

(XD (V (1)) 0 (¥ (1) = 5 (65D (Vo (¢ — 1)), exp (~¥5) =
& exp (o + (1= to)¥i) exp (Vo)) = T2EQ =y e

Finally, item (iii) follows from (ii). O
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11.1.2 Quasi-periodic functions

Before studying linear equations with quasi-periodic coefficients let us give some notions about
quasi-periodic functions. Quasi-periodic functions are a generalization of periodic functions
and appear naturally in modeling of phenomena involving several frequencies.

A function f : R — R is quasi-periodic if there exist real constants ws,...,ws and a
continuous function F' : R — R, 27-periodic in each variable such that we can express f as

f(t) =F(wy-t,...,wq-1t)

for every ¢t € R. We call F the lift of F" and wy, . .., wy its basic frequencies or simply frequen-
cies. The vector
d
W = (wl,...,wd)

is also called the frequency vector.
The fact that 7' is continuous and 2x-periodic in each variable means that one can consider
it as a continuous function from T¢ — R. Here T, the torus, is the quotient space

T = R/(27Z)

whose elements will be called angles.
Without imposing extra conditions on the frequencies neither the frequency w nor the lift of
a quasi-periodic function are uniquely determined. Indeed, consider the function

f(t) = cos(t) + cos(2t),
which is quasi-periodic according to the definition above, since we can write
f(t) = F(t,2t),

with
F(0y,02) = cos(#;) + cos(fs), (0:,0,) € T

However, one also has

where
G(0) = cos(#) + 2cos*(0) — 1, 6 €T.

To overcome this lack of uniqueness, we will impose the condition that the basic frequencies
of a quasi-periodic function, ws,...wy, are rationally independent. This means that the only
combination of integers &+, . . ., kq € Z which satisfies the relation

k1w1+k2w2+...+kdwd:0
is the trivial one k; = ... = k4 = 0. The above scalar product will be denoted in the sequel as
<k, w} = k1w + kows + ... + kgwy,

where k = (ky, ..., kd)T. Assuming rationally independence of the basic frequencies, then the
following result is easy to prove.
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Lemma I1.2. Let f : R — R be quasi-periodic and let w1, . . ., wy be one set of basic frequen-
cies (assumed rationally independent). Define the Z-module

R(w) = {{k,w); k € Z%} .

Then any other (rationally independent) set of basic frequencies vy, .. ., v, is a basis of R(w)
(as Z-module). In particular m = d, so that any two choices of basic frequencies have the same
number of elements (which is the dimension of the module).

Remark 11.3. In the sequel, and unless otherwise stated, all frequency vectors will be assumed
rationally independent.

Remark I1.4. Periodic functions with period 7' > 0 are quasi-periodic functions with 27 /T as
the only basic frequency.

Given a quasi-periodic function f with lift F and frequency vector w € R¢, the function

fo = F(wt+ ¢)

for any ¢ € T is quasi-periodic with frequency w and lift £, = F(- + ¢). The set {f}scra
Is a compact subspace of the continuous functions which is called the Hull of f. This space is
homeomorphic to T¢. This construction admits a generalization, which are the almost periodic
functions An introduction can be found in the monographs by Bohr [Boh47], Fink [Fin74]
and Levitan & Zikhov [LZ82]. Many properties of this chapter hold also for almost periodic
functions and linear equations with almost periodic coefficients, although we will not consider
them.

Regularity of quasi-periodic functions

As a general idea, we want that the properties of quasi-periodic functions hold for all functions
in the hull. That is, any nice class of quasi-periodic functions must contain the hull of functions
init.

Concerning regularity properties, we have already seen that any quasi-periodic function is
continuous because its lift is a continuous function. The continuity of the lift implies continuity
of any function in the hull.

Imposing regularity conditions on a quasi-periodic function without taking into account the
regularity of its lift may lead to surprising results. For instance, it is possible to produce ex-
amples of quasi-periodic functions f which are real analytic but whose lift " is only continuous
(see Johnson & Moser [JM82]). This is why one defines regularity classes of quasi-periodic
functions as the set of quasi-periodic functions whose lift belongs to the regularity class. For
example, C* quasi-periodic functions are those whose lift is of class C*.

Analytic quasi-periodic functions, and especially real analytic quasi-periodic functions, de-
serve an special attention, since this will be the usual regularity condition in this thesis. Again,
the definition of a real analytic quasi-periodic function f will be given in terms of the analyticity
of its lift F'. Consider F as a function from R¢ to R. It is real analytic if there exists U, an open
neighbourhood of R? considered as a subset of C¢, and an analytic function G : U — C such
that

Gge = F.
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By periodicity of F', the domain U can be made uniform. That is, there exists a positive p such
that U contains the complex strip
Im z| < p (1.5)

where z = (21, ..., 24)T € C? and

|z| = kgll?..}.(,d |2k - (11.6)
The number p in (11.5) will be called width of the analyticity strip. For the sake of simplicity in
the notation we will denote by 6 the extension to C¢ of the angular variables # € T¢. On real or
complex spaces we will always consider the norm defined by (11.6). However, for multi-indices
or multi-integers, which are the elements of Z¢, k = (ki,...,k,) € Z", the following norm
will be used

k| = k1| + ...+ |knl.

We denote both norms by the same symbol.
A convenient norm for real analytic functions F : T¢ — R with analytic extension to
Im| < pis
|F|,:= sup [F(6)]

p
Im@|<p

which may be infinite. To obtain a useful function space we restrict to the set of those real
analytic functions F' : T¢ — R with analytic extension to |[Im 6| < p and

|F|, < oo.
This set will be denoted by C%(T¢, R) and

Cc*(T%,R) = J C4(T*,R)

p>0

will stand for the set of all real analytic F' : T¢ — R. A real analytic function quasi-periodic
function f will be said to be real analytic if its lift belongs to Cg('JI‘d,R) for some p > 0. If
there is no danger of confusion we will also denote C'%(T¢, R) by C4%(T¢).

Real analytic quasi-periodic functions are nice because we can apply the Cauchy estimates
to its lift.

Theorem 11.5 (Cauchy Estimates). Let F' be in Cg(Td) for some p > 0. Then, for any 0 <
§ < pandanyje (NU{0})¢

Ol

:%(01,...,0(1)
967" ... 96

belongs to C¢_;(T?) and
F| _, < Ciad™|F,

where Cj 4 is a constant depending only on j and d.
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Fourier analysis of quasi-periodic functions

Since quasi-periodic functions are a generalization of periodic functions it is natural to look for
an analog of the Fourier series for quasi-periodic functions. This is achieved resorting again to
the lift F/ : T¢ — R of the quasi-periodic function f with frequency w. At a formal level, we
can associate a Fourier series with d angular variables to F'. This series is

S Feexp(ifk,0)), (1.7)
kezd
where k = (ky, ..., ky) € Z%and the F, are the Fourier coefficients of £ which are computed

via the formula .

Fx = @) /Td F(0) exp(—i(k, 6))d6.

Here the integration is taken with respect to the normalized Lebesgue measure on the torus.
Since F' is continuous these Fourier coefficients always exist.

Similarly to periodic functions, the regularity properties of £ impose a certain rate of con-
vergence of the above sum, so that it is not only formal. Focusing on real analytic functions,
one can give the following convergence result for the Fourier series.

Theorem 11.6. Let F' € C4(T¢) be a real analytic function for some p > 0. Then its Fourier
coefficients (Fk> satisfy that
kezd

Fk == F_k
and X
‘Fk e Pkl < ‘F‘p
for all k € Z?. Conversely, if (Fk> ] is such that
kez
sup Fk e’ = 0 <
kezd

for some p > 0, then the Fourier transform of the (Fk)k, which we define as

F(0) =) Fcexp(i(k,0)),

kezd
belongs to C%_,;(T*) forany 0 < § < p and

C

Flpms < 5a

K(d).

where K (d) is a constant depending on d.

Let us now use this facts on Fourier analysis of functions F' : T¢ — R to derive a Fourier
representation of quasi-periodic functions. The basic link between the Fourier coefficients of F
and f, w is the following theorem.
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Theorem 11.7 (Averages of quasi-periodic functions). Let f be a quasi-periodic function.
Then the limit

exists in R and it is called the average of £, which is denoted by [f] or f. Moreover, if F is a lift

of £,

ft) = F (wi),
with w € R? rationally independent, then the average of f is
1 .
= F(6)do = Fo,
1= Gt | FO0=Fo

the Oth Fourier coefficient of £'. Sometimes we will also write [F] for [f].

This result, whose proof can be found in Arnol’d [Arn96], illustrates the property of ergo-
dicity of a flow on the torus T¢, in our case the flow given by the irrational rotation

(t,¢) ER x T¢ = 1(¢) = wt + ¢ € T

This flow is ergodic with respect to the normalized Lebesgue measure because it is invariant
by the flow 7 and any invariant measurable subset of T¢ has zero or total measure. In the case
of the irrational rotation we can even say that it is uniquely ergodic because the normalized
Lebesgue measure on the torus is the only invariant Borel normalized measure (and therefore
the flow is ergodic with respect to this measure, see Katok & Hasselblatt [KH95]). The fact that
the irrational rotation is uniquely ergodic is called Kronecker-Weyl Equidistribution Theorem
[KH95].

This result implies that one can obtain the Fourier coefficients of the lift of a quasi-periodic
function only from the knowledge of a set of basic frequencies and the quasi-periodic function
itself. Indeed, any other Fourier coefficient of F, say Fj for k € Z¢, can be obtained through
the average

Fo=tim = [ F(t) exp(—i(k, wt))dt. (11.8)

This yields a representation of a quasi-periodic function as series of exponentials of —i(k, wt).

Theorem 11.8. Let f be a real analytic function with lift in C¢(T%) and frequency w € R? for
some p > 0. Then the coefficients (Fk) e defined by (11.8) satisfy that
€

Ft) =" Feexp (i(k, wt))

kezd

converges uniformly in Im¢| < p/(d|w|). Moreover such a representation is unique once a
frequency vector w has been fixed.

Remark 11.9. Here we can recover the Fourier coefficients of F' from f if we know the frequen-
cies. The problem of determining the Fourier coefficients and the frequencies of a quasi-periodic
function only from a knowledge of f is not so trivial, but very interesting for the applications (see
Laskar, Froeschlé & Celletti [LFC92], Laskar [Las99], and Gomez, Mondelo & Sim6 [GMCO01]
and references therein).
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11.1.3 Linear equations with quasi-periodic coefficients

Linear differential equations with quasi-periodic coefficients are equations of the form
' =a(t)z, z(ty) = o (11.9)

where a is a square matrix of dimension n whose entries depend quasi-periodically on ¢. That
is, there exist a rationally independent frequency vector w € R? and a lift A defined on T¢ such
that

a(t) = A (wt)

for all ¢ € R. Thanks to the quasi-periodicity of a one can lift (11.9) to an autonomous system
of linear equations defined on R™ x T¢ writing

P =A0)r, 0 =w, (z,0) € R* x T% (11.10)
The time evolution of these new angular variables is trivial,
0(t) = wt+ ¢

so that Equation (11.9) corresponds to (11.10) with initial condition 6(¢,) = wt, (and hence
¢ = 0). In fact, any equation
' =b(t)x

with b in the hull of the quasi-periodic function a can be obtained with a suitable choice of
initial condition for the variables 6 by letting ¢ take arbitrary values on T¢.
The matrix equation of (11.9),
X' =a(t)X, (1.112)

can also be lifted to a system on GL(n,R) x T¢ writing
X'=A0)X, 0 =uw, (X,0) € GL(n,R) x T (1.12)
This system contains all relevant information on the dynamics of (11.9).

Remark 11.10. Although we will mainly focus on the properties of linear equations with quasi-
periodic coefficients in R, it is clear that all the above construction can be performed to deal
with the case of complex coefficients.

Remark I11.11. If a belongs to some matrix Lie algebra g, then any lift A(#) belongs to g (due
to the rational independence of the frequencies) and (11.12) can be considered in G x T¢, where
G is the corresponding Lie group.

Linear periodic differential equations

As a motivating example, let us consider linear equations with periodic coefficients. These are
linear quasi-periodic equations of the form
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being @ a periodic matrix function, which means that a(t) = a(t + T') for some fixed T > 0
and all £ € R. This can be seen as a quasi-periodic linear system with only one basic frequency
w = 27 /T. It can be lifted to an autonomous system on R™ x T if

¥ =A0)r, 0 =uw, (r,0) e R* x T.
and we set A(f) = a(f/w). Again, one can consider the associated matrix system
X' =A0)X, ¢=w  (X,0)eGL(n,R) xT. (11.13)

Let us denote by X = X (¢; Xy, ¢), for some (X, ¢) € GL(n,R) x T, the solution of (11.13)
with initial conditions

We are going to see that the behaviour of a linear system with periodic coefficients is basic-
ally the same than linear systems with constant coefficients: there exists a change of variables
that takes the original system to constant coefficients. Let us consider the map

(Xo,0) € GL(n,R) x T — (X (27; Xy, ¢), ¢ + 27) € GL(n,R) x T,
which will be called the Poincaré map or return map of (11.13). Since
(X(t + 2m; X0, 6), 6 + wi)

is a solution of (11.13) with initial conditions (X, ¢) there exists a nonsingular matrix P(¢)
such that
X (2m; Xo, 6) = P(6) X,

Fix one initial condition ¢ and let B be a square matrix such that
P(¢) = exp (27B) .

Such a matrix can be always found if we do not require it to be real (if P(¢) has negative
eigenvalues, B cannot be real). B will be called a Floquet matrix (by construction it is not
uniquely determined).

In terms of this Floquet matrix the relation

X(t+2m; Xo, ¢) = exp(tB) X (t) (1.14)

holds for all ¢ € R because it is true when ¢ = 0 and both sides of (11.14) satisfy the same
differential equation.
Let us now define
Z(t) = exp(—tB) X (t).

This is a periodic transformation with period 27. Indeed,

Z(t+2n) =exp(—(t+2m)B)X(t + 27) =
= exp(—27B) exp(—tB) exp(2nB) X (t) = exp(—tB) X (t) = Z(t).
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The change of variables
z=Z(t)y

satisfies that
y' = Bu.

We say that we have reduced our system to constant coefficients: we have obtained a nonsin-
gular transformation Z which defines a change of variables such that in the new variables this
system takes the form of constant coefficients. This procedure of reducing to constant coeffi-
cients is called Floguet theory.

Remark 11.12. If we want the reduced matrix (the Floguet matrix) to be real, then the reducing
transformation cannot be always 7-periodic but just 27-periodic, because

X(2T) = X(T)?

and for a matrix of this form (the square of a nonsingular matrix) there exists always a real
logarithm. This is called period-doubling.

Remark 11.13. If G is a matrix Lie group and g is its Lie algebra then, by Proposition 11.1, a
is in g (equivalently A isin g) implies that B and Z can be chosen in g¢ and G, where g¢ is the
complexification of g,

gc = {X1 + 1.X, such that X1, Xp € g} .

11.1.4 Reducibility of linear quasi-periodic differential equations

The construction in the previous section of a reducing transformation for linear periodic equa-
tions leads naturally to the concept of reducibility of a linear system with quasi-periodic coef-
ficients. Consider Equation (11.9) with lift (11.10). Following the same strategy than in the
previous section, we may try to find a change of variables of the form

y=Zwz, (ory=Z(0)z)
being Z : T — GL(n,R), at least of class C", such that the equation satisfied by y is
y' = By (ory' = By, #' =w)

for some constant matrix B. If such Z and B exist we will say that (11.9) or (11.10), is reducible
to constant coefficients or simply reducible. Any such B and Z are called Floquet matrix and
reducing transformation respectively. The eigenvalues of B are called the Floquet exponents
and their real parts are the Lyapunov exponents. From the previous conditions it is seen that Z
and B need to satisfy the following relation

d
%Z (wt) = A(wt) Z(wt) — Z(wt)B

for all ¢ € R. Due to the rational independence of the frequency vector w this is equivalent to
the following homological equation

0,7(0) = A0)Z(9) — Z(0)B, 0 € T¢
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where we set
0,7(0) = (DyZ) w.

In particular, reducibility of a quasi-periodic linear equation implies reducibility of any equation
in its hull with the same Floquet matrix B. Any fundamental matrix of a reducible linear quasi-
periodic equations can be expressed by means of the following Floquet representation

X (t; ¢, Xo) = Z (wt + ¢) e""Z(¢) ™' Xo.

As it already happens with periodic linear differential equations, we cannot expect the trans-
formation Z to be defined on T¢ but on some finite covering of it (unless we complexify the
system). That is, we consider

7 = A(wt)z

as a linear equation with frequency w/x for some positive integer x (usually x = 2) and con-
sider A defined onT{ = (R/(27xZ))* instead of T¢. We then look for reducing transformations
on T¢.

X

1.2 Cocycles and skew-products

In this section we investigate the properties of cocycles and skew-product flows, which are ge-
neralizations of concepts in the previous section. We will mainly deal with the discrete version,
referring to the particularities of linear differential equations when necessary.

11.2.1 Cocycles, skew-products and basic properties
Let G' a matrix Lie subgroup of GL(n,R),
w=(wi,...,wq) €RY

be a frequency vector and A : T¢ — G a continuous map. We define the quasi-periodic cocycle
or just cocycle (A, w) as the map

(Aw): GxT¢ — GxT¢
(X,0) — (A(0)X,0+27w).

We say that it is a C"-cocycle if A is a C™-map from T¢ to G. In the same way, the cocycle is
real analytic if A is real analytic so that we can speak of C'*-cocycles or C'-cocycles for p > 0.
The iteration of this map gives rise to the following dynamical system on G x T¢,

Xk:—|—1 = A(Hk)Xk 9k+1 = 910 + 271'0.], (“15)

where (X}, 0x)rez is a sequence in G x T¢. This sequence is determined by an initial condition
(Xo,6p) in G x T¢. The map

(k, Xo,00) € Z x G x T — (X, 6;)

where
Xj+1 =A (90 + 27ij) | (90) Xo, 9j+1 = 90 + 27TLL)(j + 1)
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is called a discrete quasi-periodic skew-product flow or simply discrete quasi-periodic skew-
product. By an abuse of language, (11.15) will also be called a quasi-periodic skew-product.

A quasi-periodic cocycle (A4, w) can also be seen as a map from R x T¢ to itself which we
write in the same way as before

(A,w) (z,0) = (A(f)z, 0 + 27w) ,

for any (z,6) € R* x T¢, and the iteration of this last map also gives rise to a quasi-periodic
skew-product, now on R* x T¢,

Tt1 = A(gk)l“k Op+1 = O + 27w, (11.16)

being (z, 0k )rez @ sequence in R® x T¢. This quasi-periodic skew-product shows up as the
autonomization of the following linear difference equation on R”:

Trt1 = A(27rkw + 90).217]C keZ

which means picking an initial condition for the sequence (6 )xcz in (11.16). Any quasi-periodic
cocycle on G x T? can also be seen as a cocycle on R* x T¢ and one can shift from one
formulation to another when necessary.

A particularly important case is that of constant cocycles or cocycles with constant coeffi-
cients. These cocycles, (A, w) satisfy that

AB) = A(0)= A, forall  6e T

so that
(A, w)" = (A, kw)

and the solutions of the skew-product are of the form
(Xk‘a Hk) = (AISX(), 0() + 27rkw)
forany k € Z.

Remark 11.14. For the moment we have not yet considered arithmetic conditions on the fre-
quency vector w. This allows us to consider cocycles (Z,0) with frequency identically zero.
These acton G x T as

(Z,0)(X,0) =(Z(0)X,0).

so that they can be regarded as changes of variables.

Relation with quasi-periodic differential equations

Let us now see how one can derive a quasi-periodic cocycle and a skew-product from a linear
quasi-periodic differential equation. Consider

' = A(f)z, 0 =w, (11.17)
a linear quasi-periodic differential equation where (z,6) € R® x T¢. Let

(@ (£; 2o, @), & + wt)
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be the solution of the associated Cauchy problem with initial conditions (xg, ¢) € R* x T¢.
Then
w(t; 20, ¢) = X (t; Xo, 6) Xg "0

where X (¢; Xy, ¢) is a nonsingular solution of the matrix equation
X' =A0)X, ¢ =w (11.18)
with X (0) = X, and 6(0) = ¢. The maps
(t;z0,¢) € R x (R* x T¢) — (X (¢; Xo, 4)Xg ‘@0, ¢ + wit) € R* x T
and
(t; Xo,¢) € R x (G x T%) = (X (t; Xo, ¢)X, "0, ¢ + wt) € G x T

are called continuous linear quasi-periodic skew-product flows or continuous quasi-periodic
skew-product on R” x T¢ and G' x T respectively. Also by an abuse of language, we will say
that equations (11.17) and (11.18) are skew-product flows on R* x T¢ and G' x T¢ respectively.

To produce a discrete flow from this continuous flow (and a quasi-periodic cocycle, also) let
us take

g:@anﬁ*wEWA,&:@3”ﬁ$QEWA,@=(ﬁ,”ﬁ*j
Wy Wq

and, for some fixed 64 € T,

Then the sequence

satisfies the recursion L
$k+1:A(¢+27T]€(IJ> Tk, keZ

so that, if 6, = ¢ + 27wk, then
Tp = A (ék) T, Oppr = O + 270, keZ,

is a discrete quasi-periodic skew-product flow on R* x T¢~! which comes from the iteration of
the cocycle (fl, a;) on R® x T?-!, This is called a Poincaré cocycle of the skew-product flow

(11.17). In the same way, one can consider Poincaré cocycles coming from the matrix equation
(11.18).

Remark 11.15. Instead of taking w = (@,1)/w, one could, in principle, choose any other
component of the frequency vector w and consider the corresponding Poincaré cocycle.

Remark 11.16. If g is the Lie algebra of some matrix Lie group G and A is in ¢ then A belongs
to G and ([1, a;) is a quasi-periodic cocycle on G x T4~!.
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Remarks about frequency vectors

In the construction above of a linear cocycle from a quasi-periodic differential equation we have
not yet considered which arithmetic conditions on @ are derived from the fact that w is rationally
independent. Recall that the condition of rationally independence on w is that

(k,w) #0 (11.19)

for all k € Z4 not identically zero. Since

w= wid (@,1)
condition (11.19) is equivalent to
(k,0) ¢ Z (11.20)
or
sin (wa}, a;)) £0 (11.21)

for every k € Z% ! not identically zero. If & satisfies (11.20) or (11.21) we say that it is nonres-
onant. According to this definition, & is nonresonant if, and only if, w is rationally independent.

11.2.2 Conjugation and reducibility of cocycles

In the previous section we have linked linear differential equations with quasi-periodic coeffi-
cients to quasi-periodic cocycles. Since for the former a concept of reducibility was given, we
now want to define this in the more general framework of quasi-periodic cocycles.

Given two C"-cocycles in G x T¢ with nonresonant frequency w, (A4,w) and (B, w), we say
that they are C*-conjugated, or simply conjugated if s = r, if there existsaC*-map Z : T¢ — G
such that the commutation

(A,w) o (Z,0) = (%,0) 0 (B,w)
holds. In terms of the maps A, B and Z this is equivalent to the fulfillment of
A0)Z(0) = Z(0 + 27w)B(0) (1.22)

for all € T?. The conjugation between the cocycles induces a conjugation between the skew-
products
Xn1 = A(6,) X0 Oni1 = 0, + 21w

and
Voi1 = B(6,)Y, Oy =0, + 271w

by means of the change of variables
(Xny 0n) = (Z(01)Yn, 0n) .

If the conjugation (Z,0) is seen as a map from R™ x T¢ to itself, then the quasi-periodic skew
products
Tpy1 = A(O,) Ty, Opi1 =0, + 21w
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and
Yn+1 = B(en)yn, 0n+1 = en + 27w

are conjugated through the change of variables

(T, 0n) = (Z(0n)Yn, On) -

Particularly interesting is the case of cocycles conjugated to constant cocycles: a cocycle is
said to be C*-reducible to constant coefficients or simply reducible whenever it is C'*-conjugate
to a cocycle with constant coefficients. We also say that the corresponding skew-products, both
on G x T? and R* x T¢, are reducible to constant coefficients, which means that by a change
of variables it is transformed to constant coefficients.

Given a cocycle which is reducible to a constant cocycle (B, w) by a conjugation Z we call
B its Floquet matrix and Z its reducing transformation although from the conjugation equation
(11.22) it is readily seen that they are not uniquely determined.

If (A, w) is reducible with Floguet matrix B and reducing transformation Z, then one has
the identity

(A,w)" = (Z,0) 0 (B,w)" 0 (Z,0)

which allows the following Floquet representation of the solutions (X, #,,) of the correspon-
ding skew-product flows

(X0, 0,) = (Z(6n) - B" - Z(6p) ' X0, 6,,)
on G x T¢ and also for the corresponding skew-product on R* x T¢,
(Tn, 0r) = (Z2(0,) - B" - Z(00) "o, 6r)

forall n € Z.

As we have said before, the Floquet matrix of a reducible system is not uniquely determined.
However, it is seen from the previous Floguet representation that the eigenvalues of B have
some dynamical meaning and they are called the Floquet multipliers. The logarithm of the
modulus of the eigenvalues are the Lyapunov exponents.

Remark 11.17. Similarly to linear differential equations with quasi-periodic coefficients, it may
be necessary to half the frequency to conjugate a cocycle to constant coefficients. This means
conjugating (A(2-),w/2) to constant coefficients instead of (A, w).

To relate this concept of reducibility of cocycles with that given for linear quasi-periodic
differential equations given in Section 11.1.4, it is enough to consider the corresponding Floguet
representations:

X (t; ¢, Xo) = Z (wt + ¢) "' Z(¢) "' Xo.

for a fundamental matrix of a continuous skew-product flow and
(X, 0k) = (Z(6p + 2nwk) B*Z(05) ' Xo, 0o + 27wk)

for a discrete skew-product. With this in mind one sees the following
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Proposition 11.18. A continuous quasi-periodic skew-product flow with irrational frequency
vector is reducible to constant coefficients if, and only if, any Poincaré cocycle is reducible to
constant coefficients. If

2’ = Bz, 0 =w

is the reduced system of the skew-product flow (maybe complex-valued) and (B, &) the reduced
cocycle of the Poincaré cocycle (also possibly complex) with

w=(®,1)/wq

~ 2
B =exp (—WB> .
Wd

In particular the Floquet multipliers are of the form exp(27\/w4) with A a Floquet exponent.

then

Reducibility of scalar cocycles

As a motivating example let us discuss scalar quasi-periodic cocycles, that is, cocycles (A, w)
where A : T — G C GL(1,R), being G a subgroup of GL(1,R) which, for definiteness, we
take R, = (0,+o0). The iteration of this cocycle gives rise to the quasi-periodic skew-product

Tk+1 = A(gk)l'k, 0k+1 = 00 + 2nwk (“23)

where (zx,0;) € R, x T¢. To reduce (11.23) to constant coefficients means to look for a map
Z : T — R, and a constant B € R, such that the identity

A0)Z(0) = Z(0 + 27w)B

holds for all # € T¢. Again we restrict our consideration to C7-cocycles, real analytic cocycles
for some fixed p > 0. Any C7-map from T? to R, is the exponential of a C¢-map from T¢ to
R and vice-versa. Therefore, the previous conjugation is equivalent to

ea(@) 6z(0) — ez(0+27rw)€b
being a, z : T — R real analytic maps and b € R. Rearranging this equation one obtains
2(0 + 2mw) — 2(0) = a(f) — b (11.24)

where the unknowns are z and 4. Such an equation is known as a small divisors equation.
Integrating both sides of this equation on T¢ one obtains

b= /T a(6)ao,

which determines 6. Using that a belongs to C'} the Fourier series

a(f) = Z axe' &0

keZ4
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converges for [Im 6| < p and if z is a real analytic map then its Fourier representation

z(0) = Z 2ce 0 (11.25)
kezd
must satisfy that
Zk€27rl<k,w> — 2k = U/k) k € Zd - {O}

To be able to obtain the 2, from the above expression it is necessary that
e2mith) £
for all k # 0 which is equivalent to the nonresonance of w:
(k,w) € Z

if k # 0. In such a case the z; are uniquely determined

ax
e2ritkw) _ 17

2k — (“26)

The problem of reducibility is not yet solved because it is not true that for every nonresonant
frequency vector w the Fourier transform of (zy), given by (11.25) is real analytic. The real
character comes from the fact that « is real analytic and formula (11.26). Using Theorem 11.6,
the function z defined by the series (11.25) will belong to Cg(']l‘d) if

sup |z| e’ < oc.
kezZd

By Formula (11.25) and the fact that a € Cg('ﬂ‘d), a convenient condition to grant the above
bound is

: C
mifkw) _ 1] >~ 11.27
e = 2[k|"’ (11.27)
or, equivalently,
Isin7(k, w)| > %, (11.28)

where C' > 0 and ¢ > d + 1 are some fixed positive constants. We say that w is a strongly
nonresonant frequency vector if such constants exists and denote it by w € DC?(C,7,R?)
(here d stands for discrete). A condition like (11.28) is called a strong nonresonance condition
or, more generally, a Diophantine condition. This condition is not optimal for one-dimensional
homological equations (see Rissmann [Ris75]), but suitable for KAM schemes, see Chapter
V, where this kind of homological equations are solved an infinite number of times.

Remark 11.19. The set of strongly nonresonant vectors in DC%(C, o, R?) has positive measure
forany C,o > d+1 and it is a dense and open subset of R%. The set of all strongly nonresonant
vectors has full measure in R¢ and its complementary are the so-called Liouville-type numbers
which are a dense and uncountable subset of R?. Finally, let us mention that, if o = d + 1, then
DCY(C, o, R%) is dense with zero measure.
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Summing up, we have the following result.

Proposition 11.20 (Reducibility of scalar cocycles). Let (A,w) a C'g-cocycle on (0, 00) x T,
with p > 0, and assume that w belongs to DC¢(C, o),

C

|ZW: kEZd_{O}a

|sin 7 (k, w)

for some fixed C, o > 0. Then the cocycle (A,w) is Cj-reducible to the cocycle (B, w) where

B = exp (/T 1ogA(e)d9)

and, therefore, reducible to constant coefficients.

Remark 11.21. In the same way one can prove by induction the reducibility of triangular quasi-
periodic cocycles. These are cocycles (A,w) of GL(n,R) x T¢ where A(6) is a triangular
matrix. This will be used in Chapter VI.

One can proceed analogously with linear equations with quasi-periodic coefficients,
X'=A@0)X, 0 = w,

with (X, 0) € R, x T There are two ways of doing so. The first one is to adapt the above
proof to the context of reducibility in Section 11.1.4. In this case the Diophantine condition
which is met, for some frequency vector w € R¢, is that the bound

[(k,w)| >

i (11.29)

must hold for all k € Z¢ not identically zero. If such a condition is fulfilled, w is said to be
strongly rationally independent or strongly irrational. The class of strongly irrational vectors
which satisfy condition (11.29) is denoted by DC¢(C, o, R%).

The second way of considering the reducibility of these scalar linear differential equations

with quasi-periodic coefficients is to try to use the results for cocycles given above. In such a
case, the frequency of the cocycle is given by

~ _[w Wd—1
w=|—,..., .
Wq w1

which must satisfy the Diophantine condition

C
|sin 7 (k, @)| > G k € Z¢ — {0}, (11.30)
fore some C, o > 0. These two conditions are equivalent: w = (@, 1) is strongly irrational if,
and only if, & is strongly nonresonant.
It is customary to call strongly irrational vectors and strongly nonresonant vectors simply
Diophantine vectors when the context, either continuous or discrete, is clear.
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1.3 Exponential dichotomy, Sacker-Sell spectrum and invari-
ant splittings
In the previous section it has been seen that a reducible cocycle (A, w) has a Floquet represent-

ation
(A, w)* = (Z,0) o (B, kw) o (Z,0)~" (11.31)

where Z : T¢ — G and B is a constant matrix. Assume that the Floquet matrix B has all
eigenvalues with modulus different from one (we say then that it is hyperbolic). Then any
solution of the quasi-periodic skew-product flow on R™ x T¢,

Try1 = A(Or) 7 Ok+1 = O + 27w,

with (zx)kez bounded in R™ satisfies that z, = 0 for all £ € Z. In this section, we will see the
converse of this result and some related facts.

11.3.1 Exponential dichotomy of cocycles

Let (A4, w) a quasi-periodic cocycle on G x T¢, with G C GL(n,R) a matrix Lie group and
nonresonant frequency vector w. This generates a quasi-periodic skew-product flow on R™ x T¢,

Th1 = A(Qk)ﬂﬁk 0k+1 = Hk + 27’(’&), (“32)

which, for any given initial condition (zg, 6y) € R® x T¢, generates a sequence (zx, 0x)xcz-

We say that a quasi-periodic cocycle (A, w), or rather its associated skew-product flow on
R™ x T¢ has an exponential dichotomy if the only bounded solutions are the trivial ones: that
is, if (zg, Ox)kez 1S a solution of (11.32) which is bounded in k € Z then necessarily x; = 0 for
all £ € Z. A continuous skew-product flow with irrational frequency vector w,

' = A(f)z, 0 =w (11.33)

onR™ x T¢, has an exponential dichotomy if any Poincaré cocycle has an exponential dichotomy.
Equivalently if any solution (z(t), 6(¢)) of (11.33) with z(¢) bounded satisfies x = 0.

Remark 11.22.

(i) If the group G is compact (resp. g is a compact Lie algebra), then all solutions of (11.32)
(resp. of (11.33)) are bounded and the skew-product has no exponential dichotomy. In the
following we will implicitly consider G noncompact and, for many things, G = GL(n, R).

(if) The notion of exponential dichotomy of cocycles is invariant by conjugation of cocycles.

(iii) If (A, w) is a quasi-periodic cocycle on G x T¢ with an exponential dichotomy and ¢ € T¢
then the cocyles (A(- + ¢),w) also has an exponential dichotomy (if w is nonresonant).

(iv) The concept of exponential dichotomies was introduced by Massera & Schéffer [MS66].
For nonautonomous equations see Coppel [Cop78] and the papers by Sacker, Sell and
Johnson [SS74, SS76b, SS76a, SS78, Joh80, JS81]. This theory has been extended to
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more general equations, see Chicone & Latushkin [CL99] and references therein. The
interaction between exponential dichotomies and dynamics of cocyles or more general
dynamical systems has been studied in a series of papers by Haro & de la Llave [HdILO3c,
HdIL03d, HdIL03e] and [HdILO3b, HdIL03a] where the numerical implementation is
discussed.

If a cocycle (A, w) is reducible to constant coefficients one has the Floquet representation
(11.31). In such a case, the cocycle has an exponential dichotomy if, and only if, B is hyperbolic:
all the Floquet multipliers (the eigenvalues of B) have modulus different from one. Then one
can define the set of stable solutions of (A4, w) as

S(4,w) ={(Z()v,0) e R* x T v € S(B)},

where S(B) is the spectral subspace of B associated to those eigenvalues with modulus less
than one. The unstable set is defined as

UAw) = {(Z(Q)U,H) eR* x T% v € U(B)},

where U(B) is now the spectral subspace of B associated to eigenvalues greater than one in
modulus.

Remark 11.23. In the continuous case, the condition of hyperbolicity of a reducible skew-
product flow is that all the Floquet exponents have nonzero real part.

These subsets of R™ x T¢ are invariant, have a natural structure of vector subbundles and they
are called the stable and unstable subbundles of (A4, w). Due to the fact that the cocycle (A4, w)
is C*-reducible to constant coefficients, then these subbundles are also of class C'*. Moreover,
due to the fact that B is hyperbolic

R" = S(B) @ U(B)
as vector spaces and, therefore, the stable and unstable subbundles are complementary, which

means that, as subbundles, they generate R* x T¢ and that their intersection is the trivial sub-
bundle {0} x T¢. This trivial subbundle can be seen as the kernel of the projection

7:(z,0) €R* x T = 7(z,0) = 2 € R™.
The fact that they are complementary will be written as
R* x T¢ = S(4,w) ®U(A,w)  (Whitney sum).
It turns out that these stable and unstable subbundles can be defined even if the cocycle is
not reducible to constant coefficients. Moreover, we will see that the decomposition in terms of

stable and unstable subbundles of (A, w) can be defined for any cocycle having an exponential
dichotomy, but not necessarily reducible to constant coefficients.
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Exponential dichotomy and invariant subbundles

Let (A4, w) be a quasi-periodic cocycle. We define its stable subbundle

S(A,w) = {(m,@) eR" x T lim 7 ((4,w)"(z,0)) = O} =

k—+00

{(x,@) €R" x T% lim A(f+ 27wk)-...- A(f)x = 0}
k—4o00
where the limit is taken with the usual Euclidean norm on R”?, and the unstable subbundle

UAw) = {(az,@) e R" x 'JI‘d;klim 7 ((A,w)"(x,0)) = 0} =

——00
{(x,e) €R" x ']I‘d;klim A0+ 2nwk) ™t AO) e = o}
——00

Sacker & Sell [SS78] proved that the exponential dichotomy of (A, w) is equivalent to
S(A,w) and U (A, w) being continuous to have the decomposition

R" x T¢ = S(A,w) DU(A,w) (Whitney sum).

Johnson & Sell [JS81] and Johnson [Joh80] proved that if (A, w) is a C"-cocycle (resp. C-
cocycle for some positive p) with exponential dichotomy, then these two subbundles are not just
continuous but of class C" (resp. C7).

Another way to express the decomposition in terms of the stable and unstable subbundles is
the following. Assume that (A, w) is a cocycle with an exponential dichotomy and let S(A, w)
and U (A, w) be the stable and unstable subbundles, respectively. Since

R* x T = S(4,w) & U(A, w)
one can define a projector IT : R* x T¢ — R™ x T¢ of the form
(z,0) = (P()z,0), (z,0) € R* x T,
where P : T¢ — R™ is a continuous map with P? = P, and such that

S(A,w) = {(z,0) € R" x T%1(z,0) = (z,0)}

and
UA,w) = {(z,0) € R* x T% II(z,0) = (0,6)}.
Equivalently,
M(R* x T¢) = S(A,w)
and

(Id—TI) (R* x T) = U(A,w).

The existence of such a continuous projector for the cocycle (A, w) is equivalent to its exponen-
tial dichotomy. In this case, the regularity of the projector is the same than that of the cocycle
[Joh80, JS81].
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11.3.2 Sacker-Sell spectrum of quasi-periodic cocycles

The concept of exponential dichotomy induces a generalization of the Floquet multipliers for
quasi-periodic cocycles. Let (A, w) a quasi-periodic cocycle. The Sacker-Sell spectrum of a
quasi-periodic cocycle (A,w), 34(A,w) (or of the corresponding skew-product) is defined as
the set of those A > 0 for which the cocycle (A ' A, w) does not have an exponential dichotomy.

Remark 11.24.
(i) Since \A needs not to be in the group G, the group structure may be lost.

(if) The Sacker-Sell spectrum of a cocycle with constant coefficients is the modulus of the
spectrum of the constant matrix.

(iii) In principle, one could consider A € C—{0} in the definition above and obtain a different
spectrum X¢. In such a case, for any quasi-periodic cocycle, the identity

(A w) = 3¢ (e"4,w)
holds for ¢ € R. Therefore one has the relation

Yé(A,w) = U "N (A, w)

0<t<2m
and this is why we will only consider A € (0, c0).

The spectral Theorem of Sacker & Sell, [SS78] states that the Sacker-Sell spectrum is the
union of, at most, n disjoint closed intervals in (0, +oc0),

YA, w) = [a, b]U. ..U [am, b, a; < bj < ajn
with m < n, called the spectral intervals. Moreover, if A\; < A, are such that
S(A,w) N (A1, Az) = [a, by]
forsome j =1,...,mthen
S(MA,w) NUNA,w)

is also an invariant subbundle of R” x T¢ which is of class C" (as the original cocycle). Since
it is an invariant subbundle we can consider the restriction of the skew-product generated by
(A, w) to this subbundle, which is again a quasi-periodic skew-product. It turns out that the
Sacker-Sell spectrum of the restriction of the skew-product to this subbundle is precisely the
spectral interval [a;, b,].

Moreover, if \| < A} are any other complex numbers such that

Ed(Aaw) N (/\Ila /\,2) = [aja b]]

then
SMA,w)NUNA W) = SN A, w) NUNA, w).
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and we call this invariant subbundle the spectral subbundle associated to [a, b,;] which we write
as V;(A,w). In particular, if n;, is the dimension of the jth spectral subbundle one has

N+ ...+ Ny = N

All these invariant subbundles generate the whole phase space. Given any quasi-periodic
cocycle one has the following Whitney decomposition

R" xT¢=Vi(A4,w)® ... 0 V(4 w)

into spectral invariant subbundles, which is called the Sacker-Sell decomposition.

Remarks for continuous skew-products

Let us briefly consider all the previous properties and definitions for continuous skew-product
flows on R x T¢,

' = A(f)z, 0 =w. (11.34)
According to the definition of exponential dichotomy, (11.34) has such a property if, and only
if, the only solution (z(t), (t)) of (11.34) for which |z(t)| is bounded for all ¢ is the trivial one,
z = 0.

One can follow the same ideas than in the discrete case to introduce the Sacker-Sell spectrum
for this situation. Indeed, the Sacker-Sell spectrum of a continuous skew-product flow (11.34) is
the set of A € R such that

' = (A(f) — \) , 0 = w. (11.35)
has an exponential dichotomy. We will denote it by 3¢( A, w). For linear equations with constant
coefficients, the Sacker-Sell spectrum is the real part of the spectrum of the constant matrix.

Let (A, &) be a Poincaré cocycle of (11.35) which has some Sacker-Sell spectrum X¢(A, &).
We want to relate these two spectra, X¢(A4, w) and X4(A4, &).

Note that (X (¢),0(t)) € GL(n,R) x T? is a solution of

X'=(A0) - )X, ¢ =w
if and only if Y'(t) = e* X (¢) satisfies
Y = A(9)Y, 0 = w.

! Wd—1
w=|— ...,
Wq Wq

(62”/“’%:1, d))

is a Poincaré cocycle of (11.35) so we obtain the relation:

Therefore, if

then

S(A. ) = exp (2—”26(A, w)) ,

which “explains” why ¥:¢ is a subset of R while %4 is a subset of (0, cc).
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11.3.3 Sacker-Sell spectrum and conjugation of cocycles

We would like to relate this Sacker-Sell decomposition of R* x T¢ given by a cocycle (4, w) to
the reduction of (A, w) to another cocycle (N, w) of block structure. More precisely, if

YA, w) = [ay, b]U. .. Uan, by

is the Sacker-Sell spectrum of (A,w), then we would like to conjugate it to another cocycle
(N,w), being N : T¢ — GL(R, n) of block-diagonal form:

N =diag (N',N?,...,N™)

where N7 are square n;-dimensional matrices such that the Sacker-Sell spectrum $¢(N7, w) is
precisely the jth spectral interval of X(A, w).

Pick V; one of the spectral subbundles. Since it is a C"-subbundle, around every 6 € T¢
there is a basis of this subbundle of the form =7, ... ,x%j which are C" functions defined in a
neighbourhood of §. This can be done for all § € T, but only if some geometric relations
are satisfied (think of the Mdbius strip) they form a global basis of C”-functions z/, . .. ,xg'lj :
T¢ — R,

If all spectral subbundles have a global basis x{, ...

,xjj : T¢ — R™, then it is possible to
perform such reduction. Indeed,

n

AO),(0) =D N, (0)a] (6 + 27w),

=1

forall k =1,...,n;, where N,Z,l : T* — R. These are C"-maps because both A and the basis
are of class C". Letting N7(6) be the matrix (N7 ,(6)) and

1<k,l<n;
Z(0) = (ac%(H),...,x}ll(ﬁ),...,x{”(ﬁ),...,xm )

then
A0)Z(0) = Z(0 + 2mw)N(0),

which yields the desired conjugation.

Remark 11.25. Here we have considered the reduction of (A, w) which has a exactly one block
per Sacker-Sell spectral interval. One can, of course, consider reductions with respect to bigger
blocks which correspond to clusters of spectral intervals.

In general, it is not true that the spectral subbundles are trivial (in fact, in the continuous
case, it is possible to realize an arbitrary vector bundle over R® x T¢ as the stable or unstable
subbundle of some skew-product flow, see Daltetskii & Krein [DK70]). In the next sections,
we will consider some cases where such a reduction to block cocycles with lower dimension is
possible. The first one is a perturbation of constant cocycles (where all the invariant subbundles
are trivial) and the second one is the case of one-dimensional subbundle. Finally we will give
Coppel’s criterion for exponential dichotomy.
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Perturbation of constant coefficients

Let A, be a constant matrix, w rationally independent and >%(A4,,w) the Sacker-Sell spectrum
of the cocycle (Ag, w) (which is the union of the modulus of the eigenvalues of Ag). Let

Ed(Ao,LU) = E?(Ao,LU) U... Zﬁ(AO,w)

be a disjoint decomposition of spectrum where each of the Z;?(AO, w) is a union of Sacker-Sell
intervals. We take 0 < A\, < Af < A, < ...be such that

S (Ag,w) N (A7, AF) = B4 (Ag,w)

17777
for j = 1,...,k. In particular, this holds if we take the decomposition given by Sacker-Sell
spectral intervals. For each j = 1,...,k, let n; be the dimension of the spectral subbundles

associated to 3, (Ao, w).

By the roughness of exponential dichotomy [SS78, JS81, Joh80], there is an constant
depending on Ay, but not on w (as long as it is rationally independent), such that for any cocycle
(A, w) of R* x T¢ with

[Ao — Allco < €

the Sacker-Sell spectrum of (A, w) has also a decomposition
YA, w) =Y (A, w)U... 5% (A, w)

with
Ed(A(), LL)) N ()\_ )\+) = E?(A(), LL))

77777
forj = 0,..., k. Moreover, the invariant subbundles associated to this decomposition are trivial
and of dimension n; because these depend continuously on the cocycle and they are trivial for
the constant cocycle.

This reduction can also be made smoothly with respect to external parameters. That is,
if (A,,w) is a family of quasi-periodic cocycles which depends smoothly (with some degree
of regularity) of the parameter . in some open neighbourhood of uo € RP and the cocycle
(A,,,w) is in constant coefficients, then there is some constant ¢ > 0 such that for | — po| < €
the cocycle (A, w) is conjugated to one of the form (NN, w), with the diagonal block structure
determined by the spectral subspaces of A, as it was done above.

Cocycles with full spectrum

The Sacker-Sell spectrum of a quasi-periodic cocycle (A4, w) in R* x T¢ is the union of, at most,
n disjoint intervals in (0, 00). Each of these annuli has an associated invariant subbundle and
the whole product space R” x T¢ can be expressed as the Whitney sum of these subbundles. In
particular, the sum of the dimensions of the subbundles must be » so that, if there are exactly
n nonvoid spectral intervals, the corresponding subbundles must be one-dimensional. In such a
case we say that the cocycle has full spectrum.

Geometrical properties of one-dimensional subbundles of R* x T¢ allowed to Johnson &
Sell [JS81] to prove the following result in the continuous case.
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Theorem 11.26 ([JS81]). Let (A,w) be a C"-quasi-periodic cocycle, r € {0,...,00,a}, with
nonresonant frequency w. If (A, w) has full spectrum then the cocycle is conjugated to (V, w)
onR" x (R/(2Z))¢ (that is, halving the frequency), where

N(9) = diag (N'(0),...,N"(9))
is a diagonal C'"-cocycle.

Diagonal cocycles can be reduced to constant coefficients under appropriate hypothesis on
the regularity of the cocycle and strong nonresonance of the frequency (see Section 11.2.2).
Putting together these reducibility of diagonal cocycles with the above theorem we obtain the
following.

Theorem 11.27 ([JS81]). Let (A,w) be a real analytic quasi-periodic cocycle on R® x T¢,
with strongly nonresonant frequency w. If (A, w) has full spectrum and a; < ... < a, are
the elements of the Sacker-Sell spectrum, then it is C*-reducible to (A,w) on R* x (R/(27Z))¢,
where

A =diag(ay,...,a,)

is a diagonal C"-cocycle.

For future considerations it is interesting to have the following particular version of these
two theorems for cocycles on SL(2,R) x T¢.

Theorem 11.28. Let (A, w) be a C"-quasi-periodic cocycle on SL(2, R) x T¢ with nonresonant
frequency. If it has an exponential dichotomy then it is conjugated to the C"-cocycle (IV,w) on
SL(2,R) x (R/(2Z))¢ where

N(0) = (n(6),n(0) )

Moreover, if (A, w) is real analytic (or smooth enough) and w is strongly nonresonant, then the
cocycle is reducible to (A, w) on SL(2,R) x (R/(27Z))? where

A=A

is a constant matrix.

Coppel’s criterion for exponential dichotomy

Finally, we give an effective criterion for exponential dichotomy of quasi-periodic cocycles and
skew-products. Since we will use it for the continuous and discrete case and the formulation for
the continuous case is easier, we give first the version for continuous skew-product flows. Here
we freely quote from Coppel [Cop78] in a suitable formulation.

Coppel’s criterion can be seen as a generalization of Gerschgorin Theorem (see, for instance,
Isaacson & Keller [IK94]): when a skew-product flow has a diagonal dominant part and this
diagonal part is hyperbolic then the skew-product flow has an exponential dichotomy.

Theorem 11.29 (Coppel’s Criterion [Cop78]). Let

' = A(f)x, 0 =w (11.36)
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be a continuous quasi-periodic skew-product flow on R” x T¢ whose frequency vector is ration-
ally independent. If there is a constant 6 > 0 such that the matrix A(#) = (a;;(0)) satisfies

n

laillco >0+ D Naillco, i=1,...,n.
J=1g#1

Then (11.36) has an exponential dichotomy. Moreover, if a;; is positive for k indices (and negat-
ive for n — k) then the dimension of the stable subbundle is £ (and the dimension of the unstable
n—k.

In the case of discrete skew-products
Tyl = A(Q)xk, Op+1 = 0 + 27w (1.37)

arising from quasi-periodic cocycles (A4, w) on R™ x T¢ one can adapt the proof of the previous
theorem to deal with cocycles close to the identity.

Theorem 11.30. Let (A, w) be a quasi-periodic cocycle on R™ x T¢ with nonresonant frequency
w. Assume that one has

A(f) = exp (121(0))

where A : T¢ — gl(n,R) is continuous. If there is a constant § > 0 such that the matrix
A(0) = (a;;(0)) satisfies

n

laiillco > 6+ Y Nagllge, i=1,...,n.
J=1g#1

Then the cocycle (A, w) (and therefore also the skew-product (11.37)) has an exponential dicho-
tomy. Moreover, if a;; is positive for & indices (and negative for n — k) then the dimension of
the stable subbundle is k£ (and the dimension of the unstable n — k).






Chapter 111

Quasi-periodic Schrodinger operators and
cocycles

In the previous chapter we gave some basic definitions of quasi-periodic cocycles and linear
differential equations on R™ x T<. In this chapter, and in most of the thesis also, we will focus
on the important family of quasi-periodic Schrodinger skew-products on R? x T¢.

Our starting point is Hill’s equation with quasi-periodic forcing, which is the following
second order differential equation

"+ (a —q(t))z =0, (111.1)

where a is a real parameter, ¢ is a quasi-periodic function and x € R. Since ¢ is a quasi-periodic
function, we can write

g(t) = Qwt), teR

for some suitable @ : T — R and w € R? rationally independent. In most of the thesis, the lift
@ will be assumed real analytic, although many of the results in this chapter hold for a merely
continuous . Using the lift @, the hull of equation (111.1) is

" — Q(0)zr = az, 0 =w (111.2)

which gives rise to the following skew-product flow on R? x T¢,

<§)I:<Q(9§]—a é)(i) b=w. (11.3)

Since the matrix of this system has trace zero, it belongs to s/(2, R) and the associated matrix
skew-product flow can be considered in SL(2,R) x T¢.

Hill’s equation with quasi-periodic forcing is a generalization of the classical periodic Hill’s
equation, where ¢ is a periodic function, deviced by George Hill in the 19th century to study the
motion of the Moon, see Barrow-Green [BG97] and references therein. Both the periodic and
the quasi-periodic case occur as a first variation equation in the stability analysis of periodic
solutions and lower dimensional tori in Hamiltonian with few degrees of freedom (see Eliasson
[Eli88], Jorba & Villanueva [JVV97] and Bourgain [Bou97]).

39
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Remark I11.1. Sometimes it is useful to put a parameter b in front of the forcing ¢ in Hill’s
equation (111.1) so that b = 0 corresponds to constant coefficients and can be directly integrated.
When |b| is small one can use perturbative methods to study Hill’s equation with forcing bg and
this is why b is called a perturbation parameter. For periodic Hill’s equation the presence of
such a parameter is customary in classical works on Hill’s equation, e.g. Whittaker & Watson
[WW62], Ince [Inc44], Magnus & Winkler [MW79]. In Chapter 1V we will extend many of
these perturbative techniques to the quasi-periodic case. In the rest of this chapter, however, we
consider Hill’s equation without this perturbing parameter.

In the classical literature of Hill’s equation, the formulation of (I11.1) is somehow different
because the forcing ¢ is considered with a negative sign in front of it. The reason for the change
of sign in this chapter is that equation (I111.1) can be seen as the eigenvalue equation of the
Schrddinger operator with potential g,

(Hiz) (t) = —2"(t) + q(t)z(t) (111.4)

and «a is a spectral parameter. Here the superscript ¢ stands for continuous. An operator of this
kind is called a Schrodinger operator with quasi-periodic potential and g is called the potential.
Each of the equations in the hull (I11.2) defines a Schrddinger operator with quasi-periodic
potential,

(H§ o) (t) = —2"(t) + Q(wt + ¢)x(2). (111.5)

In Section 111.1.2 it will be seen how this operator, which is in principle only defined for smooth
enough functions, can be extended to a self-adjoint operator on L?(R), the space of square
integrable functions on R.

A main topic of interest in this thesis is to understand the spectrum of such operators when
the potential is a real analytic and quasi-periodic with strongly irrational frequencies. We will
be particularly interested in the dependence of this spectrum in terms of b when the potential is
of the form bg, being b a perturbative parameter and ¢ a quasi-periodic potential.

These spectral considerations are simpler in discrete quasi-periodic Schrodinger operators,
which we now describe. A discretization of time in Hill’s equation with quasi-periodic forcing
leads to an equation of the form

Tpt1 — 2T + Tpo1 + 0(N)T, = 0Ty,

where (z,).cz IS a sequence in R, a is a parameter and (v(n)),ez IS a quasi-periodic sequence,
which means that there is a continuous V' : T¢ — R and a nonresonant w € R? such that

v(n) =V (2rwn), n € 7.

As it is customary in this context, we will suppress the term —2z,,, which can be clearly included
in v or a. An equation like
Tpt1 + Tp1 + U(n)xn = Oy, (“IG)

will sometimes be called of Harper type or Harper-like. It is the eigenvalue equation of the
operator
(Hi2) = Tpi1 + Toot + 0(n)7 (111.7)
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which is bounded and self-adjoint as a map from ?(Z) to itself. Here the superscript d stands
for discrete. As in the continuous case, the hull of a Harper-like equation

Tps1 + Tno1 + V(0,)z, = azxy, Opi1 =0, + 21w (111.8)

generates a quasi-periodic skew-product flow on R? x T¢,

Tpy1 y [ a—=V(0,) -1 Tn B
( o ) - ( . ) o) fa=tatome (19)

which is the iteration of the quasi-periodic cocycle (4% ., w) on SL(2,R) x T¢, where

A4 (0) = ( “_Y(e) o ) . (111.10)

A cocycle of this form, will be called a Schrodinger cocycle. In the same way the skew-products
(111.9) and (111.3) will be called discrete and continuous Schrédinger skew-products respectively.

In this Chapter we will see that the dynamics of Schrddinger skew-products and cocycles
and the spectral properties of the corresponding Schrodinger operators are intimately related.
In next chapters, this relation will be exploited to derive both dynamical and spectral con-
sequences.

Remark 111.2.

(i) Quasi-periodic Schrodinger operators have been studied intensively in the last twenty
years. For reviews and references see Johnson [Joh83, JMO03] and Eliasson [Eli98a,
Eli99, Eli98b, Eli01, Eli02b], Chulaevsky [Chu89], Chulaevsky & Sinai [CS90, CS91]
and Dinaburg [Din97] from a dynamical point of view. From a spectral point of view see
Simon [Sim82, Sim00a], Jitomirskaya [Jit02], Bourgain [BouO4a, Bou04b] and the books
by Cycon, Froese, Kirsch & Simon [CFKS87], Pastur & Figotin [PF92] and Carmona &
Lacroix [CL90]. For physical applications see Sokoloff [Sok85].

(if) The study of quasi-periodic Schrodinger operators is relevant for the comprehension of
the so-called Quantum Hall effect, see Klitzing et al. [vKDP80], Frohlich [Fré94] and
Osadchy & Avron [OAOQ1]. In a two-dimensional metal or semiconductor at low tempe-
ratures a series of steps appear in the Hall resistance as a function of the magnetic field
instead of the monotonic increase (which would correspond to the classical Hall effect).
What is more, these steps occur at very precise values of resistance which are the same no
matter what sample is investigate. This can be explained by means of the Gap Labelling
Theorem which we will present in Section 111.2.2. Another physical application comes
from the electronic properties of quasi-crystals [Jan92], which are not exact crystals but
very nearly so which display symmetries forbidden by actual crystals. These have been
found to be common structures in alloys of aluminum with such metals as cobalt, iron,
and nickel. Unlike their constituent elements, quasi-crystals are poor conductors of elec-
tricity. From a mathematical point of view, see Bellissard et al. [BIST89, BIT91, BHZ00]
and references therein.
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(iii) The Schrodinger operators that we have presented are one-dimensional. In the continu-
ous case, the higher-dimensional generalization involves partial derivatives and, in the
discrete case, partial differences. Many of the spectral properties that we will present
in Section I11.1 extend to higher dimensions, but the connection with the dynamics is
less clear. For an introduction to the spectral theory of Schrodinger operators in higher
dimensions, see Reed & Simon [RS75, RS78].

I11.1  Spectral theory

In this section we present the basic spectral objects needed in our study of Schrédinger operators
with quasi-periodic potential. Second order differential operators on functions

(Hga) (1) = =22(0) + a(0)a(t)

and second order difference operators on sequences
d
(Hiz) = Tpy1 + Tpo1 + v(n)zy

will be considered at the same time. Along this section no quasi-periodicity will be assumed
on the potentials ¢ and v but only that they are bounded as functions of ¢t € Rand n € Z
respectively.

I11.1.1 Discrete Schrodinger operators. Operators in Hilbert spaces

Let us consider first a discrete Schrodinger operator H¢, being v = (v(n)).ez @ bounded se-
quence of R. This is a linear operator or simply operator on /2(Z), the Hilbert space of se-
quences z = (z,)nez C R such that

lzlle =) |zal* < o0.
nEz
The scalar product of this Hilbert space is

<$a y> = Z TnYn

neEL

for any =,y € [?(Z). Such discrete Schrodinger operators are self-adjoint, because H¢ =
(H%)*, and bounded:
[Hyz]],2 < 2+ (o]l [l -

The spectrum of a linear operator H (for example HZ, although H needs not to be bounded)
on a Hilbert space H (e.g. I2(Z)) is the set of those A € C for which the operator H — A1,
being I the identity on 7{, does not have a bounded inverse. This set is denoted by o(H ). If the
operator is self-adjoint, then this is a subset of the real line which is bounded if the operator is
bounded. The complementary on R of the spectrum

p(H) =R - o(H)
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is an open set which is called the resolvent set of the operator. Therefore, discrete Schrodinger
operators have a spectrum which is a compact subset of the real line:

o (Hy) C [=lvlle; l[o]lie] -

These discrete Schrodinger operators on 1%(Z) can be seen as infinite matrices acting on the
space of sequences,

and finite dimensional real symmetric matrices can be regarded as self-adjoint operators on a
finite set of integers. A difference between Hilbert spaces with infinitely many dimensions and
finite-dimensional ones is that not all elements of the spectrum of an operator are eigenvalues.
An eigenvalue of an operator H in a space H is a value a € C such that there exists a ¢ € H,
called eigenvector, with
Hy = arp.

Clearly, the eigenvalues of an operator belong to its spectrum (and therefore they are real for
self-adjoint operators), but not all elements of the spectrum are eigenvalues. The set of eigen-
values of an operator (sometimes called the point eigenvalues) is called its point spectrum. The
multiplicity of an eigenvalue is the dimension of the space of eigenvectors of this eigenvalue.

Adapting this to our case of interest, discrete Schrodinger operators H%, a € R is an eigen-
value if there exists a 1) = (¥,),,c5, Such that

Y1 + Un_1 +v(0)Yy, = athy, n € Z.

We are going to show that the multiplicity of eigenvalues of discrete Schrodinger operators is
always one: square integrable solutions of the eigenvalue equation cannot coexist. The tools
will be completely dynamical:

Lemma 111.3. Let v = (v,)nez @ bounded sequence of R and a € R. Then the Harper-like
equation
Tl + Tuo1 +0(N)2y = axy,n €L (111.11)

cannot have more than one linearly independent solutions tending to 0 as n — +oo. In parti-
cular, the multiplicity of a as an eigenvalue of the corresponding discrete Schrodinger operator
HZ is at most one. A similar result holds when n — co.

Proof: The proof follows from a consideration of the iterations of the corresponding Schrodinger
cocycle. Indeed, assume that z = (x,)nez and y = (yn)nez are two solutions of Equation
(11.12). Let

Xn+1 = ( .’13;4_1 yZ+1 ) y Hn—l—l = 271'0)(77/ + ].)
n n

Then the sequence (X, 0,,)nez Satisfies

(Xn+17 9n+1) = (Av w) (Xm en) = (A7 w)n+1 (XOv 0)
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for every n € Z. Since (A,w) is a cocycle on SL(2,R) x T¢, the Wronskian of z and y
Wn(x7 y) = TnYn—-1 — YnTpn-1 = det Xn

does not depend on n and it is different from zero if = and y are linearly independent. In parti-
cular both solutions cannot tend to zero when n goes to +oo (or —oc), hence the contradiction
with both = and y linearly independent and in [2(Z). O

This property about the multiplicity of eigenvalues is called the limit-point character at +oo
of the potential v.

Remark I11.4. The spectrum of the discrete Schrodinger operator on /%(Z) with potential
identically zero, HZ, has no eigenvalues and

o(Hy) = [-2,2],

see Isaacson & Keller [IK94] for instance. In terms of the dynamical characterization which
will be given in Section 111.2.1 this will be clear.

I11.1.2 Continuous Schrodinger operators. Essential self-adjointness

For continuous operators Hj the situation is a bit more involved. The Hilbert space to be
considered is L*(R), the space of functions f : R — R with

1]z = (/le(t)lzdtf < o,

which comes from the scalar product on complex-valued functions

(f,g) = /R F(O) gt

Contrary to the case of discrete Schrodinger operators, these continuous operators are not
bounded and the definition of the operators,

(Hgz) (t) = —a"(t) + q(t)= (1),

in terms of the derivatives does not make sense for all functions in the Hilbert space L?(R).
Nevertheless, it can be defined on a dense subset of L?(RR), namely the set of infinitely differen-
tiable functions of compact support, which we denote by C¢°(R). We say that H is essentially
self-adjoint in the domain Cg°(R) if there is a unique extension of H¢ to the whole L?(R) which
is a self-adjoint operator.

For a continuous Schrddinger operator, self-adjointness depends on its limit-point character
at +oo. More precisely one has the following.

Theorem I11.5 (Weyl’s limit-point criterion, [RS80]). Let ¢ be a continuous real valued func-
tion on R. Then the corresponding Schrodinger operator

(Hgz) (t) = —a"(t) + q(t)z(t),
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is essentially self-adjoint on C§°(R) if, and only if, ¢ is in the limit-point case both at +oc and
—oo. That is, for any a € R, the Hill equation

—2"(t) + q(t)z(t) = az(t) (111.12)

has at most one linearly independent solution which is square integrable at +oo. The same
holds for —oo.

The proof of the limit-point character is not as direct as in the discrete case, where it was
a consequence of the preservation of the Wronskian and the decay at +co of square-integrable
sequences. In the continuous case, the preservation of the Wronskian of two solutions z, y of
Hill’s equation (111.12)

W(z,y)(t) =2"(t)y(t) —y')z(t), teR

also holds, but this does not contradict with the fact that both = and y may be square integrable
at +oo. A convenient criterion for our purposes will be the following, which can be found in
Coddington & Levinson [CL55].

Theorem I11.6. Let ¢ be a continuous function and C;, Cy > 0 constants such that
q(t) > —Ci(£* + 1), [t > Co.
Then ¢ is in the limit-point case around +oco and the Schrodinger operator
(Hgz) (t) = =" (t) + q(t)x(t)
is essentially self-adjoint on C§°(R).

In particular, if ¢ is bounded from below (which is true for any quasi-periodic function g),
the corresponding Schrddinger operator H is essentially self-adjoint on Cg°(R) and we can
consider its unique extension to L*(R). In what follows, H; will denote also this extension to
L*(R).

Given a potential ¢, the spectrum and the resolvent set of H¢ can be defined as it was done
in the previous section. This spectrum, o(HY), is no longer a bounded set of R, because the
operator is unbounded. Nevertheless, if ¢ is bounded then one has the inclusion

o(Hy) C [llqllo; +00),
which means that that the spectrum is bounded from below (see Section 111.2.1).

Remark I11.7. The Schrodinger operator with potential identically zero, H§, has no eigenva-
lues in L?(R) and
o(Hg) = [0, +00)

This will be proved in Section I11.2.1.
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I11.1.3 The spectral theorem for bounded self-adjoint operators

In this section we give a formulation of the Spectral Theorem for bounded and self-adjoint
operators. One can give a version for unbounded operators, for example continuous Schrodinger
operators, but we prefer to give the version for bounded operators, because it is simpler and is
the one that will be used in Chapter VII. The approach to the spectral theorem is taken from
Reed & Simon [RS80] where the reader will find proofs and references to other formulations.

Let H be a bounded and self-adjoint operator in a Hilbert space 4. The spectral theorem
tries to give a meaning to the expression f(H) for any bounded Borel function defined on the
spectrum of the operator. Let us first consider the finite-dimensional situation: A is a finite
dimensional space (isomorphic to the Euclidean space R" for a suitable dimension n) and H is
a self-adjoint matrix in this space.

If o(H) = {A1,..., A} is the spectrum of H and P, denotes the spectral projection onto
the kth eigenspace, we may write

H = i e P
k=1

and, given any complex function f : o(H) — C, a convenient definition of f(H) is

FIH) =) F(M) P

This construction satisfies the following properties

() (af + Bg) (H) = af (H) + By(H).

(i) (fg) (H) = f(H)g(H).

(iii) f(H) = f(H)".

(iv) If f(z) = x then f(H) = H.

(V) If Hy = Xpthen f(H)y = f(A).

(vi) If f > 0then f(H) > 0. This means that (f(H)z,z) > 0 forall z € H.
(vii) [[f ()|l = supxeq(a) f(A)-
(viii) o(f(H)) = f(o(H)).

for «, B € C and complex-valued functions on o (H).

We now turn to the general situation where H is a bounded self-adjoint operator on a Hilbert
space H. We will construct f(H) for any bounded Borel function on the spectrum of the
operator H (this is a compact set) which will satisfy the properties (i-viii) above. The idea for
this construction is to approximate it first by polynomials and then by continuous functions on
the spectrum.

Given any complex-valued polynomial p : C — C,

p(z) =ap+ a1z + ...+ a,z”,
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the natural definition of p(H),
p(H)=al+aH+...+a,H"

is a bounded operator on A (not necessarily self-adjoint) which satisfies the properties (i-viii)
above. This is called the polynomial functional calculus.

The next step is to define f(H) for any f € C(o(H)), the set of continuous functions on
the spectrum of H, where we take the supremum norm

| fllcomy) = sup [f(A)].
A€o (H)

Using Weierstrass Approximation Theorem, polynomials are dense in C'(c(H)). Therefore,
given any f € C(o(H)) there is a sequence of polynomials (p,),>o converging to f on
C(o(H)). The sequence (p,(H)),-, is a Cauchy sequence in the space of bounded linear
operators on H, L(H). We call f(H) the limit of this Cauchy sequence. One can show that this
f(H) does not depend on the sequence chosen and that the construction satisfies the properties
of the functional calculus (i-viii). This is the continuous functional calculus.

The last step is to define f(H) for any bounded Borel function on C(o(H)). Given any
1) € H the map

feCla(H)) = (4, f(H))

defines a positive linear functional due to property (vi) of the continuous functional calculus
and, by the Riesz Representation Theorem, there exists a unique positive Borel measure i,
such that

(W, F(H)E) = /C oy TV

for every f € C(o(H)). This measure s, is called the spectral measure associated to 1.
These spectral measures are supported in the spectrum o(H) (this means that the measure of
the resolvent set is zero). Using spectral measures one can construct f(H) for Borel measurable
functions: f(H) is the only bounded operator on H such that

(W, F(H)p) = / )

for every ¢ € H. This is the spectral theorem in the functional calculus form: for any bounded
and self-adjoint operator H in a Hilbert space H there exists a unique map from the algebra of
bounded Borel functions on R to the algebra of bounded linear operators from A to itself

f € B[R) = (f) = f(H) € L(H)
such that
(a) ¢ is an algebraic x-homomorphism.
(b) ¢ is norm-continuous: [|¢(f)llz¢) < Il flloo-

(c) If f is the identity, then ¢(f) = H.
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(d) If f, — f pointwise and || f, || is bounded, then ¢(f,,) — &(f) in the strong topology.
(e) If Hyp = Ay, then §(f) = f(A)¢.

(f) If f > 0, then ¢(f) > 0.

(9) If BH = HB for some B € £(H), then ¢(f)B = Bo(f).

Recall that any measure . on R has a unique decomposition into

M= Hpp + Pac Tt Hse

where p,, is a pure point measure, j,, is absolutely continuous with respect to Lebesgue meas-
ure and . is singular continuous with respect to Lebesgue measure. It can be seen that for a
bounded and self-adjoint operator on H the sets

Hyp = {t € H; py is pure point} ,

Hae = {00 € H; wy is absolutely continuous}

and
Hse = {¢ € H; py is singular continuous}

are invariant under H and
H - pr @ /}{ac @ HSC'

Moreover Hy,, has a complete set of eigenvectors (a basis of eigenvectors), Hz,. has only
absolutely continuous spectral measures and H),,. has only singular continuous spectral meas-
ures.

According to this decomposition above we let o,,(H) be the set of eigenvalues, which we
call the pure point spectrum,

O'ac(H) =0 (H|'Hac) s
which is called the absolutely continuous spectrum and

os(H)=0 (H\Hsc)

the singular continuous spectrum. Even if the union of these spectra is not always o(H) the
following holds:

o(H) = 0pp(H) U0y (H)Uos(H).

111.2 Dynamical approaches to the spectral theory

In the previous section we considered some aspects of the spectral theory of Schrodinger op-
erators, not necessarily quasi-periodic. In this section we will only consider the quasi-periodic
case, both continuous and discrete, and our main interest will be to link the spectral properties of
these operators to the dynamical properties of the skew-products that their eigenvalue equations
define on SL(2,R) x T¢.
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Let us begin fixing the notation for the rest of the section. Given a quasi-periodic function ¢
with continuous lift @ to T¢ and irrational frequency vector w, we define the family of operators
H§ , 4 for ¢ € T as the self-adjoint extension to L*(R) of the following operator

(H§, 47) () = —2"(t) + Q(wt + ¢)z(2). (111.13)

This is a quasi-periodic Schrodinger operator. Its eigenvalue equation is the following Hill’s
equation
2" (a— Qwt+ ¢))x =0, (111.14)

which defines the skew-product flow (111.3) on R? x T¢.

For a quasi-periodic sequence (v(n)),ecz With continuous lift V' to T¢ and nonresonant fre-
quency vector w € RY, the discrete quasi-periodic Schrodinger operators HVw o With ¢ € T¢,
are defined as

(HE )0 = Tns + Tur + V (20n + ) 2, (111.15)

on [%(Z). The corresponding eigenvalue equations are
Tpt1 + Tne1 +V (2wn + @) x, = azy, nez (111.16)

which gives rise to the quasi-periodic skew-product (111.9) on R? x T<. This is the iteration of
the Schradinger cocycle (42 _,,w) on SL(2,R) x T¢ defined by (111.10).

I11.2.1 Dynamical characterization of the resolvent set

Our first goal is to give a characterization of the spectrum of quasi-periodic Schrodinger ope-
rators in terms of the dynamics of the corresponding skew-products on R? x T¢. Recall that
the resolvent set of these operators (the complementary of the spectrum) is the set of those
a € R for which H§, , , — o and H{}, , — al respectively have a bounded inverse on the
corresponding H|Ibert space A dynamical characterization of these resolvent sets was given by
Johnson [Joh82] using the notion of exponential dichotomy.

Theorem 111.8. Let Q : T¢ — R (respectively V) be continuous and w € R? rationally
independent (resp. nonresonant). Then the resolvent set of Hg, , , (resp. H&w,d)) is the set of
a € R for which the associated skew-product flow (111.3) (resp. (I11.9)) has an exponential
dichotomy. Equivalently a € R belongs to o (H§, ;) if, and only if, the Hill equation

7' —(a—-Qwt+¢))x =

has a nontrivial bounded solution for some ¢ € T¢. Also a € a(H{ﬁ’w,qb) if, and only if, the
Harper-like equation

Tpi1 + T+ V (2wn + @) x, = axy, nel
has a nontrivial bounded solution for some ¢ € T<.

The proof in [Joh82] is for the continuous case and in a more general setting, but it extends
to the difference case without problems (see Johnson [Joh83]). An immediate consequence is
the independence of the spectra of Hg, , , and H‘d,,w on the phase ¢ € T¢.
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Corollary 111.9. Let @ : T¢ — R (resp. V) be continuous and w € R¢ rationally independent
(resp. nonresonant). Then the spectrum of Hg, , , (resp. H‘d,,w,d,) does not depend on ¢ and one
can write

o(Q,w) =0 (Hé,w,¢)
and

(V,w) =0 (H{ﬁ,w’d)) .

for all ¢ € T.

Even if the spectra of these quasi-periodic Schrddinger operators do not depend on ¢, the
spectral decomposition of these operators in terms of absolutely continuous, singular continuous
and pure point spectra given in Section 111.1.3 depend on the ¢ chosen. In fact, this decomposi-
tion may depend in a subtle way on the precise arithmetic conditions on w and ¢ (see Chapters
VI and VII).

At the end of the previous chapter we saw that a quasi-periodic skew-product flow, either
continuous or discrete, with exponential dichotomy is conjugated to a skew-product with dia-
gonal matrix by a transformation which is defined on (R/(47Z))%. In the continuous case such
diagonal matrix is of the form

k() 0
0 w1 )"
Using the Floquet representation one has the following result on the type of solutions in the
resolvent set of a Schrddinger operator

Corollary 111.10. Let @ : T¢ — R (resp. V) be continuous and w rationally independent (resp.
nonresonant). Then a € R is in the resolvent set of Hg, , , (resp. H{f',w@) if, and only if, the
equation

2"+ (a— Q(wt+ ¢))z =0

(resp.
Tnt1 + Tno1 + V(21wn + @)z, = azy, n € Z)

has two linearly independent solutions one of which is square integrable (resp. summable) at
+oco and the other one at —oo.

As a consequence of this result the identities
05 = [0, +00)

and
Jg,w = [_27 2]

follow from direct integration of the corresponding eigenvalue equations.
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I11.2.2 Rotation number and applications to the spectrum

The rotation number is a very convenient object for the description of the spectrum of quasi-
periodic Schrddinger operators. Basically it is a continuous and increasing function on R whose
support (the set of points of increase) is the spectrum of the Schrédinger operator. The rotation
number can be obtained from several points of view which we now present. First of all we
give the original formulation of Johnson & Moser [JM82] for the continuous case together with
some equivalent definitions. The adaption to the discrete case is given in afterwards. Finally the
so-called Gap Labelling Theorem, which describes the possible values of the rotation number
in the complement of the spectrum, is stated.

The continuous case

Let us introduce the rotation number for quasi-periodic equations of Hill’s type
"+ (a— Qwt+ ¢))x =0, (111.17)

and its link with the spectrum of the operator Hg, , following the approach by Johnson & Moser
[JM82]. Given any nontrivial solution of (111.17) the map

te R z(t) = 2'(t) +iz(t) € C— {0}
is continuous and well-defined, so that one can take its argument

p(t) = arg z(t)
which is a continuous function ¢ : R — R. Any two argument functions differ by a fixed
integer. The differential equation satisfied by ¢ is
¢ = (a — Q(wt + @)) cos? p — sin® .

The fact that this differential equation depends only on ¢ (and t) comes from the linear character
of the skew-product flow (I11.3). In fact, for any continuous skew-product flow, not necessarily
coming from a differential equation of Hill’s type, such an equation for the argument of z can
be constructed.

The rotation number of Equation (I11.17) is the following limit

lim _(p(t)
t=s4+oo T

and therefore, measures the average winding of z around the origin in C. The following result
confirms the naturality of such object:

Theorem 111.11 ([JM82]). Let Q : T¢ — R be a continuous function, w € R? a rationally
independent frequency vector and a € R. If = is a nontrivial solution of

"+ (a— Qwt+ ¢))x =0,
for some ¢ € T¢, the limit

arg (z'(t) +iz(t))

rot‘(a — Q,w) = tlim
— 00
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exists in R and it does not depend on x nor on ¢. Moreover the map
a € R rot°(a — Q,w)
IS increasing, continuous, equal to zero for a < a*, for some ¢* € R and

lim rot® (a — Q) = +o0.

a—0o0

Remark 111.12. If the average of ) is zero then a* < 0.

If w has some rational dependencies, the rotation number also exists, but it is not independ-
ent on ¢. We stress that the rotation number will be constant in the closure of the orbit wt + ¢
in T¢. Apart from this, the rotation number has a good dependence on @ and w:

Theorem 111.13 ([JM82]). Let rot°(a — Q,w, ¢) denote the rotation number of Hill’s equation
(111.17). Then the map

(Q.w) € C(T%,R) x R? = rot(a — Q,w, )
is continuous at rationally independent frequency vectors w and any ¢ € T<.

The spectrum of a quasi-periodic Schrodinger operator and the rotation number of the cor-
responding eigenvalue equations are linked in the following way

Theorem 111.14 ([JM82]). Let rot°(a — @, w) be the the rotation number of
2"+ (a — Qwt+ ¢))z =0

for a continuous ) and a rationally independent w. Then the spectrum of the Schrddinger
operator Hg, , . is the set of points of increase of the map

a € R rot’(a — Q,w).

Figure I11.1 displays a numerical computation of the rotation number for a Hill’s equation.
The intervals of constancy of the rotation number that there appear correspond to intervals in
the resolvent set of the associated Schrodinger operator. The connected components of the
resolvent set of a Schrddinger operator are called the spectral gaps. In next sections, we will
see how the rotation number in these intervals can only take values in a countable set which
depends on the frequencies of the potential.

Before ending this introduction let us give two other definitions of the rotation number of a
Hill’s equation. Take a nontrivial solution x and let N([to, t1], ) be the number of zeroes of =
in the interval [to, ¢1]. Then, the rotation number equals to

7TN([t0, t1], .T)
[t1—to| =00 |t1 — t0| ’

see [JM82]. Apart from this Sturmian definition, one can give a definition of the rotation number
in terms of the following regular eigenvalue problem

2" — Q(t)xr = ax, with z(t) =z(t;) =0
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Figure 111.1:  lllustration of a numerical approximation of the rotation number of equation z” +
(a4 b(cost + cosyt)) z = 0 as a function of a for different values of b and v = (1 + +/5)/2. Top: at
the left, b = 0.1, and at the right b = 0.35. Bottom: b = 0.6. For the methodology of the computation
see Broer & Simo [BS98].

It follows from Sturm’s comparison theorem (see, for instance, [CL55]) that the distribution
function of the eigenvalues of the above problem k(a, to, t1) differs from N([¢1, to],x) by £1,

so that
k(a,to,t1)  rot®(a — Q)

bl

[t1—to|—o0 t, — t() ™
The left hand side of this expression is often called the integrated density of states. It is the

distribution function of the density of states, a fundamental tool in quantum physics. It can be
defined for more general operators, see Pastur & Figotin [PF92].

The discrete case. The integrated density of states

The definition by Johnson & Moser of the rotation number of a continuous quasi-periodic equa-
tion of Hill’s type in terms of the average rate of growth of the argument of solutions is not
the most direct in the discrete case. Nevertheless some of the previous equivalent definitions
are easy to adapt to the discrete case. Let us start with the Sturmian approach to the rotation
number. If (z,),ez is a nontrivial solution of

Tni1 + T +V 2rwn + @) x, = ax, (111.18)

forsomea € R, V : T¢ — R continuous, w nonresonant and ¢ € T¢, let N (a, [n1,n2]) be the
number of changes of sign of such a solution for n; < n < n,, adding one if z(ny) = 0. Then
the limit
I N(a,[n1,ns))
|na—n1|—00 2(7?,2 — nl) +1
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exists, it does not depend on the chosen solution z, nor on ¢ and it is denoted by rot?(a — V, w).
Here the superscript d stands for discrete and the underscript s for Sturmian. This approach was
followed by Delyon & Souillard [DS83] in a more general context.

The integrated density of states can also be introduced as in the continuous case. Indeed, let
Ky o) (@, V,w, @) be (ny — ny) ! times the number of eigenvalues less than or equal to a for
the restriction of H{, , , to the set

[Tll,ng] = {nl, .. .,712}

with zero boundary conditions at ; — 1 and ny 4+ 1. Then, as [ny —ny| — 00, kjn, ne)(a, Vi w, @)
converges to a continuous function k(a, V, w), which is the called the integrated density of states
of (111.18) or H&w,(b, see Avron & Simon [AS83], and it is independent of ¢. This integrated
density of states and its relation with the spectral decomposition of the operators H{i’w,d, will
be described in more detail in Chapter VII. The Sturmian rotation number and the integrated
density of states of (111.18) are very close:

2rot?(a — V,w) = k(a, V,w), a€R

This connection between both objects allows to adapt some of the properties of the rotation
number from the continuous to the discrete case.

Theorem 111.15. Let V : T — R be continuous and w nonresonant. The Sturmian rotation
number of (111.18), rot?(a — V, w) satisfies that the map

(a,V) € R x C°(T% R) ~ rot4(a — V,w) € [0,1/2]

is continuous and increasing for fixed V. Moreover the points of increase are exactly o¢(V, w),
the spectrum of HY, , ,.

Figure 111.2 displays the numerical computation of the rotation number for a discrete equa-
tion. As in the continuous case, the intervals of constancy correspond to intervals in the re-
solvent set of the corresponding operator which are called spectral gaps.

To extend the definition by Johnson & Moser to the discrete case it is convenient to switch
to the more general context of quasi-periodic cocycles on SL(2,R) x T¢ (with a suitable geo-
metrical hypothesis to be described later) which will allow the definition for continuous time
skew-product flows on SL(2,R) x T¢ using Poincaré cocycles. The definition of such rotation
number was given by Herman [Her83]. Let us follow the presentation by Krikorian [Kri].

Let (A, w) be a quasi-periodic cocycle on SL(2, R) x T, for example a Schrodinger cocycle

where e ( A V() -1 )
av\¥) = 1 WE

for some continuous V : T¢ — R and w nonresonant. We say that it is homotopic to the identity
if A:T¢ — SL(2,R) is homotopic to the identity. Recall SL(2,R) is not simply connected
and its first homotopy group is isomorphic to Z, with generator the rotation R; : T — SL(2,R)

given by
Ri(6) = ( cosf —sinf )

sin 6 cosf
foralld € T.
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Figure 111.2: Numerical approximation of the rotation number of the so-called Harper equation z 1 +
Tp_1 + beos(2nwn)z, = az, as a function of a for different values of b and v = (/5 — 1)/2. From
top to bottom and from left to right b = 0,0.5, 1, 2

Remark 111.16. Any Schrodinger cocycle is homotopic to the identity. Also any Poincaré
cocycle arising from a linear quasi-periodic differential equation on SL(2,R) x T¢ is homo-
topic to the identity. In both cases it is enough to place a parameter in front of the potential,
ranging from zero to one.

Let S! be the set of unit vectors of R? and let us denote by p : R — S! the projection given
by the exponential p(t) = ¢, identifying R? with C. Because of the linear character of the
cocycle and the fact that it is homotopic to the identity, the continuous map

F: S'xT — S'xT
(v,0) (HAQ)U 0+27rw)

O)vll?

(111.19)

is also homotopic to the identity. Therefore, it admits a continuous lift ' : R x T¢ — R x T¢
of the form:
F(t,0) = (t+ £(0,1),0 + 27w)
such that
A(0)p(t)
1 A@)p @)l

forallt € Rand @ € T. The map f is independent of the choice of F' up to the addition of
a constant 27k, with £ € Z. Since the map # — 6 + 27w is uniquely ergodic on T for all
(t,0) € R x T¢, one has that the limit

Ft+2m, 0 +2mw) = f(t,0) and p (t + f(t,0)) =

i oy 21 ()
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exists, it is independent of (¢, 8) and the convergence is uniform in (¢, #), see Herman [Her83]
and Johnson & Moser [JM82]. This object is called the fibered rotation number of (A,w),
which will be denoted by rot$(A,w). By construction it is defined modulus Z. The fibered
rotation number of an equation of Harper type is defined as the fibered rotation number of the
associated Schrodinger cocycle on SL(2,R) x T¢ and it is denoted as rot‘fc(a —V,w).

Example 111.17. If Ay, € SL(2,R) is a constant matrix and w € R? is nonresonant, then the
fibered rotation number of the cocycle (Ao, w), is the absolute value of the argument of the
eigenvalues divided by 27.

Since we have two definitions of rotation number for Harper equations it is sensible to try to
link them. Using a suspension argument (see Johnson [Joh83]) it can be seen that, if H{ﬁ’w isa
quasi-periodic Schrodinger operator, k(a — V, w) its integrated density of states and (A¢_,,,w)
the corresponding Schrodinger cocycle then

1
rotfe(a —Vw) = ik(a, V,w) (mod. Z)

Therefore, one has the following relation between the Sturmian and the fibered rotation numbers
of a Harper equation:

rotd(a — V,w) = rot;ic(a —V,w) (mod. Z).

foralla € R

Reducibility and rotation number

In this section we want to see to what extend the fibered rotation number is invariant through
conjugation of cocycles. Recall that two quasi-periodic cocycles (A, w) and (As, w) on the
space SL(2,R) x T¢ are conjugated if there is a continuous map Z : T¢ — SL(2, R) such that

(A1, w) 0 (Z,0) = (Z,0) o (As,w) (111.20)

which is equivalent to
A(0)Z(0) = Z(0 + 2mw) A (0)

for all & € T¢. A cocycle is reducible to constant coefficients if it is conjugated to constant
coefficients. Let us first consider the case when the conjugation Z is defined on T (i.e. there is
no frequency halving).

Recall that the fundamental group of SL(2,R) is isomorphic to S'. The degree of a map
Z :T% — SL(2,R) willbe k = (ky,..., kq) € Z4 if, foreach 1 < j < d, the degree of the
map

0, € T Z(0,...,0,0;0,...,0) € SL(2,R)

is k']
Proposition 111.18 ([Kri]). Letw be nonresonantand (A;,w) and (A, w) be two quasi-periodic
cocycles on SL(2, R) x T? homotopic to the identity. If they are conjugated, see Equation 111.20,
for some continuous Z : T¢ — SL(2, R), then

rot?(Al, w) = rot‘;(AQ, w) + (k,w) modulus Z,
where k € Z¢ is the degree of the map Z : T¢ — SL(2,R).
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Remark 111.19. If the conjugation Z is not defined on T¢ but on (R/(47Z))¢ and it has degree
k € T¢, then

1
rot$(Ay,w) = rot$(As, w) + §<k,w).

This is so because
rot}(A, w) = rotf(A(2-),w/2)

for any quasi-periodic cocycle on SL(2,R) x T¢ homotopic to the identity.

We see, therefore, that the fibered rotation number is not invariant under conjugation of
cocycles, although it can only change by half integer multiples of the fundamental frequencies.
We will come to this again in the next section. Now let us discuss the rotation number for
continuous quasi-periodic skew-products.

In the continuous case, one can define the rotation number of a continuous skew-product
flow without making use of the Poincaré cocycle. Indeed, let

' = A(f)z, 0 =w, (111.21)

be a quasi-periodic skew-product flow on R? x T¢ with A : T¢ — si(2, R) continuous and w
rationally independent. Then the rotation number of the skew-product flow (111.21) is the limit

iy 218 x(t)
t—00

where (z, #) is any nontrivial solution of (I11.21). There is also a differential equation for this
argument, ¢(t¢), which is given as a quadratic function in terms of cos ¢(¢) and sin (t). This
will be used in the next chapters. The definition above does not depend on z, nor on the initial
condition for # so that one can write rot®(A, w), see Eliasson [Eli92]. This definition is con-
sistent with the definition of rotation number when the continuous skew-product comes from a
Hill’s equation. This rotation number is not invariant by conjugation, but if Z : T¢ — SL(2,R)
and B : T¢ — si(2, R) satisfy the conjugation

0,7(0) = A0)Z(0) — Z(0)B(H), 0 €T
then
rot’(A,w) = rot’(B,w) + (k,w)

where k is the degree of Z. If Z is only defined on (R/(47Z))? and k is the degree of Z(2:)
then

1
rot‘(A,w) = rot’(B,w) + §<k’ w).
Similar to what was done with the Sacker-Sell spectrum in Section 11.3.2 it is possible to link

the above rotation number of a linear quasi-periodic differential equation on SL(2,R) x T to
the fibered rotation number of any Poincaré cocycle.
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Gap Labelling theorem and structure of the spectrum

The results in the previous section on the change of rotation number of quasi-periodic cocycles
and linear quasi-periodic differential equations under their conjugation lead naturally to the
definition of classes of rotation numbers which are invariant through conjugation. These classes
depend only on the frequency vector w € R?. If o € R the class of continuous rotation numbers
preserved by conjugation is

1
M (w) = {04-1— §(k, w), k € Zd}
and the class of discrete fibered rotation numbers preserved by conjugation is
M (w) = {a + %(k, w), k € Z% (mod %Z)}.

The following classes of conjugation are important. A continuous rotation number is said
to be rational with respect to w if it belongs to the class of conjugation of zero. The set of these
numbers will be denoted as

cul) = M) = { e ke 2]

In the discrete case the corresponding class of conjugation will include 0, 1/2 and all fibered
numbers which are conjugated to these two. The fibered rotation numbers of the set

1 1
Mgess(w) = {5(1{) w)) k E Zd, (mOd §Z)} .
are called resonant with respect to w. Note that

d
Mress

and .
Mgess(w) = Mgat(w) (mOd §Z)

We saw in Section I11.2.1 that points in the resolvent set of quasi-periodic Schrodinger
operators are characterized by the fact that the corresponding eigenvalue equations induce skew-
products with exponential dichotomy to SL(2,R) x T?. The latter are conjugated to diagonal
skew-product flows, maybe halving the frequency. The following result follows from direct
integration.

Lemma I11.20. Let

(resp.
k(6 0

be a continuous (resp. discrete) skew-product on SL(2,R) x T?. Then its rotation number is
zero (resp. modulus 37).
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Therefore one has the following description of the possible rotation numbers at spectral gaps
(intervals in the resolvent set) of continuous quasi-periodic Schrédinger operators.

Theorem 111.21 (Gap labelling, [JM82]). Let Q : T¢ — R be continuous and w € R?¢ be a
rationally independent frequency vector. If I is an open interval in the resolvent set of 0¢(Q, w)
then the continuous rotation number in this interval is rational with respect to w:

{k,w)

rot’(a — Q,w) = 5

a€l

for a fixed k € Z.
The result for discrete operators is as follows.
Theorem 111.22. Let V : T¢ — R be continuous and w € R? be a nonresonant frequency

vector. If I is an open interval in the resolvent set of o%(V, w) then the discrete fibered rotation
number is resonant with respect to w:

(k,w)

1
rotf(a — V,w) = (mod. EZ)

in the fibered case and either
rot?(a — V,w) = %{(k, w)} or rotia—V,w)=1/2,

in the Sturmian case, for some fixed k € Z<. Here {-} denotes the fractional part of a real
number.

Remark 111.23. Using the fact that the rotation number of a continuous quasi-periodic Schro-
dinger operator is always positive, the rotation number in the Gap Labelling Theorem must
belong to the following set of positive rationals with respect to w

M (w) = {%(k,@ >0,k € Zd}.

The Gap Labelling Theorem allows to assign a multi-integer (or equivalent a rotation num-
ber in M¢ (w) or M, ) to each nonvoid interval in the resolvent set of a Schrodinger ope-
rator, see Figure 111.3. If there is no spectral gap corresponding to a certain o« € M (w) (or
a € Md(w) in the discrete fibered case) there is only one a € R whose rotation number is
precisely a. In this case the set {a}, which is a subset of the spectrum, is called a collapsed
spectral gap of the operator. To distinguish between these collapsed gaps and the actual gaps
of the spectrum of the operator (nonvoid open intervals in the resolvent set) the latter are called
noncollapsed spectral gaps, even if this terminology is redundant. With this definition, there is
a correspondence between the sets M< (w) and M, (w) and spectral gaps, either collapsed
and noncollapsed.



60 Chapter I11. Quasi-periodic Schrodinger operators and cocycles

Figure 111.3: Schematic view of the gap-labelling of a discrete quasi-periodic Schrodinger operator,
the Almost Mathieu operator (see Chapter VI), V() = 2cos(#). The integer in the vertical direction
corresponds to the integer label of the gap and the horizontal direction displays the spectral parameter.

Some results on Cantor spectrum

To end this section let us consider briefly the implications of this Gap Labelling for the struc-
ture of the spectrum of quasi-periodic Schrodinger operators. To fix ideas, let us consider the
continuous case with w € R? rationally independent. The set

M (w) = {%(k,@ >0,k € zd}

is dense in [0, 0c0) if and only if d > 1, that is if the potential ¢ is not periodic. In the periodic
case all spectral gaps, either collapsed or not, are separated one from another by closed nonvoid
intervals which are called the spectral bands or energy bands. This is because the rotation
number is continuous, increasing and constant only at gaps (where it must take values in M¢,
which has no accumulation points).

In the quasi-periodic case, d > 1, this situation may change completely. Indeed, if d > 1 the
set M¢ (w) is dense in [0, co) so, if all spectral gaps are open the spectrum must be a Cantor
set, i.e. a nowhere dense set. This means that in every neighbourhood of a point in the spectrum
there is a noncollapsed spectral gap. Of course, Cantor structure of the spectrum does not imply
that all gaps are open, but only an infinite number of them, and that these are dense in R. The
Cantor structure of the spectrum is one of the main topics of interest in this thesis. Let us
now finish this section with some results on this Cantor structure for continuous quasi-periodic
Schrodinger operators. The results for the discrete case will be presented in Chapter V1.

Not all Schrodinger operators with quasi-periodic potential have Cantor spectrum. The
easiest example is the identically zero potential but it is not the only one which does not have
Cantor spectrum. Similarly to the periodic case, see McKean & van Moerbeke [MvM75] and
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references therein, De Concini & Johnson [DCJ87] showed that it is possible to produce ex-
amples of Schrodinger operators with algebraic-geometric quasi-periodic potentials having all
spectral gaps, except a finite number, collapsed. In particular these operators do not display
Cantor spectrum. Nevertheless, these examples are not very generic in a sense that will be
explained in Chapter IV.

One way to prove the existence of Cantor spectrum is based on the approximation by peri-
odic potentials where Floguet theory makes the discussion easier. Using this periodic case
Moser [Mos81], constructed a limit-periodic potential with Cantor spectrum. Limit-periodic
functions are uniform limit (in R) of quasi-periodic functions. Therefore, these are not quasi-
periodic but almost periodic functions.

Theorem 111.24 ([Mos81]). Given n > 0 and g, a continuous function of period 7, there exists a
limit-periodic analytic function ¢ with basic frequencies 277 (; = 0,1, ...) with ||g — g]|ec <7
for which the Schrodinger equation with potential ¢ has all spectral gaps open and, hence, the
spectrum is a Cantor set.

In Johnson [Joh91] (see also Fabbri, Johnson & Pavani [FJP02]), Moser techniques were
heavily used to provide a more general statement using again the periodic approximation.

Theorem I11.25 ([Joh91]). There is a residual subset (i.e., countable intersection of open dense
sets) F C R? such that, if w € F, then the following statement holds. There is a residual subset
VY =V(w) C C9(T?), with 0 < § < 1, such that, if @ € V and ¢ € T¢, then the operator

(Hgwpr) (1) = —2" (1) + Q(wt + ¢)(t) (111.22)
has Cantor spectrum.
The core of the proof is the following theorem on the genericity of exponential dichotomy:

Theorem 111.26 ([Joh91], cf. [FJ00]). Let A = R? x C%(T¢), where 0 < § < 1. There is an
open dense subset W C A such that, if (w, Q) € W, then the skew-product defined by

—2"(t) + Q(wt + @)x(t) =0
has an exponential dichotomy for all ¢ € T¢.

Finally, Cantor spectrum can also be obtained in combination with reducibility results, as it
is the case in the remarkable paper by Eliasson [EIi92] which will be discussed in the following
section. This kind of results on Cantor spectrum based on reducibility at tongue boundaries will
be given in Chapter V.

111.3 Eliasson’s Theorem

In this section we present a result by Eliasson [Eli92] on the reducibility of Schrodinger skew-
products, both continuous

' 0 1 '
= ( a—Q) 0 >x 0 = w, (111.23)
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where (z,6) € R? x T¢, and discrete

Tpt+1 = ( = I/(H) _01 ) Tn 0n+1 = Hn + 271'&), (“|24)

with (z,,,0,) € R? x T¢.

In the previous sections we have shown reducibility of these Schrodinger skew-products
when « lies in the resolvent set of the operator, the potential is real analytic and the frequencies
satisfy a suitable Diophantine condition.

In the spectrum the situation is quite different and the reducibility can be obtained close to
constant coefficients by means of KAM theory (from Kolmogorov-Arnol’d-Moser). A KAM
technique will be used in Chapter V to prove some reducibility results.

Regarded as dynamical systems on R? x T¢, the skew-products (111.23) and (111.24) have
{0} x T¢ as an invariant torus. The flow restricted to this invariant torus is quasi-periodic and
has frequency w. The frequencies in the normal directions to the torus, the normal frequencies,
are given by the rotation number of the skew-products (111.23) and (111.24).

A KAM method needs some Diophantine conditions on the frequency vector w and the
normal frequencies to the invariant torus, in our case the rotation number. Let us thus define
these Diophantine conditions for continuous and discrete rotation numbers.

Letw € R? be a rationally independent frequency vector. We say that a number « is strongly
rationally independent with respect to w if there exist K, 7 > 0 such that

{k,w)
2

K

> k € Z¢ — {0}.
k|

o —

The class of such « is denoted by DC¢ (K, 7, R?).
In the discrete case, for a nonresonant w, a number « is strongly nonresonant with respect

to w whenever the bound "
lsin (7 (2a — (k,w)))| > P
holds for all k € Z¢ — {0} and suitable fixed positive constants K and 7. The class is denoted
by DC4(K, T, R%).
In [Eli92], Eliasson obtained the following remarkable result in the continuous case.

Theorem 111.27 (Eliasson’s Reducibility Theorem [Eli92]). Letw € DC*(c, o, R?) be strong-
ly rationally independent and @ : T¢ — R be real analytic in a strip of width p > 0. Then there
is a constant C' = C(c, o, p) > 0 such that if we define

o= { 8528

then the following holds for a > Ao (|Q],).

(i) If the rotation number rot(a — @, w) is strongly rationally independent or rational, with
respect to w, then the skew-product flow (111.23) is reducible to constant coefficients (with
frequency w/2).
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(i) If @ > g is at the endpoint of a noncollapsed spectral gap then the Floguet matrix
B € sl(2,R) satisfies B?> = 0, being B = 0 if, and only if, the gap is collapsed.

This theorem is semiperturbative since the rotation numbers for which the skew-product is
reducible do not depend on the specific Diophantine condition of the rotation number. This
achievement was obtained by the use of a technique by Moser & Pdschel [MP84] which intro-
duced an adapted KAM scheme where a finite number of transformations, not close to the iden-
tity, were allowed in the iterative scheme. Previous perturbative KAM results proved reducibi-
lity in a large set in measure of rotation numbers, following the pioneering work of Dinauburg
& Sinai [DS75] (see Russmann [Riis80], Chierchia [Chi86, Chi87], Jorba & Sim6 [JS92, JS96],
Nunes & Yuan [NYO01]).

This theorem can be adapted to the discrete quasi-periodic case to obtain the following.

Theorem 111.28. Assume that V : T¢ — R is real analytic in a complex strip of width p > 0
and w is strongly nonresonant (i.e. w € DC%(c, o, R%) for some positive ¢ and o). Then there
is a constant C' = C'(c, o, p) such that, if

vi,<C
and the rotation number of
Tos1 + Tno1 + V(2mnw)z, = ax,

is either resonant or strongly nonresonant with respect to w then the Schrddinger cocycle
(A¢_,,, w), where
d . a — V(@) -1
Aa—V(e) - ( 1 0 )

is reducible to constant coefficients, with Floquet matrix B, by means of a quasi-periodic (with
frequency w/2) and analytic transformation. Moreover, if « is at an endpoint of a spectral gap
of the spectrum o?(V,w), then the trace of B is 2, being B = 41 if, and only if, the gap
collapses.

Remark 111.29. In Chapter VII we will prove a nonperturbative version of this theorem, namely
that when d = 1 the constant C above does not depend on the precise Diophantine conditions
on the frequency w as long as it is strongly nonresonant.

What happens with rotation numbers which are not rational with respect to w? Eliasson
[Eli92] showed that, generically in the continuous case, the eigenvalue equation has solutions
which are unbounded but whose rotation number is not rational (hence they are are not at end-
points of spectral gaps). This is a contradiction with the reducibility Theorem I11.27.

Theorem 111.30 ([Eli92]). Assume @ real analytic and w strongly rationally independent as in
Theorem I11.27. Then, for a generic @ in the |-| -topology, there exist values of a > X (|Q|,) for
which the fundamental matrix of (111.23) is unbounded and rot¢(a— @, w) is neither Diophantine
nor rational.

Remark I11.31. In particular, in the quasi-periodic case, one cannot expect reducibility of
Schrodinger cocycles for values of a in an open set. This is a substantial difference with the
periodic case.






Chapter 1V

Resonance tongues and instability pockets
In Hill’s equation with quasi-periodic
forcing

In this chapter we consider Hill’s equation with quasi-periodic forcing,
"+ (a+ bg(t))z =0, (IV.1)

where a, b are real parameters and the real analytic function ¢ is quasi-periodic in ¢, with a
fixed frequency vector w = (wy,...,wqs) € R%. Note the change of sign in the forcing ¢ with
respect to the notations in the previous chapter. A particular case appears when the forcing
g is even, so that Hill’s equation is then reversible, but for the main result of this chapter we
shall consider general, including nonreversible, Hill’s equations. The lift of the quasi-periodic
function, @ : T¢ — R such that ¢(¢) = Q(tw), will be assumed real analytic and the frequency
vector w is assumed to be strongly irrational with constantsc¢ > 0and 7 > d — 1, i.e., that

[(k,w)| = clk|7,

forall k € Z¢ — 0.
The objects of our interest are resonance tongues as they occur in the parameter space
R? = {a,b}. These are the connected components in the parameter plane where the rotation
number is constant. Therefore, resonance tongues describe how spectral gaps of the associated
Schrodinger operator vary as functions of 5. The main result in this chapter states that in the
present analytic case, for small |b|, the tongue boundaries are infinitely smooth curves and that
using normal form techniques one can study the geometry of the resonance tongues. In this geo-
metrical discussion we restrict to reversible near-Mathieu cases, which are a small perturbation
of the exact Mathieu equation where ¢(t) = Zle ¢; cos(w;t), with ¢y, . . ., ¢4 real constants. In
Remark 1.1 a geometric reason is given for restricting to reversible systems when looking for
instability pockets. An example of a near-Mathieu case with d = 2 and a deformation parameter
e is given by
¢:(t) = cos(wit) + cos(wat) + € cos(wy + wo)t. (IV.2)

It is shown that the occurrence of instability pockets is generic in the reversible setting and a
concise description of its complexity if given in terms of singularity theory, extending the results

65
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in the periodic case. We shall draw several consequences regarding the spectral behaviour of
the corresponding Schrodinger operator, in particular regarding the effect of instability pockets
on the collapsing of gaps. We develop examples where collapsed spectral gaps occur in a way
that is persistent for perturbation of the b-parameterized, reversible family.

The approach to this problem in this chapter is similar to the classical theory of Hill’s peri-
odic equations. Unlike in the periodic case, smoothness of the tongue boundaries is not easy
to obtain. This result uses a reducibility result by Eliasson [Eli92]. This makes an analysis
possible as in the periodic case. However due to accumulation of tongues we need a delicate
averaging technique.

Most of this chapter has been published in Broer, Puig & Simé [BPS03].

IV.1 Introduction. Main result

Our motivation on the one hand rests on the analogy with the periodic Hill equation, where
several results in the same direction were known. On the other hand, the present results were
motivated by the interest they have for certain spectral properties of the Schrodinger operator.
As explained in the previous chapter, for fixed b € R, Hill’s equation shows up as the
eigenvalue equation of the continuous quasi-periodic Schrodinger operator
(Hpz)(t) = —2"(t) — bg(t)x(t), (IV.3)

_bq

which can be extended to a self-adjoint operator on L?(R). In this setting, the parameter a is
called the energy- or the spectral-parameter.

In contrast with Chapter Ill, b is not considered as a constant, but as a parameter. This
will give a better understanding of certain spectral phenomena as these were observed for fixed
values of 5. One example concerns the fact that generically no collapsed gaps occur, as shown
by Moser & Pdschel [MP84]. Including b as a parameter, gives a deeper insight in the generic
opening and closing behaviour of such gaps in dependence of 4. Therefore our main interest is
with the quasi-periodic analogue of the stability diagrams as these occur for the periodic Hill
equation in the parameter plane R? = {a, b}.

The periodic Hill equation revisited

We briefly reconsider Hill’s equation with periodic forcing (the case d = 1), compare Broer &
Levi [BL95], Broer & Simo [BS00], who study resonances in the near-Mathieu equation

2"+ (a+bg(t)) z =0, ¢t + 2m) = ¢(1), (1V.4)

with ¢ even and where @ and b are real parameters. As is well-known, in the (a, b)-plane, for all
k

k € N, resonance tongues emanate from the points (a,b) = ((%)?,0), see Figure IV.1. Inside
these tongues, or instability domains, the trivial periodic solution x = z' = 0 is unstable. Com-
pare Van der Pol & Strutt [VdPS28], Stoker [Sto92], Rellich [Rel69], Hochstadt [Hoc86], Keller
& Levy [LK63], Magnus & Winkler [MW79], Arnol’d [Arn96, Arn83b, Arn83a] or Avron &
Simon [AS81, AS78]. For related work on nonlinear parametric forcing, see Hale [Hal92] and
Broer et al. [BHLV98, BHLV03, BHN97, BHVNV99, BLV97, BV92]. For nonlinear discrete

versions see [0S89, 0S98].
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Figure 1V.1: Resonance tongues in the classical periodic Mathieu equation z” + (a + bcost)z = 0 in
the (a, b)-plane, see Broer & Sim6 [BS00]. Shaded regions correspond to resonance tongues

Using Floguet theory (see Section 11.1.3), the stability properties of the trivial solution of
the periodic Hill equation are completely determined by the eigenvalues of the Poincaré map
P, which belongs to SL(2, R), the space of 2 x 2-matrices with determinant 1. In fact, elliptic
eigenvalues correspond to stability and hyperbolic eigenvalues to instability.

The geometry of the tongue boundaries was studied in [BL95] and [BS00]. It turns out
that generically the boundaries of a given tongue may exhibit several crossings and tangencies,
thereby also creating instability pockets, see Figure 1V.2. This term was coined by Broer-
Levi prompted by the term ‘instability interval’ [LK63] as it occurs for fixed values of 4. In
[BL95, BS00] normal forms and averaging techniques provide a setting for singularity theory
(see also [Afs86]). It turns out that in the near-Mathieu case close to the k& : 2 resonance, one
can have between 0 and £ — 1 instability pockets, with all kinds of intermediate tangencies: the
whole scenario has at least the complexity of the singularity A,,_;, compare [Arn94].

Remark 1V.1. For a description and analysis of more global phenomena in the periodic case,
see [BLS04]. A singularity theory approach of resonances in a general dissipative context is
given in [BGV03].

Resonance tongues and spectral gaps

Preliminary to formulating our main result let us recall some concepts from the previous chapter.
We start rewriting the quasi-periodic Hill equation (I1V.1) as a quasi-periodic skew-product flow
on R? x T¢. This yields a vector field X, given by

<§):<Q@laé><z)’ 0 =w. (IV.5)

In this setting of skew-product flows, the evenness of () leads to time-reversibility, which here
is expressed as follows: if R : R? x T¢ — R? x T¢ is given by R(z,y,0) = (x, —y, —6), then
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Non-collapsed gap
'~—— Collapsed gap

Instability pocket

Tongue boundaries

a

Figure 1V.2: Resonance tongue with pocket in the (a, b)-plane giving rise to spectral gaps on each hori-
zontal line with constant 5. Note how collapses of gaps correspond to crossings of the tongue boundaries
at the extremities of an instability pocket.

R,(X) = —X. Reversibility will not be assumed for the main result.

Even if there is no Floquet theory for such skew-product flows, resonance tongues can be
defined by means of the rotation number, rot(a, b) = rot‘(a — @,w), of Hill’s equation V.1,
see Section 111.2.2. We recall that the open intervals where the rotation number is constant are
the spectral gaps of the operator H¢,_ . In these gaps, the rotation number must be of the form

(k,w)
2 7

where k € Z? is a suitable multi-integer such that (k,w) > 0 by the Gap Labelling Theorem
11.21.
M (w) = {3(k,w) €R |k € Z%and (k,w) >0}

is called the module of positive half-resonances of w. By analogy with the periodic case we
define resonance tongues as the following subsets in the parameter plane.

Definition IV.2. Let k € Z. The resonance tongue of the quasi-periodic Hill equation (I1V.1)
associated to the multi-index k is the set

R(k) = {(a,b) € R* | rot(a,b) = J(k,w) } .

This statement means that, for any fixed b, and any resonance 3 (k,w) € M¢ (w), the set
of all a for which (a, by) belongs to the resonance tongue R (k) is precisely the closure of the
spectral gap of H_,,, (either collapsed or noncollapsed) corresponding to this resonance by the
Gap Labelling Theorem. See Figure 1V.2 for illustration.

Formulation of the Main Theorem

As said before, the present chapter is concerned with the geometry and regularity of resonance
tongue boundaries for the quasi-periodic Hill equation (IV.1) in the parameter plane R? =
{a, b}, where the function g is fixed.

For ap € M4 (w), if ag = 1k, w), let R(ap) = R (k). Each tongue R () has the form

R(ao) = {(a,b) € R |a_(b; o) < a < ay (b a0) } (1V.6)
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and a, (0; ) = a_(0; ) = oF. Indeed, if b = 0 and a > 0, the solutions of (IV.1), which
now is autonomous, are linear combinations of e*'vVe, By the above definition of the rotation
number it follows that rot(a, 0) = \/a.

Mostly the value of «y is fixed, in which case we suppress its occurrence in the boundary
functions a. Note that in (I\V.6) one can ask, in general, for not more than continuity of the
mappings a+ : R — R, since we are imposing that e < a. Compare with the periodic case
[BL95, BS00].

Nevertheless, recall that in the periodic case d = 1 there exist real analytic boundary curves
a2 = a1 2(b) such that a_ = min{a;, az} and a; = max{ay, az}. For the present case d > 2
we have the following result.

Theorem V.3 (Smoothness of tongue boundaries). Assume that in Hill’s equation (IV.1)
z" + (a+bq(t))z =0

with a,b € R, the function ¢ is real analytic and quasi-periodic with strongly irrational fre-
quency vector w € R¢, with d > 2. Then, for some constant C = C(q,w) and for any
ay € M (w), there exist C*°-functions a; = a1(b) and a; = ay(b), defined for |b| < C,
satisfying

a_ = min{aq, as}

and
a; = max{a,as}.

Remark V4.

(i) In Theorem V.12 we will prove tongue boundaries are real analytic. The importance of
the above result is that one can compute explicitly the Taylor expansion of such tongue
boundaries to obtain C"-approximations by means of Normal Form techniques, while
Theorem V.12 is less constructive.

(if) Using a C*°-version of Eliasson’s Theorem 111.27, the result only needs the lift @) to be
C.

(iii) These results can be applied, a fortiori, to the periodic case d = 1.

Instability pockets, collapsed gaps and structure of the spectrum

We sketch the remaining results of this chapter, regarding instability pockets and the ensuing
behaviour of spectral gaps.

In the quasi-periodic Hill equation, instability pockets can be defined as in the periodic case:
a resonance tongue has an instability pocket when their boundaries cross at two different points.
The fact that a tongue has a boundary crossing at (aqg, by) means that {a,} is a collapsed gap for
the Schrddinger operator (1V.3) with b = b,. An example of this occurs at the tongue tip b = 0.

Moser & Poschel [MP84] showed that, for small analytic quasi-periodic potentials with
strongly irrational frequencies, collapsed gaps can be opened by means of arbitrarily small
perturbations having the suitable harmonics. This is done in a constructive way and implies that
it is a generic property to have no collapsed gaps for fixed values of b (with |6 small so that
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reducibility can be granted). In this chapter we go one step beyond, studying how gaps behave
when the system is depending on the parameter b in a generic way.

By Theorem 1 we know that for analytic forcing (potential), for small |b| and for a strongly
irrational frequency vector w, the tongue boundaries are infinitely smooth. Hence the com-
putational techniques regarding normal forms and singularity theory, for studying the tongue
boundaries, carry over from the periodic to the quasi-periodic setting. In particular this leads to
a natural condition for the tongue boundaries to meet transversally at the tip 6 = 0, implying
that there are no collapsed gaps for small |b| # 0. As a result we find, that for reversible Hill
equations of near-Mathieu type, after excluding a subset of strongly irrational frequency vectors
w of measure zero, the situation is completely similar to the periodic case. Compare with the
description given before in Section IV.1.

We shall present examples of families of reversible quasi-periodic Hill equations of near-
Mathieu type with instability pockets. These examples are persistent in their (reversible) setting.
To our knowledge, so far the existence of collapsed gaps in quasi-periodic Schrodinger operators
has only been detected by De Concini and Johnson [DCJ87] in the case of algebraic-geometric
potentials. These potentials only have a finite number of noncollapsed gaps, while all other gaps
are collapsed. In view of the present chapter, this is a quite degenerate situation. See Figure
IV.3 for an actual instability pocket for which normal form methods are needed up to second
order, the results of which are compared with direct numerical computation (the agreement
between numerical and analytical approximations can be improved using a higher order normal
form). The techniques just described are useful when studying a fixed resonance. We note,
however, that for investigating ‘all” resonance tongues at once, even in a concrete example, we
will use certain direct methods, which amount to refined averaging techniques. Compare with
the periodic case [BS00].

Remark IV.5.

(i) In the nonreversible case generically no instability pockets can be expected (although
they can be constructed following see Broer & Sim6 [BS00]). To explain this, consider
the classical periodic case d = 1, compare [BL95]. Recall that in this periodic case
the stability diagram can be described in terms of Hill’s map, which assigns to every
parameter point (a, b) the Poincaré matrix P,, € SL(2,R), which is a 3-dimensional
Lie group of 2 x 2-matrices. The tongue boundaries just are pull-backs under Hill’s map
of the unipotent cone, which has dimension 2 (except for singularities at +Id). In the
3-dimensional matrix space the surfaces formed by the cone and the image under Hill’s
map of the (a, b)-plane generically meet in a transversal way. However, the intersection
curves (which correspond to the tongue boundaries) generically do not meet away from
the tip b = 0. Boundary crossings however do occur generically under the extra condition
of reversibility, which reduces the dimension of the ambient matrix space to 2.

(if) At this moment we like to comment on global aspects of the geometry, as related to the
spectrum of the corresponding Schrddinger operator. Unlike in the periodic case the
union of resonance tongues is a dense subset of R* = {a, b} and quite usually it is a
Cantor set with positive measure, see Section 111.2.2. In a 2-dimensional strip where |b| is
sufficiently small, this gives a Cantor foliation of curves in between the dense collection of
resonance tongues. This makes that classical methods to study the smoothness of tongue
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Figure 1V.3: Left: Numerical computation of the instability pocket of the near-Mathieu equation with
qe(t) = cos(wit) + cos(wot) + ecos(wy + wo)t, see (IV.2), in the (a,b)-plane with w; = 1,ws =
(1++/5)/2, and e = 0.3. Solid lines correspond to the approximation of the boundaries by second order
averaging in (a, b); Dashed lines correspond to direct numerical computation. Right: Difference between
the averaging and the direct numerical approximation as a function of b. Solid lines correspond to the
tongue boundary that for small b turns to the left, dashed lines to the boundary as it turns to the right.

boundaries based on the separation of the eigenvalues fail, see Rellich [Rel69] Kato
[Kat76].

(iii) Quasi-periodic Hill’s equations can be written as a Hamiltonian with one degree of free-
dom. Inasimilar way one can consider linear Hamiltonian equations with quasi-periodic
coefficients with more degrees of freedom. For the regularity of the boundaries where
changes of stability occur in that case see Chapter V.

Outline of the chapter

Let us briefly outline the rest of this chapter. In Section 1V.2 we present the ingredients for our
proof of Theorem 1V.3. Only a sketch of this proof is presented, a detailed proof is postponed
to Section I\V.4. In fact, most of the proofs are postponed to the latter section.

Section 1V.3 contains applications of Theorem 1V.3. For the criterion for transversality of
the tongue boundaries at the tip see Section 1V.3.1. A more thorough asymptotics at the tongue
tip b = 0 and the ensuing creation of instability pockets is studied in a class of reversible near-
Mathieu equations which is contained in Section 1V.3.2. A proof is given in Section 1V.6. The
zero measure set of strongly irrational frequency vector w to be excluded for this analysis, is
considered in Section IV.7. A concrete example with instability pockets is studied in Section
IV.3.3. Finally in Section I\V.5 a Lipschitz property of the tongue boundaries is given under very
general conditions.

IV.2 Towards a proof of the Main Theorem 1

We consider parameter values (ao, by) at a tongue boundary, i.e., at an endpoint of a spectral gap,
which may possibly be collapsed. Ata boundary point (ag, by) the rotation number rot(ag, by) =
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+(k,w), i.e. it is rational with respect to w. Eliasson’s Theorem I11.27 will allow us to reduce
the skew-product (1V.5) to constant coefficients at (ag, b). In the reduced system the tongue
boundary near (ag, by) gets a simpler form, that can even be further simplified by repeated time-
averaging, where the time-dependence is pushed to higher order in the localized parameters

(a,b).

IV.2.1 Dynamical properties. Reducibility and rotation numbers
Recall from Section IV.1 the skew-product flow (IV.5) on R? x T¢,

() (a0 as)(5) =

associated to the quasi-periodic Hill equation (IV.1). Also recall that evenness of () leads to
time-reversibility.

Since this is a linear equation with quasi-periodic coefficients, a main tool to study its dy-
namical behaviour is its possible reducibility to constant coefficients by a suitable transform-
ation of variables. We always require that the transformation is quasi-periodic with the same
basic frequencies as the original equation (or a rational multiple of these). The reduced matrix,
which is not uniquely determined, is called the Floquet matrix. Note that for d = 1 reduction to
Floquet form is always possible [Hal92, MW79, Pui03].

Eliasson’s Theorem 111.27, proves reducibility for small values of b and suitable conditions
on the forcing. For the sake of completeness let us restate it adapted to the framework of this
chapter.

Theorem IV.6 ([Eli92]). Consider the quasi-periodic Hill equation (I1V.1), or, equivalently the
skew-product flow (1V.5). Assume that the following conditions hold

- The frequency vector w is strongly irrational, w € DC¢(c, 7, R?) for some constants ¢ > 0
and 7 >d — 1.

- The function @ : T? — R is real analytic, Q@ € C%(T¢, R) for some o > 0.

Then, there exists a constant C = C(c, 7,0) > 0 such that if [bQ|, < C, while the rotation
number of (IV.1) is either rational or strongly irrational, with respect to w, then the skew-
product is reducible to constant coefficients (with frequency w/2) and B = B(a, b) as Floquet
matrix. Moreover,

(i) B(a,b) is nilpotent and nonzero if and only if a is an endpoint of a noncollapsed spectral
gap;
(if) B(a,b) is zero if and only if {a} is a collapsed gap.
Remark IV.7.

(i) In the present setting generically, for Liouville-type rotation numbers (i.e., which are
neither rational nor strongly irrational) the normal behaviour of the invariant torus T¢ x
{(0,0)} is irreducible. In fact, there exist nearby solutions that are unbounded, where the
growth is less than linear [Eli92]. We recall that the Liouville-type rotation numbers form
a residual subset (dense G, second Baire category) of the positive half line. This is why
we cannot expect to have analytic dependence on the parameters a, b.
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(if) We shall use Theorem 2 only to arrive at a suitable perturbative setting around any point
(ag, by) at a tongue boundary. We shall construct a formal power series for the tongue
boundary, which is shown to be the actual Taylor expansion at (aq, by). Here we make a
direct use of the definition of the derivative as a differential quotient. Limits are taken
by constructing a series of shrinking wedge-like neighbourhoods of the curve, with in-
creasing order of tangency at (ag, by). The construction of the wedges uses dynamical
properties of Hill’s equation, e.g., concerning the variation of the rotation number out-
side the tongue and its constancy in the interior. Note that this will determine regions of
exponential dichotomy in the interior of the tongue.

Using the reducing transformation provided by Theorem IV.6, we turn to co-rotating co-
ordinates associated to parameter values at the tongue boundaries. Let (ag,by) € R? be at a
tongue boundary. Then Theorem 2 provides us with a reducing matrix of the form

Z((CL(), bO)) (t) — < le(t) 212(t) ) (lV?)

2921 (t) 299 (t)

where z;;(t) = Z;;(wt/2) and a Floquet matrix of the form

B:(gg).

Observe that ¢ = 0 if and only if (ag, by) is an extreme point of an instability pocket. Also
observe that z;;(t), 1 < ,j < 2, is quasi-periodic with frequency vector Jw.
To construct the co-rotating coordinates around (ag, by), again consider Hill’s equation
(IV.1)
2" + (a+bg(t))z =0

and perform the linear, ¢-dependent change of variables given by 7.

X le(t) Z192 (t) )
= V.8
where ¢ € R?. The differential equation for ¢ reads
1 0 ¢ 211712 Z%Q
(b - (( 0 0 ) +5,UQ( _2%1 — 211212 ¢a (|V9)

where p1 = (a—ag, b—by) is the new local multi-parameter and where 6,,¢ = (a—ao)+ (b—bp)q.
Note that, if 4 = 0, this system is in constant coefficients. Also note that, since the eigenvalues
of the Floquet matrix are 0 then the index of the map Z(2-) : T¢ — SL(2, R) is k (see Section
111.2.2).

Proposition 1V.8. In the above circumstances:
(i) The functions 21,219, 22 and 22, are quasi-periodic in ¢ with frequency vector w.
(ii) In the case of even ¢ we have

Zu(—t) = —Zlg(t)
2’11(—t) = le(t).
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(iii) Let drot(a, b) be the rotation number of (1\V.9). Then
érot(a, b) = rot(a,b) — 3(k,w).

Moreover, the tongue boundaries coincide with the boundaries of the set where drot(a, b) =
0.

Reversibility follows from a consideration of Floquet representations. If X is any funda-
mental matrix, then item (ii) above follows from the identity

in this reversible case.

1IV.2.2 Proof of Theorem IV.3

By repeated averaging we recursively push the time dependence of the equation (1V.9) to higher
order in the local parameter y = (a — ag, b — by). See [BS00, BV92, Sim94] and Appendix A
for details. As before, by 6 we denote the angular variables in T¢.

At each step of this averaging or Birkhoff normalization process, for some o, < o, a linear
change of variables

Y= I+ R(0,1),

is found, which is complex analytic in 6 on the strip |Im #| < oy and in the local parameters
in a neighbourhood of 0. Furthermore, if the system is reversible, then the change of variables
preserves this reversibility. To be more precise we have

Proposition 1V.9. In the above situation, after r steps of averaging system (1V.9) takes the form
(bl — S?(,r) (/j,) c+ Sg) (M) 4 M(r (wt M) é (|V10)
=577 () =557 () ’
where
SOy =Y D
1<s<r

for i = 1,2, 3 and where the functions D for i=1,2,3and 1 < s < r, have the following
propertles

(1) D(’" (1) are homogeneous polynomials of degree s in y;
(i) D) = DY) fors <t <r;

(iii) Df} = (a—ap)[z%] + (b—by)[gz%;], where [ - ] denotes the time average, for 7 = 1, 2, and
D§1§ = (a — ag)[z11212] + (b — bo)[g211212);
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(iv) The remainder M) (0, 1) is complex analytic in both 6 and z, (when [Im 6| and || are
sufficiently small) while it is of order » + 1, that is, the function

M@, u)‘ :

(97A0 = ij

|l4r+1
for 1 <4, 5 < 2, is bounded on a neighbourhood of 1 = 0.

In the case of even ¢ we have Sé’") = 0.

In the application of this result, key idea is that the equation

SO (c+ 85 (w)) - 857 (w)? =0, (1V.11)

which is the determinant of the averaged part of equation (1V.10), determines the derivatives of
the tongue boundaries up to order r. In the analysis of (IV.11) we distinguish between the cases
¢ # 0 (noncollapsed gap) and ¢ = 0 (collapsed gap). This will be done next.

Non-collapsed gap (¢ # 0)

We first treat the case ¢ # 0 of a noncollapsed gap. We will assume that ¢ > 0, which means
that (ao, by) is at the right boundary of a resonance tongue, as it will be seen later on. The case
of ¢ < 0 can be treated similarly. Also, if the nonzero element c is in the lower off-diagonal
element of the Floquet matrix, the procedure is analogous. Let

GO () = 8O () (e + S5 (w) = S5 ()

We solve the equation G (1) = 0 by the Implicit Function Theorem, which provides a poly-
nomial
a(b) =ao+ Y vi(b—bo)".

1<k<r

The coefficients v, 1 < k < r, are uniquely determined by the functions Dg’:i), 1<s<ri=
1,2,3and G ((a'™) (b) — ag,b—by)) = Orp1(b—by). Here and in what follows, ¢(¢) = O,,(¢),
means that

‘@
e

is bounded around ¢ = 0.
In order to apply the Implicit Function Theorem, we compute

9
oa

This yields a unique polynomial a(™ = a(") (b) with the properties stated above.
Our next purpose is to show that, if b — «a(b) is a tongue boundary with a(by) = ay, then

. a(b) —a®(b)]
1
¥5b b — bl"

GO ()= = 28] > 0.

=0.

More precisely we have
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Proposition 1V.10. Consider equation (1V.10) with ¢ > 0. There exist positive constants N and
A, such thatif ax, and ay_ are defined by

an, (b) = a"(b) £ N|b—bo|""",
the following holds. For 0 < |b — bg| < A
(i) the rotation number rot(ax, (), b) is different from rot(ao, bo),

(ii) the system (1V.10) (or equivalently (1V.5)) for 4 = (an_(b) — ag, b — by) has zero rotation
number.

The proof is postponed to Section IV.4. As a direct consequence we have
Corollary 1V.11. Let (ag, by) be at the tongue boundary as above and assume that {a,} is not
a collapsed gap. Then, there exists a function b +— a(b) defined in a small neighbourhood of
b = by, such that in this neighbourhood,

(i) (a(b),b) is at the tongue boundary of the same tongue as (ay, by),

(if) The map b — a(b) at b, is r-times differentiable at b, and can be written as

a(d) =ag+ Y ve(b—bo)* + Oppr(b— by).

1<k<r

Proof: From now on, assume that 0 < |b — by| < A. Then, by Proposition V.10, the set
{(an_(b),b) : 0 < |b—by| < A}

is a subset of the tongue’s interior. Again by Proposition 1V.10, for each 0 < [b — by| < A,
the set {(an, (b),b) : 0 < |b— by| < A} is a subset of the complement of the tongue. Now, for
each fixed b, the map a — drot(a, b) is monotonous, while, moreover, rot(a, b) is continuous
in a and b. Therefore, for each 0 < |b — by| < A there exists a unique a(b) such that (a(b), b) is
at the tongue boundary.

Putting a(by) = ag, the map b — a(b) is continuously extended to b = by. The above
argument also implies that for 0 < [b — by| < A,

an_(b) < a(b) <an,(b) (IV.12)

and as an_(bo) = a(by) = an, (by) = ao, this inequality directly extends to b = b,. Thus, due
to the form of both an, and ay_, we have that for [b — by| < A,

|a(b) — al(b)] < N[b— bo|"",

from which the corollary follows. O
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Collapsed gap (¢ = 0)
In the case ¢ = 0 of a collapsed gap, system (1V.10) reads
S () S5 (w)
¢ = % a + MO (wt, ) | ¢ (IV.13)
(( =S (w) =S5 (w)

Thus, the analogue of (1V.11) now is

G () = 87 (1) S5 (1) — S5 (u)? = 0.

We will see in section 1V.4 that there exist two polynomials of order r, a§’> (b) and al (b) such
that

G (aﬂ” (b) — ag, b — b0> = Opp1(b— bo)

and, using the same tools as in the case of a noncollapsed gap the following result, whose proof
IS postponed to Section V.4, is true.

Proposition 1V.12. Under the above assumptions, there exist positive constants NV and A, such
that if |b — by| < A, then

la,(b) — max{a{”(b)}| < NIb— b|""* and

i=1,2
la_(b) — min{a”(0)}| < NIb—bo[*".

i=1,2 -

As a direct consequence we now have

a4 (b) — max,_; 2{a!” (b)}]

li = V.14
bt b — bol" 0 (V14
and
(b)) — min_i o{a" (D)}
Jm b — bol" =0 (IV.15)

and we can choose a, and a_ in such a way (skipping the restriction a_ < a.) that both maps
are continuous and r times differentiable at by,. Moreover their Taylor expansions up to order r
at by are given by a!” and a{"”). Compare Corollary 1V.11 of Proposition IV.10.

Conclusion of Proof of Theorem 1V.3

Summarizing we conclude that Theorem 1V.3 follows from the previous subsections, since we
have shown that the tongue boundaries are infinitely smooth. Indeed, by Eliasson’s Theorem
IV.6 a positive constant C' exists only depending on ¢, 7, 0 and |Q|, (see (I\.5)), such that for
any r € N the following holds. For any |b,| < C, polynomials a@ and ag’”) exist of degree r in
(b — bp), such that (1V.14) and (1V.15) hold.
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IV.3 Applications and examples

In this section the methods and results of Section V.2 are applied to study the geometric struc-
ture of resonance tongues in Hill’s equations with quasi-periodic forcing (IV.1). In the previous
section we saw that the tongue boundaries are smooth around b = 0. Also we found that their
Taylor expansions around a certain point can be obtained by an averaging procedure for which
one needs to know the reducing matrix at that point. In general this is not known unless b = 0,
i.e., when the system has constant coefficients. In this section this fact will be used to obtain
generalizations of results as these hold for Hill’s equations with periodic coefficients, compare
[BL95, BS00]. From a spectral point of view we will describe gap opening and closing as a
function of b.

IV.3.1 A criterion for transversality at the tongue tip

The first application will be a criterion for the transversality of the tongue boundaries at the
origin, i.e., at the tongue tip. In the periodic case it is known [Arn83b, BL95, BS00] that
the two boundaries of a certain resonance tongue are transversal at 6 = 0 if, and only if, the
corresponding harmonic (or Fourier coefficient) of ¢ does not vanish. In the quasi-periodic case,
the situation is the same.

Proposition 1V.13. In the quasi-periodic Hill equation
a"+ (a+bq(t))z=0,

where ¢(t) = Q(wt) and @ : T¢ — R, assume that @ is real analytic and that the frequency
vector w € R is strongly irrational. Then the tongue boundaries of the kth resonance, oy =
2k, w) € M¢(w), ap # 0, meet transversally at b = 0 if and only if the kth harmonic of @
does not vanish.

Proof: Letap = of and og = 3(k, w) € M (w). Then a fundamental solution for a = a, and
b = 0 is given by

_ cos(aot) @y *sin(agt)
X(t) = < g Sin(agt) 0 Cos(a(())t) ) (1V.16)

Following the notation of the previous section, let
L.
z11(t) = cos(agt) and z12(t) = — sin(agt).
Go

Then

1 1
2(t) = cos®(apt) = 515 cos(2apt),

1
2t = a sin?(apt) = 0 2ag cos(2apt),

1.
z11(t)z12(t) = ﬂsm(Zaot)
0
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Denoting the tongue boundaries by a; = a;(b), for i = 1,2, their derivatives at b = 0 are
obtained averaging once and considering the equation

2
S (a = ag, b— be)S (@ — ag, b — bo) — (s§1>(a —ag,b— bo)) ~0.
Using Proposition V.9, it is seen by means of a computation that

a1(0) = —Qo+|Qxl,
a5(0) = —Qo — |Qxl,

from which follows that ' (0) # @5(0) if, and only if, Qx # 0. This concludes our proof. [

IV.3.2 Order of tangency at the tongue tip and creation of instability
pockets

We now focus on a special class of quasi-periodic Hill equations of the reversible near-Mathieu
type:

d
z" + (a +b (Z cj cos(w;t) + € cos ((k*, w)t))) z =0, (IV.17)

7j=1
compare with Section IV.1. Here ¢ is a small deformation parameter and w = (wy, ..., wq)’
is a strongly irrational frequency vector. Also we take ¢; # 0 forall j = 1,...,d and fix
k* = (k},...,k;)T a nonzero vector in Z% We often abbreviate (k) = (k,w). Let us, for

a moment, consider the periodic case, that is, the Mathieu equation, which is the following
particular case of Hill’s equation

2"+ (a+beost)z = 0.

It was proved by Ince [Inc44] (see also Chapter V1 for a related result) that this equation has no
instability pockets. Also, the order of tangency of the £th resonance tongue at b = 0 is exactly
|k| (see Harrell [Har79] and references therein). However, when it is perturbed in the following
way

2"+ (a+ b(cost + ecosjt)) z = 0.

where ¢ # 0 and j > 2 is a integer, an instability pocket is created for small |¢| [BL95, BS00].
The following theorem is a generalization of this periodic case.

Theorem 1V.14. Consider the reversible near-Mathieu equation with quasi-periodic forcing
(IV.17) as above. Then

(i) If e = 0, the order of tangency at b = 0 of the k*th resonance tongue is greater or equal
than |k*| and it is exactly |k*| if, and only if, w does not belong to .A(k*), where A(k*) is
a zero measure subset of the strongly irrational frequency vectors.

(i) If e # 0, w ¢ A(k*) is strongly irrational and |¢| is small enough, there exists at least
one pocket at the k*th resonance tongue with ends b = 0 and b = b(e) # 0. Here ¢ needs
to have a suitable sign if [k*| is odd.
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Remark 1V.15.

(i) Note that the above result only applies to quasi-periodic near-Mathieu equations of the
type (1V.17). For more general quasi-periodic forcings, the problem of the order of tan-
gency of the tongue boundaries at b = 0 is at least as complicated as in the periodic case,
see [BSO00].

(i) The sets .A(k*) are not empty in general. For examples and some properties of these sets,
see Section IV.7.

(iii) Instead of fixing £ one can also fix |by| sufficiently small and show that, for a suitable
value of ¢ = £(bg), one can create an instability pocket in equation (1V.17) with ends at
b = 0and b = by. A suitable choice of the components of ¢ also allows several pockets
(associated to different k*) with ends at b = 0 and b = b, and for the same value of . In
general the same complexity holds here as in the periodic case, compare with the general
discussion in Section 1V.1.

A proof of Theorem V.14 is given in Section IV.6. One consequence of the Theorem is

Corollary 1V.16. Assume that in Hill’s equation
2"+ (a+bg(t)) z =0

the forcing g is a real analytic even quasi-periodic function whose frequency vector w is strongly
irrational. Suppose that, for some k* # 0, the k*th harmonic of ¢ does not vanish and that
w ¢ A(k*). Then, the following equation

" + (a +b (Z cjcos(w;t) + q(t))) =0 (IV.18)

7j=1
has a pocket at the k*th resonance tongue provided that the |c;| are sufficiently large.

Proof: Let e > 0 be a small parameter and define ¢; = c;e, for j = 1,..., d. Writing b= b/e,
the equation (IV.18) reads

" + (a +b (Z ¢j cos(w;t) + sq(t))> z=0.

j=1

Since the k*th harmonic ¢~ of ¢ does not vanish, this even function can be split into

q(t) = qu- cos((k*,w)t) + (1)

where ¢ is an even function whose k*th harmonic vanishes. Let & = eqg+. In these new
parameters the equation (IV.18) gets the form

)

d ~
" + (a +b (Z ¢; cos(wjt) + € cos((k*, w)t) + izj(t))) z =0.

7j=1
The only difference of the latter equation with (IV.17) is the term §. But since its k*th harmonic
vanishes, the conclusions of Theorem V.14 concerning the existence of pockets hold here,
provided w ¢ A(k*) is strongly irrational, ¢; do not vanish and ¢ is sufficiently small. The latter
condition is equivalent to the c; being sufficiently large. O
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IV.3.3 A reversible near-Mathieu example with an instability pocket

In this section the following concrete example of a reversible near-Mathieu equation with quasi-
periodic forcing is investigated:

z" + (a+ b(cost + cosyt + ecos(1 + v)t)) z = 0. (1V.19)

Here ~ is a strongly nonresonant number (which means that (1, ) is strongly rationally inde-
pendent) and ¢ a deformation parameter. We consider the resonance ag = £(1 + ), which
means that (a, b, €) will be near

((%(1 +7))2,0,0) .

Since, moreover, the forcing ¢ is entire analytic, there exists a constant C' = C(y) such that
if |b] < C and |e¢|] < 1, then there is reducibility at the tongue boundaries [Eli92]. Compare
Section 2. After a twofold averaging and other suitable linear transformations which do not
affect the resonance domains, the system is transformed into

= ((cxwsve 3T ) mow)s

where v = (a — ag, b, €) and where X and Y are given by the following expansions in v

X(v) = 1 (a—ao (a — ag)? b? C(G))

14y \1+y (1493 4(1+9)?
and ; ( ) ; .
—€ ela — ag
V() =— + + I+-)).
=155 (G G et )
Here )
€ 1 1 1
Cle) = 1+ .
(€) 21+ "25y T1x2y TS

Hence, in the notation of Section 2 we have 5% () = X ()Y (v) and 52 (v) = X () +Y (v).
Thus S (v) = 0 (resp. S (v) = 0) if and only if X (v) = Y (v) (resp. X (v) = —Y(v)). The
Taylor expansions of the tongue boundaries up to second order in (b, €) are given by

2 2
@ oo (LT e, b 31 1
ai” (b €) ( 2 2+4(1+7) 3+’y+2+'y+1+27

2 2
O = (1) 2 (ol Loy ]
as” (b, €) ( 2 2 4(1+7) voo24y 142y

Therefore the second order Taylor expansions of the tongue boundaries have a transversal cros-
sing both at (b,¢) = (0,0) and at the point (b, €) = (ve, €) if € # 0. By Theorem 1V.3 we know
that the boundary functions a§2) and a§2) are of class C'*° in b. With little more effort, one also
establishes this same degree of smoothness in the parameter e. Following the argument of the
previous subsection, one has

and
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Corollary IV.17. For the reversible near-Mathieu equation (IV.19) there exists a positive con-
stant C' such that, if |b| < C and |e¢| < 1, then the tongue boundaries of the resonance corres-
ponding to ay = (1 + ) /2 are C functions of (b, €), while

(i) For e # 0 the tongue boundaries have two transversal crossings, one at (a,b) = (ag, 0)
and the other at (a{” (ve, €) + Os(e), ve + Os(e)),

(if) For e = 0 the tongue boundaries at b = 0 have a second order tangency.

Remark 1V.18. Note that Corollary 3 exactly describes the As-scenario, compare [Arn94]. For
the periodic analogue see [BL95], where Hill’s map has a Whitney cusp singularity. Compare
with Section IV.1.

IV.4 Proofs

Main aim of this section is to prove the propositions IV.10 and V.12 of Section 1V.2.2. We recall
the setting there. Around a point (ag, by) € R? with |b,| sufficiently small, at the boundary of a
resonance zone, there exists a symplectic reducing matrix Z. Let u = (a — ag,b— by) =: (o, 5)
be the new local parameters and hence §,¢ = o + (3¢, see Equation (IV.9). The change of
variables (1V.8) reduces the equation for ¢ = (¢1, ¢o) to the form (1V.9).

The corresponding Hamiltonian, written in autonomous form by introducing new momenta
J € R¢, reads

K(G1,00,0,) = () + 3063+ ,Q00) (35101 + susuatnta + 52403

The first two terms of the right hand side form the unperturbed Hamiltonian K, the last one is
K.

The rotation number of this Hamiltonian (or rather of the associated skew-product flow on
R? x T, see Section 111.2.2) is drot(a, b) = rot(a, b) — 3(k,w). The tongue boundaries are the
boundaries of the set drot(a,b) = 0. After r steps of averaging, the system takes the form of

(IV.10),
! Sir) Séf) T
(3 e ) eweran)

see Proposition 1V.9. In what follows, the expression of the previous equation in polar co-

ordinates will be used, see again Section 111.2.2. Writing ¢ = arg (¢, + i¢1), the differential
equation for ¢ becomes

@' = (SY) + M1(T)) sin? ¢ + 2(S§T) + M?ET)) sinpcos + (c+ Sg) + M2(T)) cos? p, (1V.20)

which is a quadratic form with matrix
Slr) SéT) MI(T) M3T)
( ORI ON Bl WO R (Iv.21)
3 2 3 2
We recall that M](’") = O,41(|p|) uniformly in 6 in a complex neighbourhood of T<. It is now

important to distinguish between the cases of a noncollapsed gap (¢ # 0) and of a collapsed gap
(c=0).
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IV.4.1 Non-collapsed gap

Suppose we are in the case of a noncollapsed gap, i.e., with ¢ # 0. Present aim is to prove
Proposition 1V.10 which deals with the case ¢ > 0. The case ¢ < 0 is treated similarly. Recall
that, in Section 1V.2.2 for any » > 1 we obtained a polynomial of order r in b — by, a™ (b) such
that, if

G () = 80 () (e + 85 () — 581,

then
G™ (a!”(b) — ag,b—bg) = Op11(b — by).

In order to prove Proposition 1V.10 we will show that there exist constants N > 0, sufficiently
large, and A > 0, sufficiently small, such that if 0 < |b — by| < A

(i) Equation (IV.10) for (a,b) = (a™(b) + N|b — be|"*1, ) has rotation number strictly
different from zero.

(if) Equation (1V.10) for (a,b) = (a (b) — N|b — bo|"**, b) has zero rotation number.

In what follows we write again (a, ) = (a — ag, b — by) and o™ (8) = o) (b). Let, for some
N >0,
SV (@ (B) £ NIBILB), =13,

Ry (8) = c+ S5 (@) (8) + N|B"", )
and M*(9,8) = M (9, (a(8) + N|B|"*!, 8)). With these definitions, matrix (IV.21) be-

comes L N 4 N
R R3 M M;
(R;E c+R§)+<M; My ) (V:22)

Let R* be the first term of the previous expression. First of all, note that, since

R} (B)

oG (™)
aa |,U 0 — C[Z
111>

then

det R*(8) = RE(8) (c+ R (8)) — (RE(8))” = £ (¢N[24] + A) |8 + O,42(B),

being the time-dependent term A uniformly bounded for all § € T¢. This means that N and 3,
can be chosen so that N
:t C
S L

provided |3| < Sy, and the sign of det R* is +. The eleménts of the time-depending part,
the M;"(6, 8), can be uniformly bounded by §|3|"+" if N and §, are suitably modified. The
modulus of the eigenvalues of R* can be bounded from below by & |3|"** and 2¢/3. Now we
distinguish between the cases of R* and R ™.

In the case of R*, the symmetric matrix (1V.22) is definite positive and for all # € T?, ¢’ in
(1V.20) is bounded from below by £L|5|"+!, since the minimum of ¢’, ignoring the contribution
of the time-dependent part, is §|6|T+1. This implies that the rotation number is different from

zero, if 0 < |B] < fo.
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In the case of R, the time independent part of (1V.22) has a positive eigenvalue bounded
from below by 2¢/3 and a negative one bounded from above by —%W”l. In particular, if
0 < |B] is small enough, there exist ¢; and 5, independent of 4, such that the right-hand side
of (IV.20) is positive and negative, respectively, uniformly for all § € T¢. In particular, the
rotation number must be zero. O

Remark 1V.19. The Normal Form for ¢ # 0 can be obtained without terms in ¢ ¢, and without
changing the term in ¢3. Indeed, at each step of normalization the homological equation is of
the form [G, Hy] = M, where M contains known terms of the form ¢7'¢%’ exp(i(k, 6)) with
J1 + J2 = 2. Let us see the system to solve for a fixed k. Let T\ ¢? + Tsp1¢o + T3 the
terms having exp(i(k, #)) as a factor in the expression of M and A;¢? + Azdipy + Aa3 the
corresponding terms to be found in G. In matrix form we have

ik,w) 0 0 A, T
2 i(k,w) 0 4 |=| 1
0 C 1<k, LL)) A3 T3

If k # 0 the matrix is invertible. If k = 0 one cannot cancel 77, which must be kept in the
Normal Form, but the terms 15 i T3 can be canceled by suitable choices of A, A,. The value of
Aj is arbitrary.

IV.4.2 Collapsed gap

Present aim is to prove Proposition 1V.12, i.e., assuming that ¢ = 0. Here we follow ideas
similar to the above case ¢ = 0. We shall see that the tongue boundaries can be divided over
sectors, determined by whether the modulus of the modified rotation number is greater than
some constant or whether the rotation number is zero and there is exponential dichotomy, see
Figure 1\V.4. From this we obtain the tangency of the required order.

Recall that the first step of averaging gives

1 1
qu+C§P&+SP@@+5§%Q44%W¢ﬂx

where O, denotes terms which are O(|u|?) (and quadratic in ¢ and depending on time through
#) and

81V = alsh) + 6Qa), 83 = aled) + AQeD), S5 = alenzia] + BlQzn 2,

see Proposition 1V.9. Hence the coefficients of « in S{l) and Sél) are positive and [z1,212]* <
[22 a key fact in what follows. To order r the coefficient S](-l) is replaced by SJ(-T) for
j =|t,223],0f the form described before, and O, by O, 1.

After r steps of normalization the matrix of the system is

sy s, ( My M, >
—s gl —M; —M; )’
where the M; terms depend of # analytically on the same domain as (2 and are of order r 4- 1 in

a, f.
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rot(a, b) < rot(ag, by)

b rot(a, b) > rot(ag, bo)
0 -

) rot(a, b) = rot(ao, bg)\
and exponential dichotomy

Figure IV.4: Areas of exponential dichotomy inside a resonance tongue as guaranteed by Lemma V.21
and areas with rotation number different from rot(ag, by) outside the tongue as guaranteed by Lemma
IV.21. Solid lines denote tongue boundaries.

First we analyze the part coming from the Normal Form. As it is well-known, the bound-
aries of the resonance zone of this time-independent part correspond to p-values such that the
determinant of the system

2
G(a,B) = 5{S — S5
is equal to zero. As the terms of degree 1 in « in the S; give rise to a positive definite part in

the Hamiltonian, there exists a canonical change of variables (a rotation and scalings) such that

S and S5 start as na (for some n > 0) and S?(,’") contains no linear term in «.. By scaling G
we can assume n = 1 in the previous expressions. Hence, we are left with

ST = a+a1(B) +api(e, B),
S = a+ou(B) + aps(a, B),
S = o3(B) + aps(a, B),

where o; are polynomials in 8 of maximal degree r and starting, in principle, with linear terms,
and p; are polynomials in «, 5 of maximal degree » — 1. If o; # 0 let k; the minimal degree
of g inoj, for j =1, 2, 3. Otherwise we set k; = oco. Using Newton’s polygon arguments (see,
e.g., [Ful69]) to look to the relevant terms of the zero set of G, one can neglect the p; terms.

Assume first k = min {k;, ko, k3} < r. Introducing the change of variables o = y/3* the
function G can be written as

B (72 + (Mg + Maog)y + migmeoy — mi,k + O(ﬁ)) ,

where m;, denotes the coefficient of degree £ in o, j = 1, 2, 3 (some of them can be zero, but
not all). Factoring out 32* and neglecting the O(;3) term the zeros, -, and ,, of the equation for
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~ are simple, unless m; , — mgy, and ms, = 0. Hence, the Implicit Function Theorem implies
that there are two different analytic functions

9;i(B) =B +0(8), j=1,2

in the zero set of GG, which differ at order £ < r. An alternative way to prove this last fact
is to use that the eigenvalues of a symmetric matrix depending analytically on one parameter
depended analytically also on this parameter [Rel69] and to transform the matrix formed by the
S to a symmetric matrix.

If myr — may and may, = 0 let us introduce & = « + m, ;8% and rewrite G in terms of
&, . We rename & again as «. Then the new equation for «, 3 is as before where & is at least
replaced by £ -+ 1 and where the maximal degree of the o; and p; polynomials also can increase.
If the equation for the new ~ has two different roots one obtains two curves g;(3) in the zero
set of (7, as before. Otherwise the procedure is iterated and ends when two different curves are
obtained or when a value k£ > r is reached.

If £ = oo the procedure is stopped immediately. In this case, or when we reach £ > r in the
iterative process, after a change of variables & = o« — P(3), where P is a polynomial of degree
r, the problem is equivalent to the initial one. Here the S](.’") polynomials are replaced by S*,
where

St = a+oi(B) +api(a, B),
53 = a+o3(8) + ap3(a, B),
S = o3(8) + apsi(a, B),

and where the minimal degree of the o7 is at least £ + 1. Hence, after a finite number of steps
we obtain

Lemma 1V.20. Consider the Normal Form after r steps of normalization in the case ¢ = 0. Let
G(a, B) = 0 be the defining equation of a boundary of the resonance zone. Then there exists
Bo > 0 such that, for |3| < 3y, one of the following statements holds:

a) The zero set of G consists of two analytic curves o = g;(53), j = 1,2, with g2(8) —
a1(B) =dB*¥(1+ O(B)),k <, d > 0. Furthermore

G, B) = (= g1(B))(a — g2(8)) F (v, B)
where F' is an analytic function with £'(0,0) > 0.

b) There exists a curve o = P(3), with P a polynomial of degree r, and a constant L > 0
such that the zero set of G is contained in the domain bounded by P(3) + L|3|" .

Proof: To complete the proof of the first item it is only necessary to remark that, from the
previous discussion, only two branches of G' = 0 can emerge from (0, 0). Hence

G(e, P)
(@ = 61(8))(a = 92(B))

is an invertible function. The fact that '(0,0) > 0 follows from the positive definite character
of the linear terms in o
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Concerning the second item, using the variable & = o — P(3) one can work with the S}
functions. Let us denote as G*(&, ) the expression S3S; — S32, that is, the value of G in the
new variables. Replacing & by =L |3|"*! the function G* becomes positive if L is large enough.
It remains to show that the zero set is not empty, but this will be an immediate consequence of
Lemma IV.21. (]

Next we consider the variations of the rotation number in different domains of the parameter
plane. That is, we want to estimate drot(a, b) which in the current parameters will be denoted
simply by rot(«, ). The differential equation for ¢ = arg(¢s + i¢,), i.e., equation (1V.20) for
¢ = 0, reads

¢ = (S + M) sin® o+ 2(S5) + Ms) sin g cos o + (S5 + M) cos? . (1V.23)

Lemma IV.21. Consider the rotation number p := rot(c, 3) of the differential equation (1V.20)
in co-rotating coordinates. Then there exist constants V, 5, > 0 such that, for 0 < |3| < By,

a) In case a) of Lemma 1V.20 let
9-(B) = min{g:(8), 92(B)}, 9+ (B) = max{g:(8), 92(8)}-
Then one has
p<0 if a<g (B)—NIB™, p>0 if a>g.(8)+NB™
p=0 it g_(B)+NIBI™ <a<gu()—NIB.
b) In case b) of Lemma IV.20 one has

p<0 if a<P(B)—N|B[" p>0 if a<P(8)+ N|gI".

Proof: Let us consider the quadratic form in the expression of ', i.e., equation (I\V.21) for
¢ = 0, in case a) obtained by skipping the A/; terms and where « is taken equal g (3). For

definiteness let S; = S](-r)(gi(ﬁ),ﬁ). This quadratic form is degenerate. As, in general, the
discriminant of the quadratic form is —G, the form is indefinite for « in (¢g_, g, ) and definite
outside [g_, g.]. If @« = g_ the form is negative definite everywhere except at one direction.
Similarly, if a = g itis positive definite everywhere except at one direction.

We want to see the effect of adding the M, terms and the change in the value of a.. From

the expression of the SJ(.T) (o, B) one has
S(9-(8) ~ NISI™, 8) + Mulo. (8) ~ NIBI™*1,5,0) < §— 161,
SP(o ()~ NIBI™', ) + Malg ()~ NIBI™*,6.6) < 85— 18I,

5 N
157(9-(8) = NIBI™, B) + Ms(9-(8) = NIBI™*, 8,0) = S5 < |8,
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uniformly in @, if N is large enough and 0 < |3| < B, for some /3,. The current quadratic form
is bounded from above by

. - ~ N
Sy sin? ¢ + 2S5 sin @ cos ¢ + Sy cos® ¢ — 5\6|T+1(sin2 @ + sin ¢ cos ¢ + cos® ).

N i . L L
Hence ¢’ < —Z|ﬁ|’”+1, proving the first of the assertions in a). The second assertion is proved
in the same way.

To prove the third statement in a) it is better to shift « by g_(8). Letnow & = o — g_(f).
Then the S; functions are of the form

S1 = a+61(B8)+ ap(& B),
Sy = &+ 62(B) + apa(d, B),
Ss = &3(8)+ aps(a B).

It is clear that when & = 0 we have G = 0 by construction, and the other root is g (5) —
g_(B) = d|B*(1 + O(B)),d > 0. Therefore, 61(8) + 62(8) = —d|B|*(1 + O(B)) and
61(8)62(8) = (63(8))?. Furthermore the 6; functions have & as minimal degree for j = 1,2, 3.
For definiteness let 6;(8) = h;|3¥ (1 + O(B)), with h; # 0.

We set now & = N|3|"+" and add the M; terms to the S; functions. The new determinant is
of the form

(N + A)B" +61) (N + B)|BI " +62) — (CIBI"™ +63)°

where |A|, |B|, |C| are uniformly bounded for all § by quantities which are Oy(3). Therefore
the determinant is uniformly bounded from above by —dN|3|¥+"*1/2 if N is large enough.
This shows that the quadratic form is indefinite for all 6.

Furthermore, when & = N|B|"+! the S; functions are O(|4[¥). This, combined with the
bound on the discriminant and the different terms contributing to the Sj shows that the slopes
of the directions in the (¢1, ¢2)-plane for which ¢' = 0 are of the form

r+1—k

ci(B) 16172 (c2 + ¢3(B,0)),

where ¢; and ¢z are analytic functions of their arguments and

h vVdN
01(0) = _h_j 7£ 0, co = W

and |c3(53,0)| < c2/2, uniformly in 6. The time dependence appears only in the c; term. One
of the directions is attracting for the dynamics of ¢ in S* and the other is repelling. We recall
that these directions depend on ¢. However the slopes of both directions are bounded away from
c¢1(B) uniformly in @ and therefore in ¢. Let o} (¢) the argument of a repelling direction. Any
value of the form ¢} (¢) + mm is also repelling. Consider two consecutive repelling curves. For
any fixed g with |3| < B, small enough, they are contained in a strip of the form (arg(c;(8) —
2¢9), arg(c1(B)+2c2+m). Any initial condition (¢, ¢-) between these repelling curves remains
in the strip for all ¢. This shows that p = 0, as desired.
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To prove the assertion for o = g, (3) — N|B|"*! one proceeds in a symmetric way. Then it
follows for the full interval as in the statement, by monotonicity of p with respect to a.

Finally, we proceed to case b). By introducing now & = o« — P(3) one obtains S functions
like the S defined above, with o7 (3) = O, 41 (). Then

N
ST(_N|/B|T+13/B)+M1(O[,/870) < _E‘ﬂ|r+1>
* r+1 N r+1
S5(-NIBI*.8) + Mo 5.6) < —3 (B,

N
|S§(_N|IB|T+1’5) + M3(Ol,,3,0)| < Z|IB|T+17

uniformly in 6, if N is large enough and |3| < (3, for some (3,. The current quadratic form is

. N : , .
bounded from above as in the a) case by —Z\ﬁ\’"“. This proves the first assertion in b) and

the second one is proved in a similar way. Furthermore, as was announced in Lemma 1V.20, the
zero set of GG is contained between these two curves because the rotation number passes from
< 0 to the left to > 0 to the right.

This finishes the proof of Lemma 1V.21 and the last part of Lemma V.20, case b). O

Remark 1V.22. In case a) we have constructed a domain with exponential dichotomy because
it is an open set where the rotation number is constant. An alternative and equivalent way
would be to perform a change of variables to render the time-independent part of the system to
diagonal form and then apply Coppel’s Criterion for exponential dichotomy 11.29.

Proposition 1V.12 is now immediate. Indeed, let ag’") and ag") the Taylor expansions up to
order 7 in b — by of ag + g1 (b — bo) and ag + go(b — by ) respectively. Then, letting A = 5, there
is a constant IV, given by the previous lemma, such that if a.(b) and a_(b) denote the right and
left boundary of the tongue, then

la,.(b) — max{a”(b)}| < N|b—bo|""" and

i=1,2

ja-(0) — min{a;"(0)}| < Nb— o[,

for |b — by| < A, as we wanted to show.

IV.4.3 Differentiability of rotation number and Lyapunov exponent for a
fixed potential

In this section we fix the parameter b, in a sufficiently small neighbourhood of the origin, to
ensure reducibility according to Eliasson’s Theorem IV.6. In this case we study rotation number
p = p(a) and (maximal) Lyapunov exponent A = A(a) of the quasi-periodic Hill equation
(IV.1), or equivalently (IV.5), in dependence of the parameter a. According to Eliasson [EIi92]
for || < C the Lyapunov exponent in the spectrum is zero.

The results in this setting are completely analogous to the periodic case, and proofs can be
obtained from those of the previous section.
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Corollary 1V.23. In the above situation, let a be an endpoint of a spectral gap. Then

(i) If ag isin the left (resp. right) endpoint of a noncollapsed spectral gap, then the functions
a€ (=1,1) — plag — o®) and o € (=1,1) = A(ag + o?)

(resp o € (—1,1) = p(ag + o?) and o € (—1,1) — A(ag — «?)) are differentiable at
zero.

(i) If {ao} is a collapsed spectral gap, then the functions
a— p(a)and a — A(a)
are differentiable at ay.

In particular, in any noncollapsed spectral gap [a_, a] the function a — w(a) := A(a)? is
analytic in (a_, a, ) and has lateral derivativesata = a_, a..

The same result was obtained in [Nn95, OP92] in more general contexts (e.g., for the
Schrddinger equation with almost periodic or ergodic potential).

Remark 1V.24. With a little more effort, one can recover the fact that for fixed, small potential
the function a — w(a) inagap [a_,a,] isof class C¥((a_,a.)) N C*([a_, ay]), See Moser
and Pdschel [MP84].

Remark 1V.25. This shows that the best regularity that one can expect for the rotation number
as a function of a is Holder with exponent 1/2. For references on this question of Holder
regularity, see Goldstein & Schlag [GS01] and Bourgain [Bou00, BouO4a]. Finally we would
like to stress that our method of proof does not need the use of Thouless formula.

IV.5 Lipschitz property of tongue boundaries in the large

In the chapter we approached the regularity of the tongue boundaries using reducibility. Ho-
wever, there exists numerical [BS98] and analytical evidence (see Frolich, Spencer & Wittver
[FSW90] and Bjerkldv [Bje03]), that in cases far from constant coefficients this approach can-
not be used. Presently we reconsider the quasi-periodic Hill equation (IV.1), or equivalently
(IV.5), where we only assume the components of w to be rationally independent (i.e., not ne-
cessarily with an additional Diophantine condition) and where the function @ : T¢ — R is just
continuous.

Proposition 1V.26. In the above situation, let

C = sup [Q(6)].

9cTd

and b € R — a(b) € R be a (left or right) tongue boundary. Then for all b, ' € R we have

ja(b) — a(t)| < C|b— 0]
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Our proof is based on Sturm-like arguments for the oscillation of the zeroes of a second
order linear differential equation. Let us recall the Sturmian characterization of the rotation
number, see Section I11.2.2. For any nontrivial solution z(¢) of equation (IV.1) let N(T; z) be
the number of its zeroes in the interval [0, 7']. Then, the limit

lim 7N(T;x)
T—o0 T

agrees with the rotation number of (IV.1), or equivalently, the system (I\V.5).

Our idea to prove Proposition V.26 is to use a suitable Sturm Oscillation Theorem to control
the zeroes of a variation @+ J@ of the original potential @, with the property that §¢)(9) is either
positive or negative for all # € T¢.

Lemma 1V.27. Assume that the maps @, 5@ : T¢ — R are continuous and that 6Q(6) > 0 for
all € T?. Let p; be the rotation number of

2" +QO)x=0, ¢ =w
and p. the rotation number of

y'+(Q(0) +0Q(0))y =0, ' =w.
Then p; < ps.

Lemma IV.27 is a direct consequence of the Sturm Comparison Theorem, see, e.g., [CL55].
Indeed, by this result, the number of zeroes N (7'; z) in the interval [0, 7] is less than or equal to
the number of zeroes N (7, y) of y in the same interval, assuming that we have the same initial
conditions z(0) = y(0), «'(0) = '(0). Therefore, by the above considerations

= i P < i T
as was to be shown.

We proceed showing how Lemma V.27 can be used to check the Lipschitz condition stated
in Proposition 1V.26. First, note that, if the condition §QQ > 0 is replaced by 6@ < 0, then we
have P1 > P2.

In the setting of Proposition 1V.26, condition

da — C|ob| > 0 (1IV.24)
implies that §Q(0) = da + 5bQ(#) > 0 for all # € T? and thus, by Lemma 1V.27, that
rot(a, b) < rot(a + da, b+ C6b).

Now, if (a, b) is at the boundary of a certain tongue (for simplicity assume a is the right endpoint
of the corresponding spectral gap), this means that for arbitrarily small perturbations in the a
direction, the rotation number is strictly larger than that of the original equation. That is, for
any d’'a > 0,

rot(a, b) < rot(a + &'a, b).
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The Lemma then yields that, if (da, 0b) satisfies (1V.24), also
rot(a, b) < rot(a + ¢'a + da, b+ CHb).

As ¢'a may be arbitrarily small the perturbations (da, db) in the sector defined by condition
(IV.24) do not contain any point in the boundary of the same tongue as (a, b). Therefore, in our
proof of Proposition IV.26 we have

a(bl) - a(bg) S C |b1 - bQ| .
In order to prove the remaining inequality, observe that perturbations in the sector
da+ Cl6b| <0 (IV.25)

contain no points in the left boundary of the tongue of (a,b). By contradiction assume that
such a point in the left boundary exists and let (da, db) satisfying (IV.25) be the corresponding
perturbation. Then, due to the openness of the above condition, there exists a positive constant
d'a such that (6a + 0'a, 0b) still satisfies (1V.25). Moreover, as we are assuming (a + da, b+ 0b)
to be in the endpoint of the left spectral gap and §’a > 0

rot(a, b) = rot(a + da, b+ 6b) < rot(a + é'a + da, b + b).
On the other hand, the perturbation (—da — §’a, —db) satisfies condition (1V.24) and therefore
rot(a + d'a + da, 6b) < rot(a, b),

which implies rot(a,b) < rot(a,b). This is the desired contradiction, whereby Proposition
V.26 is proved.

Remark 1V.28. The Lipschitz property in Proposition 1V.26 regarding tongue boundaries also
holds in the periodic case, where the proof runs exactly the same, and where this is referred to
as the directional convexity of stability and instability domains, see Yakubovich & Starzhinskii
[YS75]. The property also provides a bound on the derivatives of the tongue boundaries whe-
never they exist. This bound coincides with the one obtained in the averaging process of Section
IV.2.2.

IV.6 Proof of Theorem IV.14

Our proof follows from an analysis of the normal form to order |k*|. There are several norma-
lization techniques and any such method for arbitrary |k*| can be cumbersome. Therefore we
only use the format of the normal form of order |k*| to find out which terms are relevant. Sub-
sequently, the coefficients of those terms are obtained by an alternative, recurrent and simpler
method.

Let us set ag = (k*)/2 and @ = a2 + a. Next, a scaling

3?:\/—&—07 Y =1V
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and passage to complex coordinates

€_q+ip _ig+p
\/5 7 77 \/5 7

give the following form for the time-dependent Hamiltonian

2_ 2.1 9; d
H(g,p,t) = agiqp + g p2+ P (2304-4@0 (Z cj cos(w;t) + € cos ((k*)t ))) (1V.26)

where, again, we use the notation (-) for (-, w, ). Now let .J be canonically conjugate to the time
t, and let (; = exp(i sign(k})w;t) for j = 1,...,d. Then (IV.26) can be written as the sum of
an integrable part H, and a perturbation H;

d
Hy = J+agpigp, Hy = b(q —p +2@qp ( Z Cj-i-C +8 (Ck*-l—C_k*)) , (IV.27)

where

& =2a/b,  b=0b/(8)
act as perturbation parameters.
To carry out the normalization (averaging) one can use any Lie series method, for instance
the Giorgilli-Galgani algorithm [GG78] as it is was done in [BS00]. Starting with Hy, = H
and H, , = Hy, the terms

k
Hyp=Y1lGuHyd,  §=01 k>0,

=1
where [-, -] denotes the Poisson bracket, are computed recurrently. A term as H,; contains
bt as a factor. The functions G,, are determined for canceling the time dependence as far
as possible, i.e., if no resonances occur. To be precise, assume that G4, ... G, are already
computed. Then all terms in H, ,,_; + H, ,, are known except the ones coming from [G,,, Hy o]
Let K, contain the known terms at order n. Then G, is determined by requiring K, + G, Ho o]
not to contain terms in the ¢; variables. The transformed Hamiltonian then is N = Ny + N; +
No+---,where Ny = Hypand N,, = Hy ,,_1+ Hy,,. In particular, NV, is of order n with respect
to b.

It directly follows that

[Hoo,q"p*"¢*] =¢"p* " CMi(a(2—2r) — (k)), r=0,1,2,

and this shows that all terms with «(2 — 2r) — (k) different from zero can be canceled to any
finite order. Proceeding by induction one observes that, if j + & = m then H ; has the form

Hjp = ¢’dy — p’dy + iqp(ds + da),
with the corresponding G, of the form

Gm = i(¢°dy + p*da) + qp(ds — dy).
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Here d; contains the terms with real coefficients of the form &§*~*¢* with |k| = r, where s and
r have the same parity. The terms in d, can be obtained from d; by a replacement of ¢k by (k.
Similarly, the expression of ds is identical to that of d, but replacing ¢* by (7.

Summing up, by a canonical change of variables, the Hamiltonian H = Hy + H;, upto a
remainder of higher order in b, can be reduced to the normal form

NF = J + ayigp + coefiigp + coef, (¢*¢* — p°¢¥"), (1V.28)

where

~

- coef, = & + ry, where r; a (real) function depending on (b, &, €, c), and containing some
power of b as a factor;

- coefy = ebfa(b, &, €, ¢) + ¥ x ry, where r, a (real) function depending on (b, &, ¢, ¢)
and where £5(0,0,0, c) # 0 does not depend on ¢;

- The order of the remainder in b is larger than [k*|.

Truncating away the remainder and passing to co-rotating coordinates (u, v) defined by
u = gexp(—i(k*)t), v = pexp(i(k*)t)
yields the system
u' = icoef, u — 2 coefy v, v’ = —2coefy u — icoef; v.
Therefore, up to the |k*|th order the tongue boundaries are given by the equation
coef; = +2 coefs,.

So if r5(0,0,0,¢) # 0 for e = 0 there is a |k*|th order of tangency at b = 0, while for ¢ # 0
there is an instability pocket, see the end of this section. Hence, our proof of Theorem 1V.14 is
concluded by checking when r5(0, 0, 0, ¢) vanishes.

To find out whether r5(0, 0, 0, ¢) vanishes or not, it is only necessary to consider equation
(IV.17) for e = 0 at the exact resonance

2"+ <<IZ—*> + g (Z ¢ (G + Cj_l)>) z=0. (1V.29)

=1

Note that
r2(0,0,0,¢) = R(w, k*)c&

where now R does not depend on c. Therefore one may assume thatc; = 1forj =1,...,d.

According to the normal form (IV.28), any nontrivial solution z(¢) of (IV.29) can be ex-
panded in powers of b, the first K — 1 coefficients of which are quasi-periodic functions and
where the K'th coefficient is also quasi-periodic if and only if R(w, k*) vanishes. We are now
going to compute this expansion directly from the differential equations, instead of using the
Hamiltonian formulation.
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Since we are interested in the k*th power in ¢, we first consider the equation (IV.29) only
for positive powers of the ¢ :

2" + <k* + - Zg) (1V.30)

Scaling time by ¢ = 27 turns (1V.30) into

d
+ ((k*>2 + ,LLZ zjz) z=0. (IV.31)

where the dot denotes derivation with respect to 7 and where . = 2b is the new perturbation
parameter. Also note that after this change we have (; = 23, where z; = exp(i sign(k})w;T).
Any solution of equation (1V.31) can be expanded in powers of y as follows

M = zo 4+ pxy + pPas + -+ prrr + O(uEY)

where K = |k*|. Substitution of this expansion into (IV.31) leads to the following recursive
relations:
d
& + (k) = — (Z Z?) "
j=1

.’E() + <k*>2$0 =0

forr=1,..., K and

for » = 0. One of the two fundamental solutions of the latter equation is zo = 2% so that the
equation for =1 becomes

.’131—{— k* § :Z k—|—2e]1

j1=1

where e; is the jth element of the canonical basis of R?. A solution of the latter equation is
given by
k*+2ej,

__Z (k)2 k*—2e]1)

111

This recursive process can be continued up to any order. By induction it directly follows that at
the rth step

d (K +2(ejy 4. tey, )
Tr = (_1)T T 2 2
where S| = €, + o4 €}, forl = 17 R Note that when |T‘ < ‘k*‘, the denominator of the

above expression never vanishes. At the order K = |k*| the equation for zx reads

T A A I
e+ (K)o + (<1) Z 5 () — (e —280)
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In the summation we are only interested in terms with 2¥". Indeed, all other terms can be
removed by a procedure similar to the one used for the previous z1,...,xx 1.

The remaining terms can be indexed by the paths of length K joining 0 and k* in the lattice
Z4. The set of these paths will be denoted by I'(k*), and for every path v € I'(k*) we consider
the intermediate position vectors s, (7). In this way the equation for x ;- becomes

i 4+ (kK 2rg + 25 F(w, k*) =0

where

* (—1)K71 1 (_1)K71
F w,k = K1 = — 1 ,
i) Z() S (k)2 = (e =2s1(7))?) 4%%;) I15, 0 = si(0) (1))

which has nonvanishing denominators for all irrational frequency vectors w. The latter equation
has as a nontrivial solution

zi (1) = —2iT(k*)F(w,k*)zk*,

provided that F'(w, k*) # 0, and this solution is clearly not quasi-periodic.

Next we proceed with the other fundamental solution z(? of the equation (1V.31), start-
ing with the zero order term 2*". However it is better to study that solution via the conjugate
equation

d
i+ ((k*}2 + /JJZZ]-_2> z=0. (1V.32)

This leads to a recursive process as before for obtaining the coefficients of the expansion of
2™ in terms of u. Now, taking &) = 1 (z® +2®) as fundamental solutions, we get the
following equation

d
i+ ((k>2 + “Z (25 + zﬁ)) =0 (1V.33)

which, undoing the changes in 7 and y, can be transformed into (1V.29).

In this way we have found two linearly independent solutions 2+ and z~ of this system, the
expansion of which in powers of b have quasi-periodic coefficients in time up to order K —1 and
where the K'th order coefficient is a function of the form #2%" times F(w, k*). By comparison
of coefficients it follows that F'(w, k*) and R(w, k*) are identical except for a nonzero factor.

Note that F'(w, k*) is a rational function. We denote its numerator by N(w,k*) and its
denominator by D(w, k*). Define .A(k*) as the set of w’s for which N(w, k*) is nonzero. We
claim that A(k*) has measure zero, which follows from the fact that V (-, k*) is not identically
zero. To check this first note that if w = (1,...,1)7, then D(w,k*) does not vanish. Second
we resort to the periodic case [BS00], noting that the equation now can be transformed to the
classical Mathieu equation. It thereby follows that N (w, k*) is nonzero for this value and, hence
that V(-, k*) is not identically zero for any k*. Therefore the set .4 (k*), given by the zeroes of
N(w, k*), is a zero measure set and the theorem follows. O

Summarizing, the tongue boundaries at the k*th resonance, up to order |k*|, are given by
the equation
coef; = +2 coef,y
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which, in terms of &, b, ¢ and ¢ becomes
&+ (a, b,e, c) =42 (E?)fg(d, b,e, c)+ Ia‘k*|r2(&, b,e, c)) .
The tongue boundary crossings up to order |k*| correspond to
coef, =0

and a further analysis requires to distinguish between the cases of even and odd K.
When K is even, then for any 0 < |e| < 1 there is a pocket ending at b = 0 and at

o _6f2(0707076) ﬁ
= (St )

)

where the dots denote higher order terms in e. If K is odd then the sign of ¢ must be selected

such that
—££2(0,0,0,¢)

X" Ry (w, k)
is positive. If this is the case, then there are two instability pockets with ends at b = 0 and at

1
—£>(0,0,0,¢)\ FT
:!: -+ 8f2( sy Uy Uy
bip ( X" Ry (w, k*) +

IV.7  Structure of the sets A(k)

An interesting question related to Theorem V.14 is whether the set of strongly irrational fre-
quency vectors in A(k), for a fixed resonance k, is empty or not.

When d = 2, we can always assume that w = (1,+), where ~ is a real number. Note
that any real irrational  for which N(w,k) = 0 for some k, is strongly irrational, since it is
algebraic. Direct computations, performed on F'(w, k), yield that if the order of the resonance is
less than 5, all the roots of N((1,v), k) are either rational or complex (i.e., nonreal). However,
fork = (3,2),

N ((1,7),(3,2)) = 24 + 1727y + 45472 + 50593 + 2329* + 4995 + 475

which has real irrational zeroes. Direct computation also shows that the same happens for all
resonances 6 < |k| < 9 with k; # 1, ko # 1. For d > 3 the situation is even simpler, since for
k* = (1,1, 1) the polynomial N(w, k*) has real strongly irrational zeroes.

There is one case when |k*|th order tangency at the k*th resonance always can be granted:

Proposition 1V.29. In the Mathieu equation with quasi-periodic forcing
2" + (a + b(cos(t) + cos(vt))) z = 0, (IV.34)

where 2y # 0 is not a negative integer, the order of tangency at b = 0 of the resonance tongue
boundaries corresponding to k* = (K, 1), for any K, exactly is |k*| = K + 1.



98 Chapter I'V. Resonance tongues and instability pockets

Proof: In this case the number of paths of minimal length in Z? joining (0,0) and k* exactly
is K + 1 and any of these can be labelled by an integer between 0 and K. These paths will be
denoted by oy, ..., ox. To show that the order of tangency is exactly K + 1 we must compute
F((1,7), (K,1)) =: f(~, K), which amounts to

(1)K K 1
B _ V.35
f(v, K) 4 ]Z:; [T.2, (k* —si(o))(si(05)) ( )

and show that for v ¢ Z, this does not vanish. For each of the paths o, 7 =0, ..., K, let o be
the contribution to the sum in (IV.35). Then

o; = 1 1 P 1 1 P 1
TTE -1+ )I(E =242 (K—j+7)i (K-H)0+7) UK-1+79)

where the total number of factors is K. Using the Gamma-function it follows that

&~ DE-j+rG+9)
> = Zoj!(K — (K + 9K + )

Since the denominator of f(~, K) is
d(v, K) = D((1,7), (K,1)) = (K =14+ )1-...- (v + D(K = 1) - (7)(K)

it is clear that

d(v, K) = F(KFJ(X)K‘
implying that
NN~ (YD =406 +9) _ 1 DK +2)0()
d(y, K);aﬂ - ; (;) L(K+yI(y)  TE+N)C(y) L@y 7

where the last identity is an application of Pochhammer’s formula, see [WW62]. Therefore, the
relevant coefficient is

((DF§~, 1 L(y)?
J0K) === 2% = SRR T ey < )

which, if 2+ is not a negative integer, is different from zero. O



Chapter V

Analytic families of reducible
guasi-periodic equations

In this chapter we deal with linear equations in a certain matrix Lie algebra with quasi-periodic
coefficients and depending on external parameters. This is motivated by the question raised
in the previous chapter on the analyticity of tongue boundaries of Hill’s equation with quasi-
periodic forcing. We will consider systems of the form

' = (Ao + P(O,p)) z, 0 = w, (V.1)

where A, € g is a constant matrix, P = P(#, ) belongs to g, a matrix Lie algebra (see Chapter
I1) and it is real analytic.

Equation (V.1) is a perturbation of a system with constant coefficients if P (6, u) is small. For
this kind of systems and several different contexts, one has that (V.1) it is reducible to constant
coefficients for almost all values of x provided some generic conditions are met (see Eliasson
[Eli92] for the case of si(2, R) and Krikorian [Kri99b] for compact Lie algebras). This seems to
be also the situation for general analytic quasi-periodic perturbations of systems with constant
coefficients (see Jorba & Sim6 [JS92, JS96] for results in positive measure). We would like to
stress that, even in the cases where almost everywhere reducibility holds, there exist generic
sets of u for which reducibility does not hold (see Eliasson [Eli92, Eli02a]).

Even if a system like (V.1) is reducible to constant coefficients, the Floquet matrix will not
be A, again. One can try, however, to modify (V.5) in a way such that the perturbed system
is reducible with Floquet matrix Ay. This is an old idea going back to Moser [Mos67] (see
Remark V.5). We will try to obtain a real analytic matrix function £* € g such that

o= (A + PO,p) - W)z, 0 =w, (V.2)
is reducible to the constant-coefficients system
Yy =Awy, O0=uw (V.3)

by means of a transformation
z = exp (X (0, 1)) v, (V.4)

where X € g is real analytic in both # and u. If we succeed in doing so then the equation
&*() = 0 will determine an analytic family of systems of (V.1) which are reducible to (V.3).

99
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This allows us to study the problem of the persistence and analyticity of these families. To
achieve our goal we will have to impose analyticity to the original system in both # and ,
smallness of P and some arithmetic properties on the eigenvalues of A, and the frequencies w.

One of our main motivations is to be able to detect bifurcations of the Floquet matrices of
reducible systems. For example, think of Hill’s equation with quasi-periodic forcing when b
parameterizes some tongue boundary b — a(b), with |b] small. When b = 0 the Floquet matrix
is identically zero but when b # 0 the reducible systems that we are looking for have a nilpotent,
but not zero, Floquet matrix. Therefore, we will introduce a scaling function x = x(u), also
real analytic, a suitable order £ € N of scaling and consider the system

o' = x()* (Ao + x(W) PO, )z, 0 =w. (V.5)

Under some additional hypothesis on Ay, we will show that a suitable modification of (\V.5)

' = x()* (Ao + x(W) PO, p) — x(WE* W)z, 0 =w

is reducible to constant coefficients with Floquet matrix x(u)* Ao, where both £* and the trans-
formation depend analytically on u. The treatment of this scaled case is postponed to Section
V.1.1.

Remark V.1. The requirement that the Floquet matrix of (V.2) is x(u)* A, again is imposed not
to destroy good Diophantine conditions.

V.1 Formulation of the main result

Let us first formulate the main result without the scaling parameter x. The reducibility of the
modified system (V.2) to (V.3) by means of the transformation (V.4) requires that Z = exp(X)
satisfies the homological equation

0,20, 1) = (Ao + P(0, u) — & (1)) Z, —Zx (1) Ao, (V.6)

where the unknowns are X and &£*. If we try to solve the homological equation (V.6) by means
of (modified) Newton’s quadratic method we obtain the linear version (in X) of (V.6), namely

0w X (0, ) = [Ao, X] + P(0, p) — £ (1) (V.7)

Without imposing extra conditions, this equation needs not to have a solution (even formally)
and even if there is such a solution it may not be unique. Besides, considering different choices
of £&* may be interesting in different contexts. As we want the convergence issues to be separ-
ated from the formal (algebraic) aspects, we will assume that equation (V.7) is solvable in the
following way.

Definition V.2. Given a matrix Lie algebra, g, a quartet (Ao, C, S,w) is said to be admissible
if Ay € g, C,S : g — g are linear operators with C? = C and there exist positive constants
¢, v such that, for all real analytic P € C;;(Td, g) the equations

0,X(0) = [0, X (0)] + P(6) — C(P), X =S(P), (V.8)



V.1. Formulation of the main result 101

where the bar denotes the average of a quasi-periodic function, have a unique real analytic
solution X : T¢ — ¢ which satisfies the estimates

X, 5 <c5° (V.9)

p—06 —

1P|
o
forall0 < 6 < p.

The main result reads now as follows.

Theorem V.3. Let ¢ C gl(n,R) be a matrix Lie algebra, (Ao, C, S,w) an admissible quar-
tet, with positive constants ¢, v, and p, a positive number. Then there exists a constant ¢ =
e(po, ¢, v, | Ag]) > 0 such that for any real analytic matrix-function P : T¢ — g such that

[Pl <€
there exists a £* € g, with |£*] < 2¢ and £&* = C'(£¢*), such that the modified system
' = (Ag+ P(0) — &)z, 0 =w (V.10)
is reducible to the constant-coefficients system
Yy = Ay, 0 =w (V.11)

by means of a transformation z = Z()y, of the form Z = exp(X), where X : T¢ — g is real
analytic and

|*X‘p0/2 < \/E

Moreover, if P depends real analytically on ;1 € RP in a certain ball around the origin then
both X and &* depend real analytically on p in a narrower ball.

A more convenient version of the previous theorem for some applications will be stated in
Section V.1.1. The proof of both theorems will be given in Section V.5.

Remark V.4. The modifying term £*(x) will also be called counterterm.

Remark V.5. This result is a reformulation of Moser [Mos67] who introduced the counterterm.
The adaption to the linear case was given by Bogoljubov, Mitropoliskii & Samotilenko [BMS76]
and Katok [Kat70], where the case of Lie algebras was also considered. For a similar result
in the discrete and smooth context, see Krikorian [Kri99a], who used techniques of nonlinear
functional analysis.

V.1.1 On admissible (Ag, C, S,w)

Assume that Ay € g and w € R?, rationally independent, are fixed. One would like to have
an effective method to determine operators C, S : ¢ — g such that the quartet (Ao, C, S, w) is
admissible.

A criterion of this kind requires two conditions: one algebraic (which allows to compute a
formal solution of this problem) and another Diophantine (so that the previous formal solution
is an actual one).
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Let us try to solve formally equation (V.8) in terms of the Fourier coefficients of P : T? — g.

Writing
X(0)=>Y X  PO)=) Pe*?
kezd keZd
and equating the Fourier coefficients in (\V.8) one obtains

i(k, w) Xy = [Ao, Xi] + P (V.12)

for k # 0 and
0 = [Ag, Xo] + Po — C(F) (V.13)

for k = 0. Thus the only condition on the operators S and C' is that
0 = [Ao, S(Po)] + Po — C(Po) (V.14)

must hold for all Py € g. This can bee understood at a more geometrical level making use of
the adjoint operator (see Chapter I1), which is the following linear operator on g:

a«dAo: g — g
X = [A(),X],

In terms of this operator, equation (V.14) holds for all Py € g if, and only if, the operator
C — ad 4, 0 S is the identity on g. To solve the equations for the remaining Fourier coefficients
(V.12) one needs that i(k, w)I — ad 4, is an invertible operator for all k € Z¢ — {0}. Thus we
meet the required condition on rational independence for the formal solution:

A —i(k,w) #0 (V.15)

for all
A € Spec (ad 4,)

and k # 0. Note that the eigenvalues of ad 4, will be of the form X" — X" for A, A" in the
spectrum of Aj.

If we want this formal solution to be an actual solution of the homological equation (V.8) one
needs to strengthen this nonresonance condition to have a good control of the small divisors.
This is very similar to the techniques in Section 11.2.2 and it is summarized in the following
lemma.

Lemma V.6. Assume that A, € g, w € R¢ and that there exist linear operators C, S : g — g,
with C? = C such that C — ad4, o S is the identity on g. Assume that there exist positive
constants 7, K such that the following Diophantine condition

K
inf A —ik,w)|>—— kecZ k#0 (V.16)

)\ESpec(ad Ao) |k|T’
is satisfied. Then the quartet (A, C, S, w) is admissible.

To prove the lemma, it suffices to represent equations (V.12) and (V.13) in terms of a basis
of the Lie algebra g and then use the standard Diophantine conditions.
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Example V.7. If Ay € ¢ has all eigenvalues equal and w is strongly rationally independent,
that is, there exist positive constants K and 7 such that the frequency vector w satisfies

K
|(k,w)|2W, kEZd, k;éO,

then, choosing C to be the identity and S to be zero, the quartet (A4, C, S, w) is admissible.

Since the counter-term &*(u) in Theorem V.3 satisfies that C(£*) = £* and the persistence
of a family of reducible quasi-periodic systems of (V.5) with Floquet matrix A, requires the
conditions £*(x) = 0, it is important that the dimension of the image of C in g, which we
denote as L, is as small as we can. Note that in Example V.7, the dimension of this space is
not necessarily minimal, since the special properties of A, are not used. The following lemma
gives a condition of this kind.

Lemma V.8. Let Ay € ¢ and w satisfy the Diophantine conditions (V.16). Then the minimal
dimension of L in g is the dimension of g as a subspace of gi(n, R) minus the dimension of the
image of ad 4, in g.

Proof: Since

C - adAO oS = I,
it is clear that dim Lo > dimkerady,. If L¢ is chosen to be exactly kerad,, and S so that
ad4, o S = ad,, the optimal bound is attained. O

Remark V.9. Once L is chosen to be the kernel of ad 4,, the operator S is any linear operator
satisfying ad4, o S = ady,.

In particular, if Spec (ad 4,) = {0} and w is strongly rationally independent, there exist
choices of C and S such that the quartet (x*Ay, C, S,w) is admissible for all values of the
parameter x in R. One can use this uniformity in y to obtain the following theorem:

Theorem V.10. Let g C gl(n,R) be a matrix Lie algebra, let (4, C, S, w) be admissible, with
positive constants ¢, » and such that Specad 4, = {0}. Let py be a positive number. Then there
exists a positive constant ¢ = &(pq, ¢, v, | Ap|) such that for any real analytic matrix-function
P : T¢ — g such that

[Pl <€

and any |x| < 1, there exists a £* € g, with £* = C(£*), such that the modified system
2’ = x* (A + xP(0) — x&) 2, 0 =w (V.17)
is reducible to the constant-coefficients system
y' = x*Agy, 0 =w (V.18)

by means of a transformation z = Z(6)y, of the form Z = exp(xX), where X : T¢ — g is real
analytic and

|*X‘p0/2 < \/E
Moreover, if P and y depend real analytically on 1 € RP in a certain ball around the origin
then both X and £* depend real analytically on x in a narrower ball.
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An example, which will be used in the following section, is the following:

Example V.11. Let g = sp(1,R) = sl(2,R) and A, be the nilpotent matrix

(50)

In the algebra s/(2, R) we can consider the basis formed by the elements

1 0 01 00
X11:<0_1>, X12:(0 0); and X21:(1 0);

and let (z11, 212, 21)T be the coordinates of an element X € g with respect to this basis. Since

_ Tor —2x11
[A())X] - ( 0 ) Y

—T21

the spectrum of ad 4, : ¢ — ¢ reduces to the zero eigenvalue with multiplicity three and its
kernel is the linear subspace of ¢g spanned by X,. We can choose C, in the above coordinates,
as

C11(§) =0, 012(5) =0, 021(5) = &1

and, for example,

s11(§) = _71512, s12(§) = 0, 591(&) = &ur.

With these definitions (A4,, C, S, w) is admissible.

V.1.2 Outline

Before ending the introduction, let us briefly outline the contents of the present chapter. In
sections V.2, V.3 and V.4 we present some applications of theorems V.3 and V.10. More spe-
cifically, in Section V.2 we deal with Hill’s equation with quasi-periodic forcing and we prove
that resonance tongue boundaries are analytic functions of the perturbing parameter. This has
applications to the genericity of “having all gaps open” (and in particular Cantor spectrum) for
quasi-periodic Schrodinger operators.

In Section V.3 linear equations with quasi-periodic coefficients in so(3, R) are considered.
To end the applications we show how the results of Section V.2, together with some arguments
of Sacker-Sell spectral theory can be used to study hyperbolicity boundaries of Hamiltonian
systems in higher dimensions. This is done in Section V.4.

The proofs of theorems V.3 and V.10 are postponed to Section V.5, where a classical KAM
scheme is presented. These proofs will be given in a unified way. Finally, we include two
sections, V.6 and V.7, which deal with generalizations of Theorem V.3 to the context of multiple
resonances and the presence of a time-reversing symmetry respectively.

Most of the results in this chapter will appear in Puig & Sim6 [PS03].
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V.2 Analyticity of tongue boundaries in quasi-periodic Hill’s
equation and applications

In the proof of the C'* character of resonance tongues, Theorem IV.3, it was essential to have
reducibility of the associated skew-product flow on R? x T¢ for values of (a, b) at tongue boun-
daries which, by a theorem of Eliasson [Eli92], holds under the current hypothesis, that is real
analyticity of ) and a strong rational independence on w.

Theorem V.3 can be used to show that tongue boundaries are analytic for |5| small enough.
This is the contents of the following result.

Theorem V.12. Consider Hill’s equation with quasi-periodic forcing
2"+ (a + bQ(wt)) z =0 (V.19)

being the function @ : T¢ — R real analytic and the frequency vector w, strongly rationally
independent.

Assume that for (ag, by) € R? the associated skew-product is reducible to constant coeffi-
cients and it is at a tongue boundary. Then

(i) If ao is at the end of a noncollapsed gap of o,v,,, the tongue boundary a = a(b) such
that a(by) = ao is real analytic in a neighbourhood of by and for (a,b) = (a(b), b), the
skew-product is reducible to constant coefficients.

(i) If ao is a collapsed gap of oy,y,,, the two tongue boundaries a; = a;(b) for i = 1,2,
with a;(by) = ag, are real analytic functions in a neighbourhood of b,. Moreover, for
(a,b) = (a;(b),b), i = 1,2, the skew-product is reducible to constant coefficients.

In both cases the reducing transformations depend real analytically on both # and b.

Since for b = 0 the skew-product associated to Hill’s equation is always reducible to con-
stant coefficients (it is already in this form) one has the following consequence.

Theorem V.13. If the potential @ is analytic and w strongly rationally independent, every
tongue boundary is an analytic function of b in a neighbourhood of b = 0.

V.2.1 Proof of Theorem V.12

To prove Theorem V.12 we will have to distinguish between collapsed and noncollapsed gaps
at some point. However, both cases have the passage to a perturbative situation as a common
starting point.

Fix (ao, bo) as in Theorem V.12. By hypothesis the skew-product is reducible to constant
coefficients, whose Floquet matrix we denote by A,. This matrix belongs to si(2, R) (since our
setting is Hamiltonian) and satisfies that A2 = 0, because a, is at the endpoint of a spectral gap.
Moreover the gap is collapsed if, and only if, A; = 0.

Let R : T¢ — G be areal analytic reducing transformation for (a, b) = (ag, by) given by the
hypothesis. After this transformation, the skew-product becomes

y = (Ao + (a—ag+ (b—b)Q(H)) ( UL >> y, 0 =w,  (V.20)

2
AT A AT
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where the r;; are the components of R. We introduce now p = (o, 3), where o = a — a, and
B = b — by, as the new local perturbation parameters. We denote as P (8, i) the time dependent
part of (V.20), that is,

P(e,u)=(a+ﬁQ<0))(“1“2 & ) (V.21)

2
—Tr7r —Tririe

Let us now distinguish between collapsed and noncollapsed gaps.

Non-collapsed gap

In this case, A, satisfies A2 = 0 but A, # 0. After performing a change of basis if necessary,
we may assume that
01
4y = ( 01 ) .

Using Example V.11 the choices

C(Pn p12>:<0 0>‘

P21 —Pu pa1 O
g ( P P12 ) _ ( —pi2/2 0 )

P21 —Pu b1 p12/2 .

make (Aq, C, S,w) admissible, since w is strongly rationally independent. Thus, by Theorem

V.3, there exist a real analytic function &, (1), defined in a neighbourhood of the origin, and a
real analytic X = X (0, ) € g such that Z (0, u) = exp(X (6, u)) satisfies

and

0,7 = (Ao + P(0, 1) — €' (1)) Z — Z Ao, (V.22)

where

) = ( 5;1(@) : >

Therefore, for the values of x such that &, (x) = 0, system (V.20) (and thus also the ori-
ginal skew-product for parameters (a, b) = (aq, by) + 1) is analytically reducible to a constant-
coefficients system with Floquet matrix A,.

Hence, to prove item (7), we only need to show that the equation

f;l (Oé, 6) = 07 (V23)

can be inverted to obtain an analytic function & = «(f). Note that, passing to averages in
equation (V.22) one sees that

&, B) = —a(r? QT
1) = BC 1) + Oa(p),

where Oq(p) collects terms of order greater than one in u. Since E # 0 (because rq; is a
nontrivial quasi-periodic solution of Hill’s equation), the Implicit Function Theorem yields a
real analytic function a = «(g) for which (V.23) holds.
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Collapsed gap

As we have said before, in this case the Floquet matrix is A, = 0. Using Example V.7 and
since w is strongly rationally independent, the choice C' = Id and S = 0 makes (Ay, C, S, w)
admissible so that we can apply Theorem V.3 to obtain real analytic functions &5, (1), &)
and &5, (u), defined in a neighbourhood of the origin, and a real analytic X = X (6, ) € g such
that Z(0, 1) = exp(X (6, u)) satisfies

where P is defined as (V.21) and

* _ fﬁ(/i) STQ(M)
&) = ( & () —&(n) ) '

As it will be seen in Section V.7, if ¢ is even, ¢(t) = ¢(—t) forall t € R, then &; = 0. Most of
the considerations in the present section are simpler in this reversible setting.

We want to find two functions «;(3) and ax(3) such that system (V.20) is reducible to a
Floquet matrix B(3) satisfying B> = 0 if @ = ay2(8). In Chapter IV it was shown that
these «; were C'* functions. In principle, it could happen that these two boundaries have a
C*°-tangency but that they are not equal. First of all we shall rule out this possibility.

Note that the reducing transformation Z in (V.24) also defines a conjugation from the ori-
ginal unmodified system

0,2 =PO, )7 —Z (27 (w2).
We will now study the analyticity of the boundaries of the resonance tongues of the system
v =771 () Za, 0 = w. (V.25)

This system has the property that for every fixed value of 6, the matrix S is similar to £*,
although the system is not necessarily conjugated to constant coefficients. In particular, the
eigenvalues of S do not change with 6. For this system one has the following:

Lemma V.14. If det £*(u) > 0 then the rotation number of the quasi-periodic system (V.25) is
strictly different from zero.

Proof: Going to polar coordinates, ¢ = arg(z; +iz) the flow on S* x T¢ is given by equations
@' = —591(0) sin® ¢ + s19(6) cos® ¢ + 2511 (6) cos psin @, 0 =w. (V.26)

The right hand side is a quadratic form given by the matrix —.J.S. This last quadratic form is
definite if, and only if, det S > 0, which is equivalent to det £*(p) > 0. O

Moreover, calculating the averages of (V.24) and keeping in mind the form of P, we can
compute the first terms of £*(u):

Ea(e,8) = alrd) + BQrE) + Ox(n),
fgl(a:ﬁ) = _O‘(T QT%2)+O2(/$)a
() = o)A B@Qrire) + Oa(n).
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Since in the case of a collapsed gap the transformation R can always be chosen so that

r? iy =1, and T1ir12 = 0,

the expression for the determinant of &* becomes
det & (p) = o® + O(aB, 5%, o).

Using similar arguments to the proof of Lemma V.20, when the polynomials appearing there
are replaced by analytic functions with similar format, one has

det £* (o, ) = F(a, B) (@ — a1 () (a — a3(B)),

where o, = af 5(B) are two real analytic functions and F' = F(«, ), with F'(0,0) = 1, is
also real analytic. Since o7 and o are real analytic functions which both vanish at zero, either
they coincide or they have a tangency of some order.

Let us assume first that they coincide, that is a;(8) = a4(8) for all 5. Using the continuity
and the monotonicity in « of the rotation number, the rotation number of (V.25) is strictly
positive if a« > «f(B) and strictly negative if « < af(3). Therefore, the two tongue boundaries
coincide in a neighbourhood of zero and they are given by ().

If of # a3, there exists an integer p > 1 and a constant C' # 0 such that

a5(8) — e (B) = CB” + Ox1a(B)-

We are going to see that this p is precisely the order of contact of the two tongue boundaries
at 8 = 0 and that the latter are real analytic functions. Note that o] and o need not to be the
parameterization of the tongue boundaries.

After the changes in the parameters « and 3 from Section 1V.4.2 we may assume that

oo SaB) Sa(ef)
& f) = ( (e, ) —Ss(a, B) )

with
Si(a, B a+01(8) + api (e, B)
So(a, B) = a+02(B) + apa, B)
S3(a, B) = o3(B) + aps(a, B)
where

O'J(ﬁ) = ij,kﬂk, j = 1, 2, 3, (ml,p — mz,p)Q + mg,p >0
k>p
and the possible terms in .S; and S, of degree less than p in 3, which must be equal, are included
inside « with a suitable redefinition of «.
The equation
has two different roots which we denote as ~y; and ~,. Taking one of these, for instance v, we
perform the change of variables o = ;67 + § 87, which means that we restrict our study to a
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wedge around a boundary of the “unperturbed” problem of width § 37, with § small. In the new
variables, § and 3, the matrix £* becomes

o (( . m3p (mip+m)+6 ) +0(5)) ‘

Mop+m) =0 —M3p
Therefore, the system (V.25) becomes

=0 (it —s ) ) w089 0 =0 2D

where we have used that X is of the order of 3. The terms of order S? in this expression will be

written as
a b+46
( —c—90 —a ) '

Due to the definition of 6 and ~;, bc — a® = 0. Also, b and ¢ cannot be zero at the same time
because in this case the order of contact of o] and o would be greater than p. Let us assume
that b > 0 (the other cases are treated similarly). This assumption means that the determinant
of (V.27) is

B# (6(b+c+0)+0(B)).
If we fix a & < 0 then an application of Coppel’s Criterion 11.29 shows that (V.27) has an
exponential dichotomy if |3| > 0 is small enough. As the same can be done for , this shows
that the order of contact between the actual boundaries of the resonance tongue is exactly p.
Therefore we are in the situation of Section 1V.4.2 where, after some steps of normal form and
suitable changes of variables in 6, we may assume that system (V.27) is of the form

' =pP (( _C“_ 5 b+a5 ) + B%Py (8,6, 5)) z, § = w. (V.28)

The analytical (in «, ) conjugation given by

b+4d 0
T — b+c+d
o —a bt+ctd
/(6+8) (b+c+9) V b+

transforms (V.28) into

x/:5p<( _05 b+8+5)+52Q1(9,5,5))x, 9,:(,(),

where (), is a new perturbation and the change given by

b+c+56 0
0 (b+c+6)7t

transforms it into

= pP (( —5(1)—80-}—5) (1] ) +ﬁ2R1(0,5,ﬁ)> z, 0 = w, (V.29)
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being R; a perturbation defined by the conjugation and Q.
Now we are in situation to apply Theorem V.10 to the system

x' = pP (( 8 (1) ) + B%R.(0, 6, B)) z, 0 = w. (V.30)

This yields the existence of a real analytic function &5, = &1 (4, 3) such that

' =pP (( —ﬁ&?@ 8) (1) ) +52R1(0,5,,3)) z, 0 =w

is reducible to
01
! __ ap I
x—ﬂ(o O)x, 0 = w, (V.31)

for |4], | 3] small enough. Clearly, one also has that the counterterm

( —5(b+c+5()]+5§21(575) 8 )

makes (V.29) reducible to (V.31). Therefore the equation

(5(b+ c+ 5) — Bfm(é, ﬁ) =0

determines one of the components of the boundary of the resonance tongue. Note that, since
b+ ¢ > 0, this can be written as 6, = 6;(8) = O(), so that the expression for this part of the
tongue boundary is

ai(B) = 1B + 61 (B)5 = 1"+ O(B™)

as we wanted to see (the case of v, is treated similarly). This shows the analyticity of tongue
boundaries around a collapsed gap and finishes the proof of Theorem V.12, O

V.2.2 Applications to the spectrum of quasi-periodic Schriédinger operat-
ors

Theorem V.12 on the analyticity of tongue boundaries can be strengthened in conjunction with
Eliasson’s reducibility theorem 111.27, which states reducibility at tongue boundaries under the
hypothesis of analyticity of the potential and strongly rationally independence of the frequency
w. According to this theorem, under the hypothesis made on w and @, Hill’s equation is redu-
cible at the tongue boundaries for small values of |b| and all the values of a, or a large enough
once b has been fixed. The analyticity of tongue boundaries holds in this domain as a con-
sequence of V.12.

Corollary V.15. Let Q : T¢ — R be real analytic and w € DC*(c, 7, R%) be strongly rationally
independent. Then there is a constant C' > 0, such that the tongue boundaries are real analytic
if o] < C.
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The analyticity of tongue boundaries in an open domain for (a, b) can be used to study the
genericity of “having all gaps open” for a certain value of . That is, to study the opening of
all spectral gaps for a certain value of b. Let us recall that our function space will be, for some
p > 0, the space Cg(Td) of real analytic functions  : T — R with analytic extension to
Im 0| < p with

Ql, < oo.

Theorem V.16. Let w € DC¢(c, 7, R?) be strongly rationally independent. Then, there exists a
constant C' = C(c, 7, r) such that for a generic potential in

{QeCyT,R), [Ql, <C},

with respect to the | - | ,-topology, the operator

(Houe) (t) = —a"(t) + Q(wt + ¢)a(?)
has all spectral gaps open and, thus, it is a Cantor set.

This result answers a problem raised by Moser & Pdschel [MP84] asking if having all
spectral gaps open is generic or, at least, having all spectral gaps open for energies a big enough.
Under the same hypothesis of the Theorem, Eliasson [Eli92] already proved the genericity of
Cantor spectrum. For more results on Cantor spectrum, see Section 111.2.2.

The proof uses the lemma 1V.13 from last Chapter.

Lemma V.17 ([BPS03]). Let @ : T — R be a real analytic potential and w be strongly
rationally independent. Let a;(b) and a2 (b) be the two (analytic) tongue boundaries in a neigh-
bourhood of zero for some resonance k. Then these functions can be chosen so that

a1(0) = Qo + |Qx| and a;(0) = Qo — [Qx,
being Qx the Fourier coefficients of Q) and a; = da;/db.

The proof of Theorem V.16 is then a consequence of the analyticity of the tongue boundaries
when the quasi-periodic system is reducible to constant coefficients. Indeed, if the two tongue
boundaries of a certain resonance have a transversality at the origin, then the set of values of
|b| < C for which the two tongue boundaries merge is finite. Since there is a countable set of
resonance tongues the result follows.

Remark V.18. As it will be shown by Theorem V.20, the condition that all the tongues are
transversal at b = 0 is not necessary. The only requirement is that these tongues have some
order of transversality at b = 0.

Using Eliasson’s result in the upper part of the spectrum, one can also conclude genericity
of “having all gaps open” for quasi-periodic Schrodinger operators at large energies:

Corollary V.19. Fix a frequency w € DC¢(c,7,R?). Then, the spectrum of the Schrodinger
operator of a generic potential in Cg(']l‘d) has always a component in which all spectral gaps
are open. That is, there is a constant R > 0, depending only on ¢, 7 and the norm of @, such
that the spectrum of the operator restricted to the interval [R, +00) has all gaps open.
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Let us now sketch the proof. Let @ have all harmonics different from zero. By Corollary
V.15, the tongue boundaries of

"+ (a — bQ(wt))z =0

are analytic if a > A¢(]b]|@Q|,) (see Eliasson’s Theorem 111.27). Fix by > 0 and let R, > 0 be
such that Ry > Xo(|b||@|,) for all || < by. This means that in the domain [R;, +00) x [0, b]
of the parameter plane, tongue boundaries are analytic. Assume that a tongue boundary lies in
this domain for |b| < by. Since it is analytic there, then their crossings form a finite set at most.

Since tongue boundaries are globally Lipschitz functions of b with uniform Lipschitz cons-
tant (see Proposition 1V.26), there isa R > R, such that any tongue emanating from any ag > R
at b = 0 satisfies that « > R; for 0 < b < bg. In particular, the spectrum of a generic potential
in [R, +00) has all gaps open.

Finally, using Theorem 1V.14, one can also study the question of the opening of all gaps for
a particular potential.

Theorem V.20. Let d > 2. Then, there is an exceptional set A C R¢, of zero measure, such
that if w = (w1, ...,wq) & A, then, there is a constant C' = C/(c, 7) such that for all values of
b, except for a countable set, with |b| < C, the spectrum of the operator

d
Hz=-2"+ bz ¢j cos(wjt)z,
Jj=1
where the constants ¢; are all different from zero and satisfy the normalization ¢? + ... + ¢,
has all gaps open.

V.3 Analytic families of reducible linear quasi-periodic sys-
tems in so(3, R)

In this section we consider the existence of analytic families of reducible linear quasi-periodic
systems in so(3,R), the algebra of all real antisymmetric matrices (hence with zero trace).
Quasi-periodic linear equations in so(3,R) have been studied by Eliasson [Eli02a], Krikorian
[Kri99a] and Moshchevitin [M0s98]. Let us start reviewing some basic facts on the geometry

of so(3, R).
If we denote by J1, J, J3 the following Pauli matrices
010 0 00 0 01
Ji=| -1 00 ], =10 01], J3 = 000
000 0 -1 0 -1 0 0
then (Ji, J, J3) is a basis of so(3, R), and for the Lie bracket the following relation holds
[J1, Jo] = J3, (V.32)

together with the other two circular permutations of indices 1,2, 3. Using this basis, we can
express the Lie bracket [X, Y] forany X, Y € so(3,R). Indeed, assume that e, f € R? are such
that

X =e1Ji +ex o+ ezds and Y = fiJi + fodo + f3J3.
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Then it follows that

€2 f2
€3 f3

This expression yields an identification

€1 f1
€3 f3

€1 f1

[X’ Y] - e fo

Ji1— Jo + J3.

v (30(37R): ['7 ]) — (R37 /\)
where A is the exterior product by sending
v([X,Y]) = v(X) Av(Y).

If Ay € so(3,R?), then its eigenvalues are 0 and =+i|v(Ag)|, where the norm on (R3, A) is
assumed to be the Euclidean one.

Consider now a linear equation with quasi-periodic coefficients in so(3, R). This means that
there isamap A : T¢ — so(3,R) and a frequency vector such that

' = A(f)z, 0 =w, (V.33)
where now z € R?. Therefore, there exist a; : T — R fori = 1,2, 3, such that

0 ai (0) a3(0)
A(@) = —0,1(0) 0 0,2(9)
—az(0) —ag(d) O

Let us restrict our attention to systems which are perturbations of a constant matrix. That is,
consider equations of the form

with Ay, P € so(3,R) such that P(-;0) = 0. To study analytic families of the above equa-
tions which have a constant Floquet matrix it is necessary to have an expression for the adjoint
operator ad 4, : ¢ — g. In the basis (J, Jo, J3) one can assume, after a change of basis,

AO = |U(A0)|J3

SO that, if X = T1J1 + 2o do + £E3J3, then

0 |U(A0)| 0 I
ad 4 (X)= [ —lo(4) 0 0 -
0 0 0 T3

and the eigenvalues of ad 4, are 0 and +|v(Ay)|. To check the nonresonance condition
[v(Ao)| — (k,w) #0 (V.35)

when k € Z? we have to consider three possibilities: it is always different from zero (irrational
case), it vanishes for k = 0 (degenerate case) or for some k # 0 (rational case). Let us treat
these three cases separately.
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Irrational case

Assume that the nonresonance condition (V.35) is satisfied for all k € Z? To be under the
hypothesis of Lemma V.6 one must impose the additional Diophantine hypothesis:

||U(A0)\—<kaw>|2%a for  k#£0. (V.36)

where K, 7 are some fixed positive constants. If, for
PO = p1J1 +p2J2 +p3J3 € 80(3,R)

we define

S(P) = (wﬁow w&n’o)

C(P) = (0,0, ps)

in the (Jy, Jo, J3)-basis of so(3,R), the quartet (A, C,S,w) is admissible by Lemma V.6.
Therefore, there exists a real analytic function p3 = p3(x) such that the system

and

x' = (Ao + P(0, 1) — ps(p)J3) z, 0 =w (V.37)
is reducible to
.’13/ = Ao.

In particular, the condition ps(x) = 0, which is real analytic, determines an analytic family of
reducible systems with Floquet matrix A.

Degenerate case

This case corresponds to |v(Ag)| = 0so that Ay = 0. According to Example V.7, if w is strongly
rationally independent, we can choose the counter-term C' to be the identity and the operator S
to be identically zero.

Applying Theorem V.3, there exist real analytic functions &7, &5 and &5 of 1 an a real analytic
matrix X = X (6, ) in so(3, R) such that the transformation Z = exp(X) satisfies

awZ(ea M) = (P(ea ,u) - Zéj(/‘)‘h) .

j=1

In particular, the three conditions £*(x) = 0 determine an analytic family of reducible subsys-
tems of (V.33) with Floquet matrix Ay.

Rational case

This resonant case is characterized by the existence of some ky # 0 such that

|[v(A0)| = (ko, w).



V.4. Hyperbolicity boundaries in higher dimensions 115

Note that, even if w is strongly rationally independent, the Diophantine condition (V.16) does
not hold, although this can be overcome, see Section V.6.

Nevertheless this situation of rational dependence can be reduced to the previous degenerate
case. Indeed, denote « = |v(Ay)| as the positive eigenvalue of ad 4, and assume, as before, A,
of the form Ay = a.J;.

Let y(t) = exp(atJs). Since a = (ko,w), y is quasi-periodic with y(t) = Y(wt) €
SO(3,R) being

Y (0) = exp ((ko, 0)J3),

which is real analytic. After the change of variables
z=Y(0)y

the new unperturbed matrix is 0 and we are in the degenerate case.

V.4 Hyperbolicity boundaries in higher dimensions

In this section we will consider the problem of the generalization of Theorem V.12 to higher
dimensional Hamiltonian systems. A system of this kind is of the form

¥ =H(0,u)r, 0 =w (V.38)

where H € sp(m,R) depends analytically on the angles # € T¢ and the external parameters
1 € RP in some neighbourhood of the origin. In what follows the frequency w will also be
assumed to be strongly rationally independent. The dimension of (V.38) is thus n = 2m.

We are interested in the regions in the parameter space i € R? such that system (V.38) has an
exponential dichotomy. This property was discussed in Section 11.3. Here we will be especially
interested in the adaption of Sacker-Sell spectral theory to the Hamiltonian case. In Haro &
de la Llave [HdILO03d], the structure of Sacker-Sell spectrum for discrete quasi-periodic skew-
products was considered. These results apply to the case of continuous flows like (V.39) by
taking Poincaré maps. They derive several additional properties when the flow is Hamiltonian
like (V.38).

First of all, if A belongs to the Sacker-Sell spectrum of a quasi-periodic Hamiltonian skew-
product flow, then also — A\ belongs to it. In particular, if there is an spectral interval including
the zero, it is symmetric with respect to zero. Also, it has as a consequence that the restriction
of the flow to any invariant subbundle whose restricted flow has a nonsymmetric spectrum (like
the stable or unstable subbundles) is not Hamiltonian.

There is one case when the restriction of a quasi-periodic Hamiltonian flow to an invariant
subbundle is again Hamiltonian. Let C be an invariant subbundle of (\V.38) whose spectrum (that
is the spectrum of the restriction of the flow to it) is symmetric with respect the origin. Then, the
restriction of the flow is Hamiltonian [HdILO3d]. This kind of subbundles, and their restricted
flows, are particularly important, since the exponential dichotomy of (V.38) is equivalent to
the exponential dichotomy of this reduced flow. Such a continuous subbundle will be called a
central subbundle. Note that, trivially, the whole space R?™ x T¢ is always a central subbundle.
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Let us apply all this theory to the following quasi-periodic system of equations

g = —azo+bY 1 Qoj(0)zy,
zp = Nwp+bY0 Qi(0)z;, k=1,...,m (V.39)
0 = w,
where a, b, A\, ..., A\, are real parameters such that
Alyeeay A > Ao > 0, (V.40)

for some )\, and the Q;; are real analytic functions. This can be written as a Hamiltonian system
like (\V.38) if we set

H(H)H0+bH1(0)( _802 é)+(%%>

where A is the diagonal matrix A = diag (A1,...,An) and Q@ = (Qx;)k,;- Then, introducing
y = (z,2")7T it satisfies
y' = (Ho + bH,(9)) v, 0 =w. (V.41)

When b = 0 this system is in constant coefficients and in this case the study of the Sacker-
Sell spectrum and associated invariant subbundles is trivial. Assume that a > —\3. Then the
Sacker-Sell spectrum is exactly the union

Sa,O U Ca,O U Ua,O

where
Sao ={-M}U...{=\}, Uso = { M} U...{\1},

and Cy is {0} ifa > 0 or {—v/—a} U {/—a} if a < 0. Therefore, in terms of system (V.41)
has an exponential dichotomy if, and only if, a < 0.

Let C, be the invariant subbundle corresponding to C, . If b is small enough, then the
Sacker-Sell spectrum of (V.41) has three components S, ;, C, and U, separated by A, and
— M. The corresponding spectral subbundles S, 5, C,» and U, 5, which are real analytic, depend
real analytically on a, b for a > —\q and b small enough, see Section 11.3.3.

The flow on the central subbundle is again Hamiltonian and two-dimensional, since for
b = 0 the central subbundle C, is givenby z; = ... =z, = 2} = ... = 2/, = 0 and the
reduced flow (in the coordinates (zo, xy, #)) is given by precisely

"

Ty = —axy, 0 = w. (V.42)

By the analytic dependence of the subbundles, the reduced flow on the central subbundle C,, ; is
given, in some new coordinates (£;, &), by

<2>I:<( —2 é)*bP(M’b))(g), 0 = w, (V.43)
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where P is a Hamiltonian matrix-function depending real analytically on 6 and (a, b) for a >
— )Xo and small values of |b|. Note that, after this reduction to the central subbundle, (V.41) has
an exponential dichotomy if, and only if, (V.43) has an exponential dichotomy.

Since for b = 0 (V.43) reduces to (V.42), the resonances of our problem occur for the values

of a of the form \

2

for some k € Z¢ not identically zero, because for these values all the solutions of (\V.42) are
quasi-periodic with frequency w/2. These rational values of « lie precisely at the boundaries of
hyperbolic regions:

Theorem V.21. Assume that aq is of the form (V.44) for some nonzero k € Z? and that
A1, ..., Ay satisfy (V.40) for some Ay > 0. Then there exists a 5, > 0 and two real analytic
functions a; and as, such that for |b| < 5

(i) If (a,b) issuchthat (a—ay(b))(a—a2(b)) < 0system (V.41) has an exponential dichotomy.
(ii) If (a — a1(b))(a — ag(b)) = 0 system (V.41) does not have an exponential dichotomy.

(i) Foralle > 0 there exists an a, withe > (a — a,(b))(a — a2(b)) > 0 such that (V.41) does
not have an exponential dichotomy.

Proof: Theorem V.12 also holds for systems of the form (V.43) so that, for any rational value of
ao there exist two real analytic functions a; and a, with a;(0) = a2(0) = ao which parameterize
the boundaries of the region in the (a, b)-plane with zero rotation number for |b| < /3,. Since the
regions of constancy of the rotation number of (V.43) correspond to the regions of exponential
dichotomy, the result follows. O

V.5 Proof of Theorems V.3 and V.10

In this section we will prove theorems V.3 and V.10. The proof of both results follows the same
guidelines and we will prove them at the same time. We give the proof of Theorem V.10 because
there is an additional element, the scaling factor, which has to be taken into account. The reader
interested in Theorem V.3 only, can replace x by one whenever it appears. Recall that Theorem
V.10 requires some additional properties on the eigenvalues of the adjoint of A,.

We will first prove Theorem V.10 disregarding the dependence on the external parameters p
and then we will explain what needs to be done in order to prove the analyticity with respect to
these parameters.

To prove Theorem V.3 we must show the existence of a constant element £* € ¢, with
C(¢*) = ¢, and Z : T? — G, of the form Z = exp(xX) with X € g small (therefore Z is
close to the identity), such that

0,Z(0) = X* (Ag + xP(0) — x&) Z — Zx* A, 0 T (V.45)

This is a nonlinear homological equation which we will try to solve by Newton’s quadratic
method (following [Mos67] and [BMS76]). It is an iterative process in which the final trans-
formation Z will be given as the infinite composition of the transformations that will be defined
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at each step. Note that £* is not yet known and it will have to be determined along the iterative
process. To make this more evident we write this equation as

0,2(0) = x* (Ao + XP(0) — xn) Z — Zx* 4o, 0 €T, (V.46)

where now n € g is a variable. At each step of the iterative process we will define new trans-
formations Z" in G and £&" : ¢ — ¢ which will reduce the system to constant coefficients
up to a certain perturbation which will become smaller and smaller. The domains in 6 of the
composition of the transformations Z°, . .., Z" will shrink to a narrower, but nonvoid, complex
strip of T¢. The domains for which the composition % o . .. o £ is defined will quickly shrink
to zero and the image of zero under this composition will define the sought £*. To see this
clearer, we proceed a bit further in this iterative process before giving the inductive lemma.
Writing Z = exp(xX), the linear version of (V.46), with respect to the size of the perturbation,
becomes

X (0) = X" ([40, X]+ P°(0) — "),  0€T, (V.47)

where we have written P° = P and n° = 5 to stress that this is the first step of an iterative
process. The admissibility of (x*Aq, C, S,w) implies that equation (V.47) can be uniquely
solved in any strip of T¢ narrower than p provided »° is taken equal to 7° = C'(P) and we set
X = S(P). Let X°(0) be the solution for this choice of n°. Then Z° = exp(xX?) satisfies

0.2°(0) = x* (4o + xP°(0) — xn°) Z°-
2% (Ao + xP1(0,1°) — xn° + xC(P)) , 0 € T¢. (V.48)

where Py(#,7n°) is the new perturbation defined by the above equation. Up to now we have
defined the transformation Z°, but we have not yet defined the transformation for n° to render it
closer to zero. In order to put the right hand side of (V.48) in the form of the left hand side we
introduce a new variable ' satisfying

nt =n" - C(P). (V.49)
This trivially defines a diffeomorphism % : g — ¢
n' = &) =n"=n"+C(P)
which allows to express equation (V.48) in the new variable ! as follows.

0.2°(0) = x* (Ao + xP°(0) — x£°(n")) 2°(0)—
— Z°0)x* (Ao + xP*(0,n") —xn'),  0€T* (V.50)

if we set P1(0,n") = P1(6,£°%(n")).

The point in choosing these transformations Z° and £° is that the perturbations on the right
hand side are much smaller than those on the left. This will be shown in the following section.
We would like to stress that each step of the transformation involves two changes of variables.
First, using the admissibility of (x* A, C, S, w), we perform the change Z, which implies con-
sidering narrower strips around the torus T¢. Secondly, inverting equation (V.49) we perform a
change in the variable 7 so that the system in this new variable is closer to A,. Of course, in this
first step, the transformation £° defined by (V.49) is globally a diffeomorphism, but in the next
steps the domains of definition of the transformation of » will shrink to zero in a very fast way.
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V5.1 The inductive lemma
Now we can state the inductive lemma:

Lemma V.22 (The inductive lemma). Assume that (Ao, C, S,w) is admissible with constants
c and v. Fix a complex domain

D Im 6| < p, In"| < oy

and a constant 0 < 6, < p,. Then there exists a constant K = K (g) such that if P" is analytic
on D", belongs to g for real values of (6, 7"), and

|P"|pr = sup |P"(0,7")| <e < Ko, (V.51)
(aa"r)EDT
then, in the domain
Dy Im0| < p, — 6, n"| < o./2

the transformation

Z"(0,n") =exp (xX"(0,1")), (V.52)
where X7 (6, n") satisfies

0, X" = X" ([A0, X"+ P = C(P"(n"))), X" =S(P(q)), (V.53)

is real analytic and the equation
=0 = CP (")) (V.54)
defines an analytic diffeomorphism £”
Nt € D(0,¢,) = € (1) € D(0, 2¢,)
such that the equation
0,27(0,€ (") = x* (Ao + xP (0, () = x& (")) 2"
= Z"X" (A + x PO, ) — xi")  (V55)
holds in the domain
DL Im 6| < pr — oy, It < e,

with the estimates .
|Dr+1 <M := c(s—;, (\V.56)

X7

[P < (XM = 1) (6, + BereXM 4 2| A eV M) 4 [Ao| x| M2e2XM (V57)

and .
|D777+1§T|6r S 1 + Clo_—r, (V58)

T

where the constant ¢; depends only on g.
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Remark V.23. The estimate (V.56) comes from the admissibility of (x*A, C, S,w) and it is
included in the statement of the lemma only for the sake of completeness.

Remark V.24. The difference between the domains D, and D! is due to the n component.
The restriction for the n component in D™ allows us to define the map

0,0 e D = (0,6 (")) € Drn

which inverts Equation (V.54). Similarly to what we did for the first step, a perturbation P, :
D,.1 — g is defined by

8,27 (0,n") = X" (Ao + xP"(0,1") — x0") Z" —
28 (Ao + XxPra(0:17) = xn” + xC(PT (")), (V.59)
and later on we will define the perturbation P™! : D™+ — g as
PO, n ) = Prya (0,6 ("))
so that (V.55) holds.

Proof: First of all we compute P, in terms of Z”, X", Ay, P" and ". The identities (V.52)
and (V.53) determine P, when y # 0:

Ppa(0,07) = (I = (Z2")7") (" = C(P"(n"))) —
(z")7! (%[AO, XX"—Z"N+P(I-2Z")+n(Z" — 1)+ ﬁaw(z" - XX’")) (V.60)

on D, .. For the proof of Theorem V.10, one also has to define the value for x = 0. This can
be done taking the limit of the above expression when x — 0 and obtain

Pra(6,n") = 0. (V.61)

Since, Ay, X", and P" belong to g for real values of 8 and " € g, then necessarily P,; € g
for these real values, because of Proposition I1.1. In order to be able to define

PH—I(H, n7‘—|—1) — PT—|-1 (0, é-r(nr—i-l))’ (0’ 777"—1—1) c D'I‘—I—l

we first need to know that (V.54) can be inverted so that the map £" can be defined. This is what
we do now.

Inversion of (\.54)

Let F*(n") = C(Pr(n")). Then F" is analytic on the ball D(0, 0,). By Cauchy estimates we
have
‘Fr|0'r

5
<2d ",
or —0,/2 o,

/
or/2 S c

| D, F|
where ¢’ is a constant depending only on g. Assume

1

1
K <min|(=>,— ). V.62
< min (4’40’) ( )
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In this case, Equation (V.54) is invertible when |n"| < o, /2 and, since

&™) < I+ [ FTE()

then for |"*!| < &, one has
In"| < 2e,.
Ase, > Ko,
g,
2¢, < o
and the map &7,
7 € D(0,e,) = €0 € D0, ),

is well-defined. Moreover,

1 €
< 1+Cl—r,

1
D, <
| +1“5—1—\D R o,

writing ¢; = 4¢/, as we wanted to show.

Bounds for P!

Once we have inverted (V.54) we can now estimate P™1(0, n"™!) = P,.1(0,£"(n" ™)) on D1
which, in virtue of (V.60) can be expressed as follows

PO ) = (I —271) (€0 - CPE ()
-2 (SAuX = 21 P (0.6700) (- 204
&ty (z 1)+ ﬁaw(z - XX)) (V.63)
where we write Z = Z"(0,£"(n" ™)) and X = X7(0,£" (")) only for simplicity. To bound

this remainder, we will estimate all the terms in the above expression. First of all note that,
since (0,&7(n"t1)) € D,y for (6,77!) € D1, then

| X |pr+1 < [X"|p,,, < 5 — =: M.
Now we are ready to bound the terms of (V.63):
|_l Z 1"Dr+1 - |Z |D’"+1 S €‘X‘M — 1.

& — (Pr(fT))\D“rl ="t pr <
|Z_1|'D7"+1 S e‘X‘M.

1
\—[Ao,xx _2)
X

1
7 |[Ao, T+ XX = Z]|pres <
|

D'r+1 |

2
—|A0HI+XX — Z|’Dr+1 <
x|

9
m\Ao‘ (eXIM —1 — x| M) < |x|M?|Ag| exp (|x|M).
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|PT"DT+1 < &
[ — Z|pren < XM 7
‘gr‘DT‘H < 2.
1 1 .1 ;
] 10,(Z — xX)|pra1 = NG Dy ﬁaw((xX) ) pre1 <
j=2

1
G (exp (Ix[[ X pr+1) = 1) x||0 X [prer <

(eXIM — 1) (2| 40| M + 2¢,) .

Collecting all these estimates we have

[P pran < (XM = 1) & + e XM { x| M2 | Ag| MM + ¢, (XM —1) +
2, (XM — 1) + (XM — 1) (2|Ag| M + 2¢,)} <
(XM = 1) (er + 5e, MM 4 2| Ag|eMMM) + [ Ay| x| M2e* XM (V.64)

which holds for all x, even for x = 0, due to the choice of (V.61). This proves the last estimate
(V.57). O

V.5.2 The iterative construction. End of proof

To finish the proof we must show that the iterative process that was started at the beginning of
the section can be continued up to any order (by suitably choosing the right domains) and that
this process is convergent. As the first step of an iterative process define:

P(0,7°) = P(0),

which is analytic in the complex strip [Im | < po. Having fixed this constant, we will define
sequences (pr)r, (6;)r, (/) and (o), such that the inductive lemma can be applied up to any
finite order and which guarantee the existence of the constant £* and the reducing transformation
which we will call Z*.

Take

2

as the sequences which will define the successive domains for the angles 6. In order to overcome
the problems caused by the presence of small divisors, we will define the sequences (e, ), and

(o), @s
3/2 )

Ery1 = &7, E&r=¢&y Ory1 = Er, r>0

1 1 Po
pr:p0<_+2r+1)a pr-{—l:pr_dr; 5r:27«+2a r>0

and oy = eﬁ/?’, which will be completely determined once we fix the initial £y. In order to do so,
we first state which inequalities we want the sequences (p;),, (6;)r, (¢;) and (o), to satisfy.
In the notations of the inductive lemma, the conditions we impose are

e < Koy, r >0, (V.65)

M= c% <&l r>0 (V.66)

T
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and
(eXM — 1) (&, + Be,eXM 4 2| Ag|e XM M) + | Ag| x| M2e2XM < £3/2) r>0. (V.67)
Now we must choose ¢, so that these conditions are satisfied.

Choice of ¢

The choice of ¢, will be very conservative. First of all, condition (V.65) is equivalent to

Er

N
(MY

r—1
= 60( ) < K, T Z 0,
€r—1

provided that we sete_; = 5(2)/3 for consistency. The conditions for » > 0 hold if
g0 < K3, (V.68)

because K < 1/4. Writing (V.66) in terms of £, and p, we obtain

4\" 13\
c (—) -2“’83(2) < 1.
Po

which holds choosing

£ < min <exp (%S/;))) é (%)2V) . (V.69)

Finally using that, by the above assumptions, M < el? (which is less than one), we can estimate
the left hand side of (V.67) as follows

(XM —1) (e, + Be,e XM + 2| 49| XM M) + |Ag| |x| M2 XIM
= ClMET + CQMQ, (V?O)

being
C, = e|X|\X\ (1 + 5e\x|)

and
Co = 3| Ao| |x|e*X

where we have used that M < 1. If we want the right hand side of (V.70) to be smaller than

22 as required, we need to impose extra conditions, apart from (V.68) and (V.69). Indeed,

writing the definition of M, condition (V.67) holds if

£; 2 Er 3/2
0165—2 + Cse 5—27;/ < €r/ ,
T

L
which is equivalent to
1/2 1/2

Er 92&r
+ Cye
51/ 2 621/

A T

< 1.

Clc
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The left hand side of this expression is bounded by

81/2 81/2 4\" 4 2v
Clc - + CQCQTT < C8i/2 4™ 01 (-) + CQC (-) .
o o2V Po Po

T

This expression is less than one (which implies condition (V.67)) if take

. 2vlog(1/4) 1
€o < min (exp (W) ,C—§> s (V?l)

4 v 4 2v
03 =cC (01 <—) + CQC <—> ) .
Po Po

Therefore, taking ¢, satisfying the bounds (V.68), (V.69) and (\V.71) the estimates (V.65), (V.66)
and (\V.67) follow for all » > 0.

where

The iterative process

Once we have chosen ¢, the sequences (¢, ), and (o, ), are defined and the inductive lemma can
be applied up to any finite order to obtain analytic maps

X": D1 — g, and Z" = exp(xX"),
PHLD g
and
or

¢ D(0,0,41) = D(0,20,,1) C D(0 5

which satisfy the homological equation (V.55) with the estimates

)7

‘Pr+1|pr+1 < 62/2 = Ept1,
Dyrii€]e, <1+ eae’ = 1+coll?, (V.72)
|XT|D < 5i/2’

r+1
for » > 0. Writing
&=6 108 =080 0f,
which is a real analytic map on B(0, o,1), and
Z0,0") = Z,a (0,67 () - 270,67 (")), (0,07 € DT,

which is also G-real analytic, we obtain, for all » > 0, the equation

0,2, (0,1"") =
X* (Ao + xP°(0) — x& (")) Ze — ZoX* (Ao + X P (0,17 ) —xn'™*)
for (6, n" 1) € D1, To prove the conjugation
0,2%(8,0) = x* (Ao + xP°(0) — x£*(0)) Z* — Z*x" Ao,

for Im@| < py/2, we only need to show that the sequences (Z,), and (&), converge uni-
formly on D* = lim,_,,, D" to Z* and &* respectively, because from the estimates (V.72) the
perturbations (PT), converge to zero on D*.
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Existence of &*

The desired £* will be the limit of the sequence (&,(0))... First of all note that if the limit exists,
then it will belong to g and satisfy the identity C'(£*) = £* and the bound [£*| < 2gy, since this
holds for all » > 0. Now let us prove the convergence of the sequence.

Using the estimates (V.72)

[6r41(0) = &(0)] = [&-(€771(0)) = &(0)| < [DE 6,11 [ (0)] < [DElg, 11 0r41-
Since &, =&, 0&", then
D& (™) = (D&—1) (€' ("*1)) (DET) ("),
so, if |n" | < opy1,
|D§"'|UT+1 < |D§T|ar+1 ) |D§T_1|U"r ‘- |D§1|02 ) |D§O|a1 <
(1+c10?)(1+cio /2) (1 aol™ A+ aod?)
< H (1 + cla;ﬂ) < exp (Z (clajl-m)) < exp(26103/2) < 00
j=0 j=0

because, by (V.65), 0,11 /0, < K < 1/4, so that

=0 =0

Therefore, (£,(0)). is a Cauchy sequence and it converges to £* € g, with C'(£*) = £*.

Existence of Z*
We follow the same idea that for the existence of £*. Since

Zr (0’ 771"—|—1) — erl(ea f’(n’"“))Z’"(G, fT (nr—kl))’ (0’ 777"—1—1) c DT+1
forr > 1 and

Zo(0,m') = Z°(0,€°(n")),
then, for |[Im 6| < po/2,
| Z,11(0,0) — Z,(0,0)| = | Z,(6,£1(0)) Z"1(6,£(0)) — Z:(6,0)| =
= | Z:(6,€7(0)) — Z:(0, 0) + Z,(0,671(0)) (Z771(0,671(0) - I)| <
|1 Z,:(0,€(0)) — Z.(0,0)| + | Z:(0,€1(0))] - | 271 (0,€71(0)) — I].

We now estimate all these terms:

|Z”+1( E1(0) — 1] < exp(X[[ X p,.,) — 1 < 2xle, i = 2[x]o}”,

o0

126,67 (0))] < [T exp (Ixle}/?) = exp (Z\x|e;/2) < exp(2lxleg/*) < oo,
j=0

j=0

|Z,(6,€7(0)) = Z,(6,0)| < |Dyps Ze o [€71(0)].
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We now need a bound of | D,»+1Z, |pr+1. To do so we will apply Cauchy estimates:

‘DT]T+1ZT‘DT+1 = |Dnr+1 (Zr—l('afr('))Zr('ag('))”DTH <
Dy (2,427)

)
ltmol<prsiy i i<a0ria) D€ oy <

C

- Z, ZT‘ D T <

0-7‘/2 - 20r+1 ‘ T "DT‘H‘ 6 ‘0T+1 —

20’ VA Xr D r

o ao s 7o, lexp (Xl 1D, <
/
exp(2|xley ") € 1 « 2
o — 4o xp(2|x|ey”") exp(|xloy41) (1 +ero,'7?) ——
where ¢, is a new constant. Therefore,
202 O-T-I—l 202 03/2 202 071‘/2 1/2

Z.(0,67(0)) — Z.(9,0)| < = — <3002,
‘ r( ( )) 7‘( )| or — 40,41 0.7_403/2 1_40%/2 30,

being c3 another constant. Collecting all these bounds,
1241(6,0) — Z:(8,0)] < (5 + 2] exp@Ixles)) 032,

which implies that (Z, (-, 0)), is a Cauchy sequence on [Im #| < po/2 and therefore it converges
to some Z* on D*. Moreover, since

12| p < exp(2lx|es’?)

and go < 1, there exists a real analytic map X* : D* — g, with | X*|p. < 2%, such that
Z* =exp(xX™).
This ends the proof of theorems V.3 and V.10 disregarding the dependence on external paramet-

ers.

Analytic dependence on p

Up to now we have proved theorems V.3 and V.10 disregarding the dependence with respect to
the external parameters p. First of all note that these proofs (not considering yet the dependence
on 1) can be extended to apply to analytic P : T¢ — g¢ such that

|P| < €p, (V.73)

po
and to complex x with |x| < 1 (in case of Theorem V.10). Here g¢ stands for the complexi-
fication of the Lie algebra g. Elements of g are of the form P, + iP,, where P; and P,
belong to g. The bound of (V.73) holds because the admissibility of (A, C, S, w) (respectively
(x* Ay, C, S, w)) implies that the equations

0.X(0) = x* ([40, X(0)] + P(0) - C(P)), X =5(P),

for P : T¢ — g¢ with analytic extension to [Im 6| < po, have a unique analytic solution
X : T¢ — gc which satisfies the estimates

P
|X|p0—5 < 0‘5#
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forall 0 < § < p. With this in mind it can be checked that all the other parts of the proof hold.

Let us now consider the dependence with respect to p. That is, assume that both P and
depend real analytically on 1 in a certain ball around the origin. Again, we deal with theorems
V.3 and V.10 at the same time. The reader interested only in Theorem V.3 can replace x by one.

Let » > 0 such that, if [x| < v, then |P(-, )|, < e and |x(u)| < 1. For these complex
values of p there exist £*(u) € gc (with C(€*(p)) = €*(p) and &*(u) € g for real values
of u) and X (-, u) : T¢ — gc, with analytic extension to [Imf| < p/2 such that Z(0, u) =

exp(x(p) X (0, 1)) satisfies
0 Z(0, 1) = x()* (Ao + x (1) P(8, 1) — X ()& (1) Z(6, 1) — Z(8, 1) x ()" Ao,

for [Im#| < p/2 and |u| < v. Moreover, if u is real then P is real analytic in § and belongs to
9,50 &* () € gand X (0, ) € g for real 6. Therefore, we need to show that the dependence of
these objects on 1 is analytic on |u| < v.

To do so, note that the transformations constructed in the inductive lemma can be made
analytic on D" x {|u| < v}. For this, it is essential to define P"*! when x = 0 as (V.61) to
avoid a discontinuity. Since the final solution is obtained as the uniform limit (in the complex
domain D* x {|u| < v}) of the approximations, the limits are analytic there. O

V.6 Multiple internal-external resonances

In this chapter we have considered the existence of analytic families of reducible linear quasi-
periodic equations with frequency w and Floquet matrix A, satisfying the Diophantine condition
(V.16),
K
inf —i(k,w)| > —— keZ% k
/\eségladAO A = ik w)l 2 k|7’ €L k#0,

for some positive constants K, 7. This assumption does not cover the case of multiple reson-
ances, which happens when the previous condition holds for all values of k € Z? except for a
finite set of multi-integers. Theorem V.3 (and also Theorem V.10) can be adapted to the case of
multiple resonances, provided suitable conditions are imposed.

We first of all we impose a less restrictive Diophantine condition on the eigenvalues of ad 4,
and w. Assume that there exist positive constants ¢, » > 0 and a finite set R C Z such that the
estimate

inf A — ik, w)

A€ Spec(ad Ao)

> :
2 (V.74)
holds for all k € Z? — R. In particular, 0 must belong to this resonant set R.

Secondly, let us introduce the generalization of the operators S and C'. We assume that for
all k € R there exist linear operators Sy, Ci of gc such that C2 = Cy and, for all P € g, the
identity

ik, w) Sk (Fx) = [Ao, Sk(FP)] + P — Ck(F) (V.75)

holds. Under these two hypothesis, Theorem V.3 has to be modified only in the following way.
For k € R there exist & € gc, with Ci (&) = &, such that the modified system is

o' = xF (AO + P(0) — Z & exp (i(k, 0))) T, 0 =w (V.76)

keR
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instead of (V.10).

Nevertheless, in several practical situations it turns out that it is not needed to make use
of this extended version of the theorem, because some preliminary transformations can be per-
formed so that resonances for values of k different from zero are removed and the resonance
of 0 has a higher multiplicity (see also Moser & Pdschel [MP84], Eliasson [Eli02a, EIi01] and
Krikorian [Kri99a]).

To illustrate this procedure consider a perturbed system

' = (Ao + P(0, 1))z, 0 = w (V.77)

for which the adjoint operator ad 4, : ¢ — g has rational eigenvalues with respect to w. Assume
that we can find matrices A¢, A5 € g such that

(i) Ag = Ad + A5
(ii) A¢ and w satisfy the Diophantine condition (V.16).
(iii) The map ¢ — exp (tA}) is quasi-periodic with frequency w/2. Denote by Z its lift to T¢.

If these conditions are fulfilled (an example of this appears in Section V.3) then, the transform-
ation
x = exp(tAf)y

sends system (V.77) to
y'=(A+Q0,n)y, 0 =uw,
where
QO,11) = Z(6) P (6, 1) Z(6),

which is quasi-periodic with frequency w and we are under the conditions of Theorem V.3.

V.7 The case of reversible systems

In practical situations, given a linear differential equation on some Lie algebra, there be can
additional symmetries to be taken into account. In this case it is interesting to know if we can
use these symmetries to deduce more properties of the counter-term C', essentially reducing the
dimension of the space C'(§) = £ in the algebra g. In this section we focus on the reversible
case (see Broer, Huitema & Sevryuk [BHS96] and references therein).

Definition V.25. Given an element R € GL(n,R), with R? = I, we will say that a map
Q@ : R — g is R-reversible, whenever

Q(—t)R = —RQ(?)
forall ¢t € R.

In presence of such a symmetry, the solutions of a linear differential equation have the
following properties
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Proposition V.26. Consider a reversibility with respect to the involution R. Let g C gl(n,R) a
Lie sub-algebra. Then the following is true:

(i) Let Ay € g, Q : R — g, both R-reversible, and let X : R — ¢, smooth, such that
X'(t) = [Ao, X()] + Q)

forall ¢ € R. Then
X(=t)R = RX (t)

forallt € R.

(i) If X : R — g satisfies X(—t)R = RX(¢) for all ¢t € R, then Z(t) = exp(X(¢)) also
does:
Z(—t)R = RZ(t).

(iii) If A, X : R — g satisfy that X (—t)R = RX (t), A(—t)R = —RA(t) and the conjugacy

with Z(t) = exp(X (t)), B(t) € g holds for all ¢ € R, then B is R-reversible:
B(—t)R = —RB(t)
forallt € R
Proof: The first item follows from the identities
(RX(D)R) = — ([Ao, RX()R] + Q(1)),  (X(=1))" = = ([Ao, X ()] + Q(1)) -

Since RX (t)R and X (—t) satisfy the same differential equation and they coincide for ¢ = 0,
then
RX(t)R = X(-1)

for all ¢ € R and the first statement follows. Item (i7) is a direct consequence of the definition
of the exponential of a matrix. To prove (zi¢) we first note that Z'(¢) is R-reversible and, since

B(t) = Z7'()A@®)Z(t) — Z(t)" 2 (1),
then B(t) must be R-reversible because Z~* satisfies
Z7Y(=t)R = RZ7'(t)

forallt € R O

With this proposition in mind one can modify theorems V.3 and V.10 to obtain additional
symmetries of the counter-term C. Here we give only the adaption of Theorem V.3 to the
reversible case.
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Theorem V.27. Assume that, in addition to the hypothesis of Theorem V.3, there is an involution
R € GL(n,R) such that
A()R = —RA()

and
C)R=-RC(E)  SER=RS( (V.78)

hold for all R-reversible & € ¢. Then, if P is R-reversible, the element £&* € ¢ is also R-
reversible,
§'R=—RE,

and the conjugation X satisfies
X(—0)R = RX(0)

for all 8 € T¢.

As an application, in Hill’s equation with quasi-periodic forcing, assume that the quasi-
periodic forcing ¢ is even in ¢, i.e. it satisfies that ¢(¢) = ¢(—t) for all ¢ € R. Then the matrix

function 0 X
b= ( —(a+bg(t)) O )

is reversible with respect to the involution

R:(é_(l)).

Following the construction in section V.2, the operators C' and S clearly satisfy the identities
(V.78). Therefore, the counter-term £*(u) is also R-reversible and, thus £, (z) = 0, so that the
persistence of a collapsed gap is given by the two equations

Ela() = & (n) =0,

compare with Remark IV.5.



Chapter VI

Cantor Spectrum for the Almost Mathieu
Operator

In this chapter we study the spectrum of the Almost Mathieu operator, which is the following
discrete quasi-periodic Schrodinger operator (see Chapter I11)

(HppZ)n = Tpt1 + Tn_1 + beos(2mwn + @)z, n € Z, (VIL.1)

on [?(Z), where b is a real parameter, w is a nonresonant frequency and ¢ € T. For each b this
is a bounded self-adjoint operator whose spectrum, a compact subset of the real line which does
not depend on ¢, will be denoted by o,. In the notations from Chapter 111 we have, thus,

Hy 4 = HY

— *Tbcos,w,p

and
oy = 0%(bcos, w).

Remark VI1.1. In the notations of Chapter Il1, the Almost Mathieu operator would be denoted
by Hy'.s .., and its spectrum by o%(b cos, w). In this chapter we will use Hj , and oy, instead.

C

The reason for the name of this operator comes from the similarity of its eigenvalue equa-
tion, the Harper equation,

Tni1 + Tn_1 + bcos(2rwn + @)z, = axy, n €z (V1.2)
for a € R, with the Mathieu equation,
2"+ (a+beost)x =0,

see Section IV.3.2. In the rest of the chapter we will assume that the frequency w is strongly
nonresonant. That is, there exist ¢ and 7 > 0 for which the bound
|sin 27kw| > c
7T —_—
||

holds for all £ € Z different from zero.

131
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The nature of the spectrum of this operator has been studied intensively in the last twenty
years (for a review, see Last [Las95]) and an open problem has been to know whether the
spectrum is a Cantor set or not, which is usually referred as the “Ten Martini Problem” (see the
end of this section for some historical background on it). In this chapter (which is mostly based
on Puig [Pui04]) we derive two results on this problem. The first one is nonperturbative (it does
not depend on the precise arithmetical conditions imposed on the frequency).

Corollary VI1.2. If w is Diophantine, then the spectrum of the Almost Mathieu operator is a
Cantor setif b # 0, +2.

Here, we prefer to call this result a corollary, rather than a theorem, because the proof
requires just a combination of reducibility, point spectrum and duality developed quite recently
for the Almost Mathieu operator and the related eigenvalue equation. In the critical case |b| = 2,
Y. Last proved in [Las94] that the spectrum of the Almost Mathieu operator is a subset of the
real line with zero Lebesgue measure and that it is a Cantor set for the values of w which have
an unbounded continued fraction expansion, which is a set of full measure. This last result has
been obtained recently for the remaining nonresonant frequencies by Avila & Krikorian [AK03]
using dynamical methods.

Before presenting the second result in this chapter, let us now recall the context of the Gap
Labelling Theorem for this operator (see also Section 111.2.2). If (z,)necz IS any nontrivial
solution of (V1.2), for some fixed a, b, ¢ and S(NN) is the number of changes of sign of such
solution for 1 < n < N, then the limit

exists, it does not depend on the chosen solution z, nor on ¢ and it is called the Sturmian
rotation number of (V1.2) which, in this chapter, will be denoted by rot(a, ). The Gap Labelling
Theorem states that the rotation number, which is constant exactly at the gaps of the Almost
Mathieu operator, must take the value

rot(a,b) = %{kw},

for a suitable integer &, or
1

rot(a,b) = 5
in these spectral gaps. This integer £ is the label of the spectral gap. If the closure of a spectral
gap degenerates to a point we will say that it is a collapsed gap and otherwise that it is a
noncollapsed gap. See Figure VI.1 for a numerical computation of the biggest gaps in the
spectrum of the Almost Mathieu operator for several values b.

In view of this gap labelling and Corollary V1.2, it is natural to ask for the following: are all
spectral gaps of the Almost Mathieu operator open if b # 0? This was called the “Strong (or
Dry) Ten Martini Problem™ by Simon [Sim82]. Our second result gives a perturbative answer
to this problem.

Corollary VI.3. Assume that w € R is strongly nonresonant, w € DC%c, 7, R). Then, there is
aconstant C = C(c,7) > 0such thatif 0 < [b| < C or4/C < |b| < oo all the spectral gaps
of the spectrum of the Almost Mathieu operator are open.
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Figure VI.1: Numerical computation of the ten biggest spectral gaps for the Almost Mathieu operator
with different values of b and w = (v/5—1)/2. They correspond to the first || such that {kw} /2 belongs
to [1/4,1/2]. The coupling parameter b is in the vertical direction whereas the spectral one, a, is in the
horizontal one. Note that for b = 0, all gaps except the upper one are collapsed.

Before ending this introduction we give a short account of the existing results (to our know-
ledge) on the “Ten Martini Problem” for |b| # 0, 2. For results on Cantor spectrum for continu-
ous quasi-periodic Schrodinger operators see Sections 111.2.2 and V.2.2.

The Cantor structure of the spectrum for the Almost Mathieu operator was first conjectured
by Azbel [Azb64] (see also Harper [Har55] and Sokoloff [Sok85] for physical approaches to
this operator). The problem of the Cantor structure of the spectrum was named the “Ten Martini
Problem” by Simon [Sim82] after an offer by Kac who conjectured that “all spectral gaps are
open”. Sinai [Sin87], proved that for Diophantine w’s and sufficiently large (or small |b]),
depending on w, the spectrum g, is a Cantor set. Choi, Elliott & Yui [CEY90] proved that the
spectrum g, is a Cantor set for all b # 0 when w is a Liouville number obeying the condition

w—z—)' <D™
q

for a certain constant D > 1 and infinitely many rationals p/q. In particular, this means that for
a G5-dense subset of pairs (b, w) the spectrum is a Cantor set, which is the Bellissard-Simon
result [BS82]. There is a great number of works devoted to the spectral properties of the Almost
Mathieu operator. A list of them can be found in the papers by Last [Las95], Jitomirskaya
[Jit95, Jit02], Bourgain [Bou04b, Bou02a, Bou02b, Bou02c], Simon [Sim82, Sim00b] and the
book by Boca [BocO1]. Finally, let us mention that, if we consider the case of rational w, all
spectral gaps, apart from the middle one, are open if b # 0. This result was proved by van
Mouche [vM89] and Choi, Elliott & Yui [CEY90].

Let us now outline the contents of the this chapter. In Section VI.1 we introduce Aubry
duality for the Almost Mathieu operator and a reformulation of Ince’s argument for the lack of
coexisting quasi-periodic solutions adapted to the context of the Almost Mathieu operator. In
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VI1.1.1 w apply the reducibility results by Eliasson to prove Corollary VI.3. Finally, in Section
V1.2, the proof of of Corollary VI.2 is given, which is based on a result of nonperturbative
localization by Jitomirskaya.

V1.1 Aubry Duality, lack of coexistence and the Dry Ten Mar-
tini Problem

Aubry duality is specific feature of the Almost Mathieu operator which is basically the invari-
ance through Fourier transform. It will be considered, for more general potentials, in next
chapter. Let us now introduce the basic idea behind it.

Assume that we have a € oy, and ¢ € I?(Z) which satisfy the Harper equation

Uni1 + Un_1 + beos(2mwn), = athy, n € 7,

for some b > 0. Assume, in addition, that this solution decays exponentially, which means that
there exist positive constants A, 3 > 0 such that

[Yn| < Aexp(—p[n|), n € 7.

We will sometimes say that this solution is exponentially localized. The Fourier transform of ,
defined as 5
P(0) =D tne™,  OET,
neEZ
is real analytic in [Im 6| < /3. Moreover, and here comes the specificity of the Almost Mathieu
operator, the quasi-periodic sequence

T = (2nwn +6), n € Z,

for any 6 € T, satisfies the equation

4 2
(Tnt1 + Tpo1) + i cos(2rwn + )z, = ?axn, n € 7.

This is again a Harper equation but with different parameters

(a,b) (%“%) . (V13)

Using the characterization of the spectrum in terms of the existence of a nontrivial bounded
solution, Theorem I11.8, we have that both a € o, and 2a/b € o4/,. This argument depends on
the existence of an exponentially localized solution (v, )nc7. Nevertheless, the relation between
the spectra o, and o4, always holds, as it was shown by Avron & Simon [AS83]. This is known
as Aubry duality or simply duality.

Theorem V1.4. For every nonresonant frequency w, the rotation number of (VI.2) satisfies the
relation
rot(a, b) = rot(2a/b,4/b) (V1.4)

forallb #0anda € R.
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This means that the spectrum oy, for b # 0 is just a dilatation of the spectrum o;. In
particular, o, is a Cantor set (resp. none of the spectral gaps of o is collapsed) if, and only if
o4,y is a Cantor set (resp. none of the spectral gaps of o4, is collapsed).

Let us now see how the argument of Aubry duality given above implies the absence of
coexisting quasi-periodic solutions. This will be used in the proof of V1.2 and VI.3 and it
is very similar to Ince’s argument for the classical Mathieu periodic differential equation (see
[Inc44] §7.41).

In principle, the eigenvalue equation of a general quasi-periodic Schrodinger operator may
have two linearly independent quasi-periodic solutions with frequency w (or w/2). One may call
this phenomenon coexistence of quasi-periodic solutions, in analogy with the classical Floquet
theory for second-order periodic differential equations. A trivial example of this occurs in the
Almost Mathieu case for b = 0 and suitable values of a.

Let us now show that in the Almost Mathieu case this does not happen if b6 # 0, i.e.
two quasi-periodic solutions with frequency w of the eigenvalue equation cannot coexist. Let
(2n)nez satisfy the equation

Tpt1 + Tpo1 + beos(2rwn + @)z, = azy,, n €7z (VL.5)

for some a, b # 0 and ¢ € T. If x is quasi-periodic with frequency w, there exists a continuous
function ¢ : T — R such that z,, = ¥(27wn + ¢) for all n € Z. The Fourier coefficients of 1,
(¥m)mez satisfy the following Harper equation:

4 2
Ymt1 + Umo1 + R cos(2mrwm) by, = %wm, m € Z. (V1.6)

Since ¢ is at least continuous, then (¢, )mez belongs to 2(Z). Now the reason for the
absence of coexisting quasi-periodic solutions is clear. Indeed, if (y,)necz iS another linearly
independent quasi-periodic solution of (V1.5) with frequency w, say v, = x(27w + ¢), for
some continuous , then the sequence of the Fourier coefficients of x, (Xm)mez, Would be a
solution of (V1.6) belonging to /2(7Z). The sequences (¢)mez and (X.m)mez Would be two
linearly independent solutions of (V1.6) which belong both to (2(Z). This is a contradiction
with the limit point character of the cosine, see Lemma I11.3.

Therefore, two quasi-periodic solutions with frequency w cannot coexist if b # 0. A similar
argument shows that quasi-periodic solutions of the form

(=1)"p(27wn + ), (V1.7)

foracontinuous ¢ : T — R cannot coexist. Such a solution will be called anti-quasi-periodic in
analogy with the periodic case [Inc44]. Also, if the frequency is w/2 or it is anti-quasi-periodic
with frequency w/2 + ,

(=1)"p(rwn + ¢),
two quasi-periodic solutions cannot coexist. Note that all these four cases correspond to the
choices ¢ = 0,7, w/2,w/2 + m in Equation (VI.5).

Finally, note that the coexistence of two quasi-periodic solutions with frequency w (resp.
w/2) is equivalent to the reducibility with frequency w (resp. w/2) of the corresponding Schro-
dinger cocycle, with the identity as Floquet matrix. Similarly the coexistence of two anti-quasi-
periodic solutions with frequency w (resp. w/2) (VI1.7) is equivalent to the reducibility with
frequency w (resp. w/2) of the cocycle with minus the identity as Flogquet matrix.
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VI.1.1 The Strong Ten Martini Problem for small (and large) |b|

As an application of the argument above we will now show that for 0 < |b| < C, where C' > 0
is a suitable constant, and for || > 4/C all spectral gaps are open. This will be a consequence
of Eliasson’s Theorem 111.28 which, adapted to this context reads as follows.

Theorem VI1.5. Assume that w is Diophantine with constants ¢ and 7. Then there is a constant
C'(ec,7) such that, if |b| < C(e, 7) and rot(a, b) is either resonant or strongly nonresonant with
respect to w, then the corresponding Schrodinger cocycle (A, w) with

A(6) = < a—bcost —1 )7 (V1.8)
1 0

is reducible to constant coefficients, with Floquet matrix B, by means of a quasi-periodic (with

frequency w/2) and analytic transformation. Moreover, if a is at an endpoint of a spectral gap

of oy, then the trace of B is +2, being B = £ if, and only if, the gap collapses.

Taking into account the arguments from the previous section, Corollary V1.3 is immediate.
Indeed, let || < C(c, 7). Then the cocycle (V1.8) is reducible to constant coefficients and the
Floquet matrix has trace 42 if a is an endpoint of a spectral gap. Moreover the gap is collapsed
if, and only if, the Floquet matrix B is +1. Since we have seen in the previous section that
(V1.8) for b # 0 cannot be reducible to these Floquet matrices, Corollary V1.3 follows. O

V1.2 Non-perturbative localization and Cantor spectrum for
b+#0

In this section we will see how Corollary VI.2 is a consequence of the following theorem on
nonperturbative localization, due to Jitomirskaya:

Theorem V1.6 ([Jit99]). Let w be strongly nonresonant, w € DC(c, 7, R). Define ® as the set
of those ¢ € T such that the relation
|sin (¢ + mkw)| < exp (—\kﬁ) (VI1.9)

holds for infinitely many values of k. Then, if ¢ ¢ ® and |b| > 2 the operator H,, has
only pure point spectrum with exponentially decaying eigenfunctions. Moreover, any of these
eigenfunctions (1, ),z Satisfies that

B(b) = — lim 28 (Vi + i) _ log (ﬂ) . (V1.10)

An operator has only pure-point spectrum if the spectral measure is purely pure-point, see
Section 111.1.3. For the proof we will only need that if ¢ ¢ ® then there is a set of eigenvalues
of the operator which is dense in the spectrum and whose eigenfunctions decay exponentially.

Now we prove Corollary VI.2. Let |b| > 2. Then, according to Theorem V1.6, the operator
H,, (although one can also prove the result for ¢ = m,w/2,w/2 + 7) has only pure point
spectrum with exponentially decaying eigenfunctions. The eigenvalue equation associated to
this operator have the following property
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Lemma VI.7. Let (z,),ez be a solution of the difference equation
Tna1 + Tno1 + bcos(2mnw)x, = aty, n € 7,
for some a,b € R. Then, (z_,),cz is also a solution of this equation.

According to Theorem V1.6, there exists a sequence of eigenvalues (a*(b))xez With eigen-
vectors (1*(b))xez, exponentially localized and which form a complete orthonormal basis of
12(Z). Moreover the set of eigenvalues (a*(b))xcz must be dense in the spectrum oy,. Again, we
do not write the dependence on b for simplicity in what follows. None of these eigenvalues can
be repeated, since we are in the limit point case. Writing each of the «/* as

,ka = (Wé)ne%

we define

kEZ
for # € T. All these functions belong to are real analytic functions on T with analytic extension
to [Im #| < 5(b), due to Equation (V1.10), and they are even functions of 6, because of Lemma
V1.7 (here we have applied again that we are in the limit point case). Passing to the dual
equation, we obtain that, for each k € Z, the sequence (¢*(2rwn))nez is a quasi-periodic
solution of

2a

4
Tpa1 + Tpn_1 + - cosb,x, = ?xn, Oni1 =6, + 21w n € 7, (VI.11)

b

provided a is now replaced by a*. We are now going to see that 2a* /b is at an endpoint of a
spectral gap and this gap is noncollapsed. To do so we will use reducibility as in the proof of
Theorem V1.3. For a direct proof that 2a* /b is at an endpoint of a gap (it has rational rotation
number), see Herman [Her83].

The fact that (¢* (2rwn)),ez is a quasi-periodic solution with frequency w of (VI1.11) means
that, for all § € T, the following equation is satisfied

(Gbmt )= (= ) (M)

The following lemma shows that, if this is the case, then the quasi-periodic cocycle

2a* 4
(( v cos 6 _(1] ) ,w) (VI1.12)

is reducible to constant coefficients.

Lemma VI.8. Let A : T — SL(2,R) be a real analytic map, with analytic extension to
Tm @] < & for some § > 0. Assume that there is a nonzero real analytic map v : T — R?,
with analytic extension to |Im §| < ¢ such that

v(0 + 21w) = A(0)v(0)
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holds for all @ € T. Then the cocycle (A, w) on SL(2,R) x T is reducible to constant coefficients
by means of a quasi-periodic transformation which is analytic in Im #| < § and has frequency
w. Moreover the Floguet matrix can be chosen to be of the form

B= ( (1) 1” ) (VI.13)

for some c € R.

Proof: Since v = (vy, )T does not vanish, d = v + vZ is always different from zero and the

transformation ) 0)/d(0)
0) —uvy(6)/d(6
z@) = " 2 )
0= “won )
is an analytic map Z : T — SL(2,R). The transformation Z defines a conjugation of A with
B!, being
A0)Z(0) = Z (27w + 6) B'(0),

B'(0) = ( (1) bﬁl(e) ) :

for some analytic b}, : T — R. The conjugated cocycle, (B',w), is reducible to constant
coefficients because it is in triangular form, the frequency w is Diophantine and b1, is analytic,
see Section 11.2.2. Indeed, if y15 : T — R is an analytic solution of the small divisors equation

which means that B! is

Y12(2mw + 6) — y12(6) = b1y (0) — [by), g €T,

where [b1,] is the average of b1, then the transformation

o=y %)

conjugates (B!, w) with its averaged part (B, w), where

B=[B'] = ((1) [b%] )

which is in the form of (VI1.13). O
Thus, applying this lemma, the cocycle (VI1.12) is reducible to constant coefficients with
Floquet matrix B, of the form (VI1.13). That is, there exists a real analytic map Z : T —

SL(2,R) such that
A0)Z(0) = Z(0 + 2mw)B (VI1.14)

for all & € T. Moreover, since the trace of B is 2, the rotation number of (V1.11) is rational, so
that we are at the endpoint of a gap, which we want to show that is noncollapsed.

By the arguments of Section V1.1, we rule out the possibility of B being the identity. Indeed,
this would imply the coexistence of two quasi-periodic analytic solutions with frequency w,
which does happen in the Almost Mathieu case. Therefore B # I and, thus, ¢ # 0 in the
definition above.
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If B # I, it is a well-known fact of Floquet theory that 2a* /b lies at the endpoint of a
noncollapsed gap. In fact, adapting the techniques of the Chapter V, especially Section 1V.4.3,
the result follows. For the sake of self-completeness, let us sketch this adaption.

We will see that there exists a iy > 0 such that if 0 < |a| < «p and « is either positive or
negative (depending on the sign of c) then 2a* /b + « lies in the resolvent set of o4/,. To do so,
we will show that, for these values of «, the skew-product

2a* 4 —
<xn+1):<7+a1bcos9n (1))<$n )) Opi1 =0, +2rw  (VI.15)

T Tn-1

has an exponential dichotomy which, by Theorem 111.8, implies that 2a* /b + o & 4. The
reduction given by Z transforms this skew-product into

2 2
y . 14+« (2112}12 — 6211) c+ o (—0211212 + 212)
ntl —azl 1 — azy1219 ™

Oprr = 0, + 27w, (V1.16)

where y,, € R? are the new variables. The z;; are the elements of the matrix Z and we have
used the relations given by (V1.14) and the special form of A and B. In the same calculation,
we also see that (z1;(27nw)),,, is a quasi-periodic solution of equation (VI1.11) and that it is
not identically zero.

Next, we use averaging to conjugate the previous skew-product (V1.16) to the following one

_ (( L+ a([znze] = c21]) ¢+ a(—clznzia] +[27,]) > + M) "

Ynt1 = —O,/[Z%l] 1-— 01[211212]
O = O, + 27w (VI.17)

by means of a conjugation in SL(2,R), with M analytic in both § and « (in some narrower
domains) and of order 2. This is achieved imposing that the conjugation transformation, which
is close to the identity, cancels the elements of (\V1.16) which depend on 6 and are of order «.
The trace of the skew-product (V1.17) is 2 — ca[z?;] + O () where Oq(«) stands for terms
of order greater or equal to two in o (which also depend on #). Thus, if we could forget about
these higher order terms, the skew-product would have an exponential dichotomy for ca < 0.
We now want to apply Coppel’s Criterion for exponential dichotomy 11.30. To do so, note that

< 1+ a([zuzi2] — c2%]) e+ a(—clznz2) + [2%))

—a2? M = eA0e)

where, by means of a com]pl]Jtation, it is seen that ofz11212]

o) = a([z1212] = §[20]) e+ a(—=clzzia] + [25)]) 700 o
Alb,a) = ( _04[351] -« ([211212] - %[Zfl]) ) + M6, a),

where M is of order o2 at & = 0. After a change of variables for cax < 0, the exponential
dichotomy follows from Coppel’s Criterion. Hence 2a* /b + « does not belong to o4/p. Since
this works for all a*, (which are dense in the spectrum), o4 is a Cantor set. By duality the
result is also true for o,. This ends the proof of Corollary VI.2. O

Remark V1.9. The same can be done for the operators H 4, for ¢ = 7,w/2,w/2 + m instead
of Hy . The corresponding point eigenvalues correspond to ends of noncollapsed gaps and are
dense in the spectrum.






Chapter VI

A Nonperturbative Eliasson’s Theorem

In this chapter we exploit the techniques of the previous chapter to prove a nonperturbative
version of Eliasson’s Theorem 111.28 on the reducibility of Schrodinger cocycles. We saw in
the proof of the “Ten Martini Problem” how the combination of Aubry duality and Jitomirskaya
nonperturbative localization Theorem V1.6 produced reducibility results at endpoints of spectral
gaps. Here we will try to reproduce this idea for general real analytic potentials. The role of
Aubry duality and Jitomirskaya’s Theorem will be played by a convenient version of duality
and a result by Bourgain & Jitomirskaya [BJ02b] on nonperturbative localization for a class of
long-range quasi-periodic Schrodinger operators to be considered in a moment.

Before stating the main result in this chapter let us recall the context of discrete quasi-
periodic Schrodinger operators on 1%(Z) (see Chapter 111). We will consider Schrodinger opera-
tors Hy,, 4 as follows

(HywpT)n = Tpg1 + Tyt + V(21wn + ¢)z,,  n €L, (VIL.1)

where V : T — R is a real analytic potential, ¢ € T and w a strongly nonresonant frequency.
This means that there exist ¢ and 7 > 1 such that the bounds

C

|sin 2mkw| > G

(VI1.2)

hold for any integer k # 0, w € DC%c, 7, R) for short. The operator Hy, 4 is a bounded and
self-adjoint operator from /%(Z) to itself whose spectrum is a compact subset of the real line
which does not depend on ¢. Therefore, there is no confusion writing

o(V,w) = Spec (Hy,p) -

The Almost Mathieu operator, studied in the previous chapter, occurs as a particular case if
V' (0) = bcos(#), with b € R a real parameter.

As it has been seen along this thesis, many spectral properties of a quasi-periodic Schrodinger
operator can be derived from a dynamical analysis of its eigenvalue equation. In the case of the
operators Hy,, 4 this is the following Harper-like equation

Tpt1 + Tt + V(210N + @)z, = azx, n € 7, (VIL3)

141
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where a € R is the spectral parameter. Such an equation defines a quasi-periodic skew-product
onR? x T,

Tpy1 [ a—V(0,) -1 Tn B
( z > = < 1 0 N Opi1 =0, + 27w, (VIL.4)

which can be seen as an iteration of the associated Schradinger cocycle, (42, w) on SL(2, R)x
T, where

1 0

Eliasson’s Theorem 111.28 states that, if V' is real analytic in C¢ (T, R) and the frequency is
strongly nonresonant, w € DC%(c, 7, R) for some constants c, 7, then the Schrédinger cocycle
is reducible to constant coefficients if its rotation number is either resonant or strongly nonres-
onant with respect to w and V|, < C(c,T, p), for a positive constant C' = C/(c, 7, p). This
result is semiperturbative because the constant C' depends on the arithmetic conditions on the
frequency w but not on the arithmetic conditions on the allowed rotation numbers (as long as
they are strongly nonresonant or resonant with respect to the frequency).

The main result in this chapter states that a nonperturbative version of this result is true.

Al (0) = ( a—V -l ) ., 0eT (VIL.5)

Theorem VII.1. Let p > 0 be a positive number. Then, there is a constant ¢, = ¢¢(p) such
that, for any real analytic V' € C¢(T, R) with

|V|p < €y,

the Schrodinger cocycle (A? ,, w) is reducible to constant coefficients for all strongly nonre-
sonant frequencies and almost all @ € R (with respect to Lebesgue measure).

The proof of this Theorem will be given in Section VII.2.
Remark VI1.2.

(i) Very recently Avila & Krikorian [AKO3] proved Theorem VII.1 but with more restrictive
hypothesis on w. In fact, we will see that both results follow from a nonperturbative
theorem on localization by Bourgain & Jitomirskaya [BJ02a].

(if) Since Eliasson theorem works for potentials V' defined on the d-dimensional torus one
may wonder if the nonperturbative version above is true for this higher-dimensional si-
tuation. It turns out that it is not, as Bourgain showed in [Bou02a, Bou02b]. He proved
that, if IV : T2 — R is a trigonometric polynomial with a nondegenerate maximum, there
is a set of w € R?, with positive measure, for which the operators Hy,, s have some point
spectrum. This point spectrum is incompatible with the reducible behaviour of the above
theorem. See the review by Bourgain [BouO4b] for the differences between the cases of
one and several frequencies.

(iif) The main burden of the proof of Theorem VI1.1 is to show that for almost all a € o(V, w)
the corresponding Schrddinger cocycle is reducible to constant coefficients. If a lies in
the resolvent set, then the cocycle has an exponential dichotomy and, taking into account
the hypothesis on V' and w, it is reducible to constant coefficients, see Theorem 11.28.
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(iv) We would like to stress that Theorem VII.1 is not a full nonperturbative version of Eli-
asson’s theorem because the set of spectral values a whose corresponding Schrodinger
cocycle is reducible to constant coefficients is not characterized in terms of the rotation
number.

An immediate application of Theorem VII.1 is the existence of quasi-periodic Bloch waves
for almost all ¢ in the spectrum. An analytic quasi-periodic Bloch wave for a Harper-like
equation (V11.3) is a solution of the form

T,(¢) = €9"f 2nwn +¢), nEZ, (VI1.6)

where ¢ € [0,2m) is called the Floquet exponent and f : T — R is an analytic function.
In Section VI1.2 we will also prove the following about the existence of quasi-periodic Bloch
waves.

Corollary VII1.3. Let V, w and ¢, be as in Theorem VII.1. Then for (Lebesgue) almost all
values of a in the spectrum o (V, w), the equation

Tni1 + Tno1 + V(21wn + @)z, = axy,
has analytic quasi-periodic Bloch waves.

Using Theorem VII.1 one can adapt many of the results in the previous chapter to this
nonperturbative and discrete setting. Here we mention only the existence of gaps. As in the
Almost Mathieu case, if a cocycle (A2 ,,,w) is reducible to a Floguet matrix with trace +2,
then « lies at the endpoint of a spectral gap of o(V,w). Moreover, this gap is collapsed if, and
only if, the Floguet matrix is +1 (see Section V1.2). An adaption of Moser & Poschel [MP84]
to this discrete case shows that reducible collapsed gaps can be opened by means of arbitrarily
small and suitable perturbations. Using this it is possible to produce examples of quasi-periodic
Schrodinger operators which display open spectral gaps nonperturbatively. It can be shown
that the values of a at endpoint of collapsed gaps whose corresponding Schrédinger cocycle
is reducible to a Floquet matrix with trace 42 are dense in the spectrum if V and w are as in
Theorem VII.1. Using the previous genericity of gap opening it could be shown that Cantor
spectrum is generic nonperturbatively. This has direct applications to the Holder character of
the integrated density of states, see Section 1V.4.3. These applications will be given elsewhere.

Let us finally outline the contents of this chapter. In Section V1.1 we introduce the extension
of Aubry duality for non Almost Mathieu operators, together with its link with the integrated
density of states. In Section V1.2 this is used to prove VII.1 and VII.3 using a similar technique
to the one used for the Almost Mathieu operator.

VII.1 Aubry duality and the Integrated Density of States

In this section we present some of the preliminaries that will be needed in the proof of Theorem
VII.1. As said in the introduction, we plan to extend some of the ideas in the proof of the “Ten
Martini Problem” in last chapter. More precisely we need a convenient version of Aubry duality,
which will lead us to consider long-range operators, which are not of Schrédinger type. In last
chapter the rotation number played an important role in the study of the spectral properties of
the Almost Mathieu operator. For these long-range operators it will be more convenient to use
the integrated density of states.
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VII1.1.1 Aubry Duality

Aubry Duality [AA80] was introduced for the study of the Almost Mathieu operator, where
V() = cos(#), see Section V1.1, but the idea works for other potentials. Let us give first the
heuristic approach and then a more functional one.
Assume that
Tpi1 + T + V(21wn + @)z, = axy,

has an analytic quasi-periodic Bloch wave,
Tn = 9™ (2mwn + @), (VILT)

being ) : T — C analytic and ¢ € [0, 27). Letting (¢, )ncz be the Fourier coefficients of ¢, a
computation shows that these must satisfy the following difference equation

Z Vit _k + 2 cos (2mwn + @) ¥, = ath, n ez,
keEZ

where V}, are the Fourier coefficients of V/,

V()= Vie*.

kEZ

This difference equation is the eigenvalue equation of the operator

(LV,w,cp’(/))n = Z V;cwn—k + 2cos (27“*‘)” + QO) ¢n
kEZ

which we call a dual operator of Hy,, ;. This is a self-adjoint and bounded operator on {?(Z),
because V' is real analytic, and it is not a Schrodinger operator unless V' is exactly the cosine.
Such an operator will be called a long-range (quasi-periodic) operator even if it may be a
finite-difference operator (if V' is a trigonometric polynomial).

If w is nonresonant, the spectrum of the long-range operators Ly, , does not depend on the
chosen ¢, so that one can write

o"(V,w) = Spec (Ly,,,) -
To avoid confusion, in what follows we will write
o™ (V,w) = Spec (Hy,,4) ,

which was previously denoted by o (V, w).

This naive approach to Aubry duality shows that if a is a value in the spectrum o (V, w)
such that (x,).cz IS an analytic quasi-periodic Bloch wave of the form (VI11.7) with Floquet
exponent ¢ of the eigenvalue equation, then a is a point eigenvalue of the dual operator Ly, ,
whose eigenvector decays exponentially and therefore a € o (V, w). The converse is also true:
one can pass from exponentially decaying eigenvalues of Ly, ,, to quasi-periodic Bloch waves
of Hy,, 4 with Floquet exponent ¢.

The argument given above heavily relies on the existence of quasi-periodic Bloch waves or,
equivalently, exponentially localized eigenvectors. It turns, however, that both operators can be
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related. This was done by see Avron & Simon [AS83]. Here we will follow the idea by Gordon,
Jitomirskaya, Last & Simon [GJLS97] who studied duality for the Almost Mathieu operator
although it can be extended to the general case, see Bourgain & Jitomirskaya [BJO2b]. The idea
is to shift to more general spaces where the extensions of the operators H and their duals L are
unitarily equivalent. Note that it is not true that the operators Hy,, 4 and Ly, , are unitarily
equivalent, since their spectral measures may be very different.

Let us consider the following Hilbert space,

H=L*(TxZ),
which consists of functions ¥ = (¢, n) such that
Z/ 1T(0,n)* df < oo.
nezZ

This space “includes” at the same time L*(T) and (*(Z), considering the projections
Vet m(P) € 1*(Z), mo(¥)(n) = ¥(0,n)

and
U e H 7, (V) € L*(T), (V) (0) = ¥ (0, n)

forany fixed @ € Tand n € Z.

The extensions of the Schrodinger operators H and their long-range duals L are given in
terms of their direct integrals, which we now define. The direct integral of the Schrodinger
operator Hy,, 4, is the operator FIV,w, defined as

(ﬁfv,wqf) 0,n) = U(0,n+1) +¥(0,n — 1) + V(2rwn + 0)W(8, n),
and the direct integral of Ly, ,, Ly, is

(Lv,w\p) (0,n) = S"Vi¥(0,n — k) + 2 cos (2rwn + 0) ¥ (0, n).

kEZ

These two operators are bounded and, for any fixed 8 € T, they satisfy
g © f{V,w = HV,w,O O Ty

and
g o Ly, = Ly, 0 m.

We now want to see that, for any fixed real analytic V' and nonresonant frequency w, the
direct integrals HVw and LVw are unitarily equivalent, which means that there exists a unitary
operator U on # such that the conjugation

ﬁV,wU == UEV’W

holds. By analogy with the heuristic approach to Aubry duality in the beginning of this section,
let U be the following operator on H,

(UD) (0,n) = ¥ (n,0 + 21wn)
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where U is the Fourier transform. Here the Fourier transform is the following operator
Vel (Tx2Z)—¥elL?(ZxT)

where

(k,¢) =) /T (0, n)e e 1% dp.

neZ
The map U is unitary and satisfies

[N{VMU = UiV,w

by construction of the dual long-range operators in terms of the Schrddinger operators. There-
fore, the direct integrals Hy,,, and Ly, are unitarily equivalent. In particular, due to the nonre-
sonant character of w one has

o(V,w) =
U Spec (Hy,,4) = Spec (I:IV,W> = Spec (INIV,w> = U Spec (Hy,,,) =
¢eT @eT

ot(V,w)

so that the spectrum of a quasi-periodic Schrodinger operator and its dual are the same. In the
next section we will introduce the integrated density of states for long-range operators and we
will see that this function is preserved by Aubry duality.

VI1.1.2 The integrated density of states and duality

The integrated density of states of quasi-periodic Schrodinger operators, the 1DS for short, has
been introduced in Section 111.2.2 in connection with the rotation number of the corresponding
eigenvalue equations. Now we want to extend this definition to the dual long-range operators. In
order to introduce this IDS in a unified way let us put the operators H and L in a more general
framework. If VW : T — R are real analytic functions, w is a nonresonant frequency and
¢ €T, let Ky,v,,  be the following operator

(Kw,ywer), = Z Wizn  +V(2mwn + @)z,

kEZ

acting on /?(Z), which is bounded and self-adjoint. The operators in the previous section occur
as particular cases,

H‘/awad) = K2 cos,V,w,p and LV,LU,¢ = K‘/,QCOS,UJ,d)‘

Let us now define the 1Ds for the operators Ky, ». Take some integer N > 0 and consider
K} v..¢ the restriction of the operator Ky,y,, 4 to the interval [-N, N] with zero boundary
conditions. Let

kn(a, W, V,w, ¢) = # {eigenvalues < a of K7y, 5} -

1
2N +1
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Then, due to nonresonant character of w the limit

;
Noveo 2N + 1

kN(CLaVVa ‘/;waqb)

exists, it is independent of ¢ and of the boundary conditions imposed above. It is called the
integrated density of states, IDS , of the operator Ky, We will write this as k(a, W, V,w).
The map

a€R— k(a,W,V,w) (VI1.8)

is increasing and it is constant exactly at the spectral gaps of Ky v, . It is the distribution
function of a Borel measure,

a

k(a, W, V,w) = / Ay (M)

—0oQ

which is the density of states, ny,y,,. Its support is precisely the spectrum of Ky ., 4 (this
comes from the characterization of the spectrum in terms of the growth of the iDs (VI1.8)). In
the Schrodinger case we will use the notations

kH(G,, V, CU) = k(a, 2 COos, Vvﬁ w)’ nf‘j’w = N2 cos,V,w

and
k" (a,V,w) = k(a,V, 2 cos,w), n‘L,M = N2 cos w-

for their duals.

Remark VI11.4. In the Schrodinger case the Sturmian rotation number and the 1DS satisfy the
following relation

k" (a,V,w) = 2rotd(a — V,w),

for all ¢ € R, see Section 111.2.2.

Let us now relate the 1Ds of the operators K,y  to the spectral measures in Section I11.1.3
(see Avron & Simon [AS83] and Cycon, Froese, Kirsch & Simon [CFKS87]).

Let 6o = (don)nez be the Kronecker’s delta function. In Section 111.1.3 we saw that, for
any bounded measurable function f, one can define f(Kw,v,.,,) using the spectral measure of
Kw,v,.,s associated to dy,

(00 (Kunyin) ey = [ F 0.
Let 11, be the measure defined on Borel sets by
p(A) = (0; Xa (Kw,vw,6) b)) = /A dptsy (A),

where A is a Borel set and y 4 is its characteristic function. This is a spectral measure in the
sense that x 4 (Kw,v.w,e) i zero (as an operator) if, and only if, 114 (A) = 0.
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Avron & Simon [AS83] proved that the IDs is the integral over ¢ € T of all these spectral
measures pg. Thatis, if f is any continuous function on the spectrum, then

/jummnzﬁyg/ﬂ»wum

where, for simplicity in the notation, we write n for the density of states measure of Ky, 4.
Approximating characteristic functions by positive continuous functions, one readily sees that,
for any Borel measurable set A C o(Kw,y,.0),

() = [ an() = [ do [ aus) = [ potaras. (VIL9)
A T A T
Using the fact that the scalar product in the space L?(T x Z) is the integral over T of the

scalar product in I%(Z) one can prove the following,

Theorem VIL5 ([GILS97]). Let ki;,, and £/, be the integrated density of states of Hy,, 4 and
Ly, , respectively, for some real analytic V' : T — R and nonresonant frequency w. Then

kv, (a) = ki, (a)
foralla € R.

As a consequence of Equation (V11.9) we obtain the following result which will be crucial
in the proof of Theorem VII.1. We state it for Schrodinger operators and their dual rather than
in the full generality.

Proposition VI1.6. Let V' be real analytic, w non resonant and ., a spectral measure of Ly, 4.
Assume that there is a measurable set A such that

pg(A) =0

for almost every ¢ € T. Then n’(A) = 0 so that the Lebesgue measure of AN oL (V,w) is zero.
Also nf(A) = 0 and, thus, the Lebesgue measure of A N o (V,w) is zero.

VI1.2 Proof of Theorem VII.1

We are now ready to show that Theorem VII.1 is a direct consequence of the following theorem
by Bourgain & Jitomirskaya [BJO2b], which we restate in a convenient way:

Theorem VI1.7 ([BJO2b]). Let p > 0 be a positive number. Then there is a constant e, = e4(p)
such that, for any real analytic V€ C (T, R) with

|V‘p < €y,

and strongly nonresonant w thereisa set ® C T, of zero (Lebesgue) measure such that, if ¢ & @,
the operator Ly, 4 has pure point spectrum with exponentially decaying eigenfunctions.
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Remark VI1.8.

(i) In[BJ02a], the bound &, depends on [[V][, [[V[|2, ||V || @and p. If V belongs to C3 (T, R),
then all these previous norms can be controlled by |V|,.

(if) The set ® consists of those angles ¢ for which the relation
|sin (¢ + mkw)| < exp (—|k|i) (VI11.10)

holds for infinitely many values of £, where 7 comes from the strong nonresonance of w,
w € DC%ec, 1, R). Note that the sets ® = ®(7) have measure zero for any 7 > 1.

Let us now prove Theorem VII.1. Assume V, w and ® as in the Theorem VII.7. First of
all we are going to prove Corollary VI1.3 and from this we will prove the main result. The first
step is to show that almost every a € o*(V, w) is a point eigenvalue of Ly, 4, for some ¢ € T,
whose eigenvector in [?(Z) is exponentially localized. More precisely, let

o (V,w,8) C a*(V,w)

be the set of point eigenvalues of Ly, 4. We will see that, if

A= (Vw) = | oh(V,w,9),
P¢P

then
n"(A) = [A] =0,

where | - | stands for the Lebesgue measure on R.

According to Proposition VI1.6 we only need to show that 4(A) = 0 for all ¢ ¢ ®, where
i, are the spectral measures defined in the previous section. This is a consequence from the
fact that the spectral measures ., for ¢ ¢ @ are supported on the set of point eigenvalues of
the corresponding operator.

Using Proposition VI11.6 we conclude that n*(A) = 0 (and also n* (A) = 0). In the be-
ginning of Section VI1I.1.1 we saw that if a is a point eigenvalue of the operator Ly, , whose
eigenfunction decays exponentially then the Harper-like equation

Tl + Tuo1 + V(271wn)z, = axp,n € Z (VIL.11)

has analytic quasi-periodic Bloch wave with Floguet exponent ¢. Putting everything together,
the set of values of a for which Equation (VI1.11) has a quasi-periodic Bloch wave is of total
measure in the spectrum and Corollary VI1.3 is proved.

VI1.2.1 From Bloch waves to reducibility

Summing up the results from the previous section we have that, if V', w and @ are as in Theorem
VI11.7 then, for almost all a € o (V,w), the equation (V11.11) has an analytic quasi-periodic
Bloch wave with Floguet exponent ¢ ¢ ®. Since we only want to prove a result for almost
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every a (and looking at the proof on full measure above), it is sufficient to show that if ¢ & ® is
such that
0 —mhw —7j #0 (VI1.12)

forall £, 7 € Z and (VI1.11) has an analytic quasi-periodic Bloch wave with this Floquet expo-
nent ¢, then the corresponding Schradinger cocycle (A2 ., w), where

o=/ ),

is reducible to constant coefficients.

Remark VI1.9. If ¢/27 is resonant with respect to w,
¢ =mk+ Tjw,

for some integers k, j, then one can also prove reducibility using the same techniques of the
previous chapter.

The existence of the Bloch wave implies that the Schrodinger cocycle has the following
quasi-periodic solution

Y(4rw + 0) e a=V(e) -1 Y(2rw + 0)
(Hiorary )= (" ) (&) ) o
for all § € T. Writing

v(8) = (15(9 + 2mw), ei%(e))T (VI1.14)

vor=( ) e )

where the bar denotes complex conjugation, one always has the relation

and

At (0)Y(0) = Y (0 + 27nw)A(yp), (VI11.15)

where

Of course, Y will only define a conjugation if it is nonsingular. Note that, because of (V11.15),
the determinant of Y is constant as a function of § and it is purely imaginary. In particular, v(6)
and o(0) are linearly independent for all @ if, and only if, they are independent for some 6. In
the case that these two v and v are linearly independent, it is not difficult to prove reducibility
to constant coefficients of the cocycle.

Lemma VIL.10. Let A : T — SL(2,R) be a real analytic map, with analytic extension to
Im 6| < § and w be Diophantine. Assume that there is a nonzero analytic map v : T — R2,
with analytic extension to [Im #| < ¢, with v and @ linearly independent, such that

v( + 27w) = e Y A(0)v(0)
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holds for all § € T, where ¢ € [0,27). Then the cocycle (A, w) is reducible to constant
coefficients by means of a real analytic transformation in SL(2, R) which has analytic extension
to [Im #| < §. Moreover, the Floguet matrix can be chosen to be of the form

B:( cos g Sm‘p). (VI1.16)
—singp cosp

Proof: Let

7(0) = ( v (0)  1(0) )

where
d(@) = v1(9)172(9) — U1 (0)1)2(0)

is the determinant. Since v and # are linearly independent, Z! is real analytic and, for every
6 € T, Z'(#) is nonsingular. A computation shows that

AO)Z' () = Z' (0 + 27w) B,

[ €Y 0
B_(O ei“")'

In particular, since w is rationally independent and Z! is continuous, this shows that d(#) is
constant as a function of 4. By the linearity of our system, we choose this constant value to be
—i/2.

To obtain the real rotation consider the composition

where

2(0) = Z'(6) 22

where

which satisfies the desired conjugation
A0)Z(0) = Z(0 + 2rw)B

being B the rotation (VI11.16). Thanks to the construction, it is readily checked that 7 is real
and with determinant one. O

Finally, it only remains to rule out the possibility that ¢ is as above (VI1.12) and that v and ¥
are linearly dependent at the same time. Note that both v(6) and () are different from zero for
all & € T by construction. Assume that v(#) and ©(#) were linearly dependent for all 6. Since
these vectors depend analytically on 4, there would exist an analytic ~ : T — R and an integer
k € Z such that

’U(t) — ei(h(t)+kt)v(t)

for all t € R. Using that v and @ are quasi-periodic solutions of (A, w), this would imply that

el(h(t)—Hct) Y = el(h(t+27rw)+kt+27rkw)e—up
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for all t € R. Therefore, h must satisfy the following small divisors equation
h(f + 27w) — h(0) = 2¢ — 2mkw — 27j

for all # € T, where 5 € Z. From the considerations of Section 11.2.2 such analytic A cannot
exist unless
¢ = (kw+7j),

which is a contradiction with the nonresonance condition (VI1.12). This ends the proof of
Theorem VII.1. O



Appendix A

Quasi-Periodic Birkhoff Normal Forms

In this appendix we study the normalization of analytic Hamiltonians on R™ (and C") which
depend quasi-periodically on time. These are Hamiltonians of the form h(z,y,t), being ¢t —
h(z,y,t) a quasi-periodic function. The corresponding flow is given by the Hamilton equations

PO = golent,  v0 =5 @), (A1)

where -’ stands for the derivation with respect to time.
Quasi-periodicity means that there exist a rationally independent frequency vector w € R¢
and a continuous function 4 = h(z, y, ) such that

h(z,y,t) = ]N'L($, Yy, wt)

forall¢ € R. If d = 1 the Hamiltonian is periodic in time and, therefore, periodic Hamiltonians
occur as particular cases. In most of what follows, however, we will assume that d > 2.

Similarly to what we did with linear equations with quasi-periodic coefficients (see Chapter
I1), the flow (A.1) can be rendered autonomous

= Z—Z(x,y, 6), y = —g—;l(a:, y,0), 0 =w. (A.2)

where # € T¢. To make this flow Hamiltonian one can introduce new variables I € R?,
canonically conjugated to #, and define

H(z,y,0,1) = (w, )+ h(z,y,0).
This Hamiltonian defines a flow on R?" x T¢ x R,

= Z_Z(fc,yﬁ), y'= _%(w,y, 0), 0'=wI'=0.

We will focus on Hamiltonians which are perturbations of quadratic systems with constant

coefficients. That is, we fix a rationally independent w € R? such that the Hamiltonian H can
be written as

H(z,y,0,I) = Hy+¢cH, = +Z (22 +y2) + eHy(z,y,9), (A.3)

153
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where ¢ is a real parameter, H; is of order greater or equal than two in z and y, and a =
(o, ...,a,) € R™ are such that the vector (w, «) is strongly rationally independent. That is,
there exist positive constants K and 7 such that

K

-— A4
TEES (A4

[{w, k) + (a, )] >

holds for all k € Z¢ and 1 € Z™ with |k| + |1 # 0.

Since we want to discuss the convergence of Birkhoff’s normalization process and the re-
sulting normal form for quasi-periodic Hamiltonians, it is important to fix the space of analytic
Hamiltonians that we are considering and the norm there. Functions like

K =K(z,y,0,1,¢)
will be considered on open domains of the form
D, = {(z,y,0,1,6) € C* x C* x C* x C* x C;max (|z|, |y, [Im 0, |I|,|e]) < p}
for a positive p > 0 which we now fix. A Hamiltonian belongs to the class H if

|K‘P = sup \K(az,y,@,],sﬂ < 0.
(z,y,0,1,)eD,

The space of Hamiltonians in # of the form (A.3), for a fixed (w, «), will be denoted by o).
Real analytic Hamiltonians in H satisfy, in addition, that they are real for real values in D,
Particular cases are quadratic Hamiltonians, which satisfy that H; is a quadratic function of
(x,y). In this case, the corresponding Hamilton equations are linear quasi-periodic differential
equations.

A normal form reduction tries to transform a Hamiltonian like (A.3) into the simplest pos-
sible form suitable for the study to be done. This form depends strongly on the rational relations
between w and « and this is why the format of the normal form that will be presented in The-
orem A.1 differs from the normal forms considered in Chapter V. In Section A.1 the following
theorem will be proved (compare with Arnol’d [Arn83a]).

Theorem A.1 (Quasi-Periodic Birkhoff Normal Form). Consider a real (resp. complex)
analytic quasi-periodic Hamiltonian of the form

Hy+eH; = (w,I) +Z x +y] —i—aHl(m y,0),

where the pair (w, a) is strongly rationally independent and H, contains terms of order at least
two in (z,y). Then, for any N > 1, there exists a real (resp. complex) analytic canonical
transformation which takes the Hamiltonian to

N
H ('T yae I UJ I +Z .7) +y]2) +Z€ka($,y)+5N+1RN+1(.7),y, 9),
k=1
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where the 7, are real (resp. complex) analytic functions of

1 2 2
5 (7 + ;)
for j € {1,...,n} and are independent of #. The remainder Ry is a real (resp. complex)
analytic function in (z, y, #) which is of order greater or equal than two in (z, y). Moreover, if

H, is a quadratic function of (z, y) then H” is also quadratic in (z, ).

Applying formally this result to a quasi-periodic Hamiltonian, one can transform the Hamilto-
nian to the normal form

H(2,9,0,1) = {w, 1) + Y (22 +9)) + Y Zu(a. ),
j=1 k=1

which is integrable introducing the so-called Poincaré variables

zj=\21jc08 05,  y; = /27;sin ;.
Also, if H is quadratic then the normalized Hamiltonian is also quadratic. Since H* has no
dependence on @ the corresponding skew-product flow has constant coefficients depending on ¢.
Therefore, for Hamiltonian linear differential equations with quasi-periodic coefficients, Birk-
hoff Normal Form allows to reduce to constant coefficients at a formal level. We will see in
a moment, however, that both the normalization transformation and the resulting Hamiltonian
H are generically divergent.

As it was already pointed out by Poincaré [P0oi92], the transformation to Birkhoff Normal
Form is generically divergent. We will prove that, generically, the Normal Form itself is diver-
gent. We will follow Pérez-Marco [PMO03] where the reader can find references on this problem.
Our theorem is modelled after [PMO03] and establishes the following dichotomy.

Theorem A.2. Let (w, «) be a strongly rationally independent pair and #,, .y C # as before.
Then

(i) If there exists a Hamiltonian Hy;, € H,,q) With divergent Birkhoff Normal Form, then
for a generic Hamiltonian in H,, ) its Birkhoff Normal Form is also divergent.

(if) More precisely, all Hamiltonians in any real (resp. complex) affine one-dimensional sub-
space V of H,,.) have a convergent Birkhoff Normal Form or only an exceptional zero
Lebesgue measure (resp. polar) subset of Hamiltonians in V' have this property.

The second theorem in this appendix provides us with an example of a quasi-periodic
Hamiltonian with divergent Birkhoff Normal Form for each strongly rationally independent
pair (w, o).

Theorem A.3. Let (w, «) be strongly rationally independent with d > 2. Then, there exists a
quasi-periodic Hamiltonian in H, oy with divergent normal form.

This will be proved in Section A.2.1 by constructing examples of quadratic Hamiltonians
with diverging Birkhoff Normal Form. As a consequence one has the following.

Corollary A.4. Let (w, «) be a strongly rationally independent pair. Then a generic Hamilto-
nian in H, oy has divergent Birkhoff Normal Form.
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A.1 Quasi-periodic Birkhoff Normal Form

In this section we will discuss quasi-periodic Hamiltonians and their normalization by means
of Birkhoff method. Here we will follow the method by Giorgilli & Galgani [GG78] (see
also [GG85], Fasso [Fas89] for the normal form theory and Gomez, Jorba, Masdemont & Simo6
[GJSMO1], Jorba & Villanueva [JV97] and Gabern [Gab03] for the adaption to the nonautonom-
ous case). For other approaches to quasi-periodic normal forms see Bryuno [Bry89], Chow et
al. [CLS92], Braaksma & Broer [BB87].

Consider a quasi-periodic Hamiltonian of the form

H(z,y,0,1) = Hy+eH; = (w,I) +Z (22 +y2) + eHi(z,y,0), (A.5)

where the terms of H,(z,y,6) are of, at least, order two in (z,y). Recall that (z,y) € R*®
and I € R? is an auxiliary variable to make the system autonomous, which is canonically
conjugated to & € T¢. Our aim is to define a canonical transformation to render (A.5) into the
simplest form. That is, for each N > 1, we will transform our system to a Hamiltonian of the
form

N
HN(xa Y, 9; I) = ZO + Z €ka($, y) + 8N+1RN+1($a Y, 0), (A6)
k=1
where Z, = Hy and R, = H, for consistency. If this can be done for all N > 1 we will have,
disregarding the convergence of the sequence of transformations and corresponding reduced
Hamiltonians, that the original Hamiltonian becomes

H®(@,y,0,1) = Zo+ Y Zi(w.y). (A7)
k=1

Note that this can be written as a formal power series in ¢, z, v,

Hoo(a:,y,ﬁ,l):Zo+Z Z Zyek oyl

k=1 ‘11|—|—‘12‘22

where 1 = (1;,1;) € Z™ x Z™ have nonnegative components. As already noted by Poincaré
[P0i92], this transformation is generically divergent, although, for any finite order of normaliz-
ation NV, it is analytic on some domain (which shrinks to the void set as NV increases).

Before outlining the method of normalization, let us briefly discuss the role of the parameter
. Assume that for a certain real value of ¢, > 0, the series (A.7) is absolutely convergent as
a function of (z,y) in a suitable neighborhood of the origin. Then for |¢| < &g, the normal
form is also convergent on the variables (¢, z, y). Thus, the addition of a parameter ¢ is to some
extent artificial if we only regard convergence of the normal form. However, it is customary to
work with such a parameter in series expansions of classical mechanics, where it is usually a
perturbing parameter. Moreover it is very convenient in the labelling of the terms of the normal
form.

Remark A.5. Instead of a single perturbation parameter one can use any number of them. The
adaption to this multi-parameter case is straightforward although the notation may be a bit
cumbersome.
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Let us proceed in the Birkhoff normalization process. For the moment, we disregard the
question of the convergence of the normal form and the normalizing transformation.
Let x = x(z,y, 8, €) a function of the form

X =x(x,y,0,¢) = > _&lx;(z,y,0).

j21

Then, for any g = g(z, v, 6, I), one can define the (canonical) transformation g — T} g, with

Ty =Y &g,

Jj=0

where the coefficients g; are defined by the following recursive relations
—~
w0=9, =) Lo (A.8)
j=1

being L, = {x;, -} defined in terms of the Poisson bracket,

_ . . _0x;09 0x;09 0x;09 0x;09
L9 =169y =35, = By as T 0 a1 ~ ol a0

For a quasi-periodic Hamiltonian H like (A.5) and some N > 2 fixed, we will look for a
X = x(z,y,8,¢) such that the transformed Hamiltonian 7} H is in normal form (A.6). Since
H = 7, + ¢R; and due to the linearity of the adjoint operator of y one has

TWH = Zy+ Y & (hj+ fi),

Jj>1

where the coefficients i; and f; are defined by the recursion relations (A.8) with hy = Z; and
fo = R:. By comparison with (A.6) one gets

hj + fjfl == ZJ

Using also
s—1 .

he=Lyho+ > %ijhs_j

7j=1
and L, ho = —Lp,xs one hasthat fors =1,...,r,
Lth + Zs = ‘1157 (A9)
where W, is given by

U= fo

and
s—1 .

Uy=fori+ Y %ij hs_; (A.10)
7j=1
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for s > 2, writing h = hy = Z, for simplicity.
The key point now is to solve the homological equation (A.9). Indeed, each ¥, depends

only on f, 1, x1,---,Xs_1 and Zy, ..., Z, 1, which are terms of order less than s in . If we
are able to solve (A.9) then all the terms 74, . .., Zy and the remainder Ry 1 can be computed
recursively, as well as x1, ..., xn-.

Let us now focus on (A.9) at a formal level. Since it is a linear equation on the space of
formal power series in z, ye', it would be very convenient that the operator L, was diagonal
in the basis formed by monomials. This is achieved by means of a complexification of the
variables (z, y). These new complex canonical variables are defined by means of the following
canonical transformation:

1 1

$=E(q+ip), Q=E(P+19)-

In these new variables, the quadratic part h = hq = Z, takes the form
n
h = (w, ]) + Ziajquj,
7j=1
so that

Lth

T 9qdp Opdg 090 Il 09 i\Pigy, ~ gy, 50 )"

j=1
Consider a monomial of the form
1u(q,p, 0) = g plet? (A.11)

for some (1;,1,) = (I1,...,07%,13,...,15%) € Z™ x Z™, with nonnegative components satisfying
;| + |Io] > 2 and k € Z Let us compute the action of L, on this monomial. On one hand we
have

n n
) oL ol . ; Y ; s ;
Zlaj (pjg — QJ£> — Zlaj (l%quhplz Bi _ l.{qth ﬂ]plz) e (k,0) _
J J

7j=1 7j=1
=Y iy (8 =) plg,p,0) = (e, 1 = L)p(g,p,0), (A12)
j=1

where 3; is the jth element of the canonical basis of Z". On the other hand,
(0, 28
" 00

Hence, putting everything together,
Lpp =1, = ) — (w, k)) p(q,p, 0),

so that every monomial like 1 is an eigenvector of the operator L;, withi ((o, 1o — 1;) — (w, k))
as eigenvalue. In particular the kernel of the adjoint operator L, is generated by those mono-
mials for which the relation

) = i{w, k)qllpbei(k’e). (A.13)

(a,1, — 1) — (w,k) = 0 (A.14)
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holds. Since we are assuming that the pair («,w) is strongly rationally independent (and in
particular rationally independent) the only (1, 1, k) that satisfy (A.14) are1; = 1, and k = 0.
The corresponding monomials will be called resonant monomials.

To solve formally equation (A.9) in the unknowns y, and Z, we can do the following. Split
¥, (which is already known) into the resonant and nonresonant parts:

_ res nores
U, = Ul + U
which contain, respectively, resonant and nonresonant monomials and solve
Lth — \I];LOTES

letting
Zy =0T,

where y, contains only nonresonant monomials and 7, only resonant monomials. The arith-
metic assumption on (w, ) makes this formal solution x; and ¥, analytic if ¥, is also analytic,
compare with the methods in Section 11.2.2.

Undoing the changes in (¢, p) and taking into account the identity

) 1

19;Pj = 5 (@7 +7)
for j = 1,...,n we obtain the desired normal form. Together with some other easy adaptions
to the real analytic or quadratic cases, this proves Theorem A.1. O

A.2 Cantor spectrum and divergent normal forms

In this section we will construct examples of quasi-periodic Hamiltonians with divergent Birk-
hoff Normal Form. These examples are cooked after a reelaboration of the methods in Chapter
IV which we now briefly recall. Later, in Section A.2, such examples are constructed.

A.2.1 Hill’s equation, Quasi-periodic Schrddinger operators and Cantor
spectrum

Hill’s equation with quasi-periodic forcing,
"+ (a+q(t)z =0, (A.15)

considered in chapters Il and IV can be thought as one of the simplest examples of a quasi-
periodic Hamiltonian system. Let us assume that the frequency w of ¢ is strongly rationally
independent. Hill’s equation defines a linear equation with quasi-periodic coefficients introdu-
cingy = 2’ and § € T¢,

(5)12(—%0@(9) é)(i) =w (A.16)



160 Appendix A. Quasi-Periodic Birkhoff Normal Forms

The fact that the matrix above belongs to si(2,R) indicates that it comes from the following
quasi-periodic quadratic Hamiltonian,

H(z,y,0,I) = (w,I) + % (v> = (a +Q(0)) %), (A.17)

with I € R?, which is is real analytic if ¢ is a real analytic quasi-periodic function.
In Section 111.2.2 the rotation number for such equations, rot¢(a — @, w), was introduced.
An important link between the spectral properties of the corresponding Schrodinger operator,

(Hyz)(t) = —2"(t) — q(t)2(2), (A.18)

and Hill’s equation (A.15) is that the spectrum of H, on L*(R) is the set of points of increase
of the map

a — rot’(a — Q,w). (A.19)

In Section 111.2.2 the Cantor structure of the spectrum was discussed. In terms of the rotation
number, the spectrum of H, is a Cantor set if, and only if, the above map has a dense set of
intervals of constancy. We will use a combination of Eliasson’s results 111.27 and 111.30 to
assume the following.

Let w € R? and a > 0 such that (w, o) is strongly rationally independent. Assume that
Q : T — R is a real analytic function and a, € R are such that

H1 The spectrum o¢(Q, w) isa Cantor set. In particular, the map (A.19) is not analytic around
any point in the spectrum.

H2 The rotation number of ag, rot®(ay — Q,w) IS a.

H3 The skew-product flow (A.16) for a = ay is reducible to constant coefficients with fre-
quency w and Flogquet matrix
B:( 0 O‘). (A.20)

—a 0

Moreover, the lift of the reducing transformation to T¢ belongs to C4(T%, R).

A.2.2 Reducibility and diverging normal forms

Let us now show that, if ay and @ satisfy H1-H3 above, we can construct a quasi-periodic
Hamiltonian in H, oy with diverging Birkhoff Normal Form. The reducibility of (A.16), for
a = ay, to constant coefficients means that there exists a symplectic quasi-periodic transforma-

tion
( T ) _ ( 2 (wt)  ziz(wt) )f, (A.21)

y zo1(wt)  zog(wt)

where ¢ € R?, which reduces system (A.16) to

& =al, 0 =w (A.22)
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where J is the usual 2 x 2 symplectic matrix. In particular, applying this change of variables to
system (A.16) with a = ag + ¢, being ¢ a real parameter, we obtain

51:(( —Oa 3)“(—:; _:3»5 0 =w, (A.23)

for some r;; which are real analytic functions whose lifts R;; have analytic extension to [Im 6| <
p by H3. System (A.23) can be written in terms of its Hamilton function:

1 1 1 1
H(&,6,0,J) = (I,w) + §a§f + 50453 +e <§T21§f +ru&ie + 5“2&%) , (A.24)
This is a Hamiltonian in H,, ). Let us now apply Birkhoff normalization process, with
1 2 1 2
Zy = (w, 1)+ F061 + 50k,

Theorem A.1 implies that, for each N > 2, one can transform Hamiltonian (A.24) to

N
HN(Qap,ea J) = ZO + ngZk(Qap) + EN_HRN—H((]’p, 0),

k=1
where the 71, ..., Zy, Ry41 are quadratic and the Z; do not depend on time,
B
Zi(q,p) = 5’“ (¢ +p°)

for some constants /3, independent of . The functions H", Ry, and the normalizing trans-
formation are analytic in suitable neighborhoods of the origin. At a formal level, this can be
continued up to infinite order and obtain a #-free Hamiltonian:

k=1

H>®(q,p,I) = Zo+ Y e"Zi(q,p) = (w, 1) + % (a + Zﬂk6k> (¢ +p%).
k=1

whose corresponding flow is a linear equation with constant coefficients. Stopping at a finite
order, the differential equation defined by H” is

N
2= (( _ag(g) @ 0(8) ) +5N+1PN+1(9)) 2, 0 =w (A.25)
where z = (g, p)7,

P P.
o= Pt = (Gt )

is also symplectic and real analytic and

N
aV(e) =a+ Zﬁkek.
k=1
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In polar coordinates, ¢ = arg(p + ig), Equation (A.25) becomes
¢ = oM(e) + eV (P y+1(0) sin® o 4 2P3 y11(6) sin g cos ¢ + Po yi1(6) cos® @)
0 = w.

which we rewrite as
o' =a(e)+ N dnii(p,0,8), 0 = w,

where @y, is a real analytic function, quadratic in (cos ¢,sinp). Let ®¥+! and @Vt be,
respectively, the maximum and minimum of ¥+ ind € T¢, ¢ € S, || < &, for some g > 0.
Then the rotation number of (A.25), which we denote by rot(e) (and was rot®(ap + ¢ — Q, w)
in the notations of Chapter I11) satisfies the bounds

NN < rot(e) — o (e) < eNTTRYT

In particular, since o™ (¢) is an Nth order polynomial, ¢ — rot(e) is N-times differentiable at
e = 0 and its Taylor expansion up to order N is given by oV (¢).

More importantly, if the normal form was convergent, this would imply that o would be
convergent in a neighborhood of ¢ = 0. In particular, the rotation number would be analytic
in a neighborhood of ¢ = 0. This is a contradiction with H1 and the Normal Form cannot be
convergent.

To get the formulation of Theorem A.3 we only need to consider the product of » uncoupled
Hill’s equations. In this case the normal form will also be the product of the normal forms so
that the divergence of the latter will imply the divergence of the first. O

A.3 Polar sets and proof of Theorem A.2

In this section we will prove Theorem A.2. This will follow the guidelines of Pérez-Marco
[PMO3] adapted to our setting. In particular, note that we work with polar sets instead of pluri-
polar sets. We start giving a brief account of the theory that we will need and then give the proof
of Theorem A.2.

A.3.1 Some potential theory

Here we give some ideas and definitions from potential theory on the complex plane. For a
proper exposition and proofs see the monograph by Ransford [Ran95], which we now freely
quote.

Let U c C be an open subset of the complex plane. A complex function defined on U is
subharmonic if it is upper semi-continuous and it satisfies the local submean inequality. That
is, for any z € U, there exists a positive p > 0 such that for any radius 0 < r < p the following
inequality holds

1
u(z) < i/ u (2 +re’™) dt.
0

2T
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A basic example of a subharmonic function on U C C is given by log | f|, being f any
analytic function on U. Another example is the potential of a finite Borel measure p with
compact support, which is the function p,, : C — [0, c0) given by

pu(2) = [ log 2 = uldu(u)

for all z € C, which is a subharmonic function on C. For such a measure, one can define its
energy as

1) = [ o)) = [ [ 1og 2 = widn(z)autw).

Different Borel measures supported on compact subsets of the same £ C C can have different
energies. Therefore, it is convenient to introduce the logarithmic capacity (or capacity) as

¢(E) = supe!®
u

where the supremum is taken over all Borel probability measures p on C whose support is a
compact subset of E and the convention e=> = 0 is taken. The sets with zero capacity are
called polar sets.

For any polar set E C C, there exists a subharmonic function on C for which E is the
preimage of —oco. Borel and Polar subsets of C have Lebesgue area zero. Also, the intersection
of any polar subset of C with R has zero measure in R. Finally, let us mention that the countable
union of polar sets is polar. Our main tool in the proof of Theorem A.2 will be the following
result.

Theorem A.6 (Berstein’s Lemma). Let C' be a nonpolar compact subset of C. If P is a
polynomial of degree r then, for all z € C,

[P(2)] < |Pllgogey €™,
where
Ve(z) = sup {u(z); wis a subharmonic function of minimal growth such that uc < 0}
is the Green’s function for C'.

Remark A.7. A subharmonic function u like in the theorem is said to be of minimal growth if
u(z) — log || is bounded from above when |z| — oc.

As a consequence of A.6, if C; is any compact set which contains C', then

M = sup |Ve(2)] < o0
z€Cq

and
”P”CO(Cl) < ||P||CO(C) e
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A.3.2 Proof of Theorem A.2

Let us first show that item (ii) implies (i) in Theorem A.2. That is, if there is a quasi-periodic
Hamiltonian Hg;, in H, ) with diverging normal form then the normal form of a generic
Hamiltonian in #, ., is also diverging.

Consider the set F}, of Hamiltonians Hy + e H; in H,, ) Whose Birkhoff Normal Form K 5
converges in D, and such that

‘KH‘I/IC = sup \KH(m,y,s)| <L
|lzl,lyl,lel<p/k

To prove the first statement we will show that if F' is the set of quasi-periodic Hamiltonians
with converging normal form,
F=|JF,

E>1
then H ., ) — F' is the countable intersection of open and dense subsets of %, ). Since

Hiwo) = F = ) (Hwa) — Fr)

E>1

we only need to prove that for & large enough the sets F}, are closed with void interior.
These F}, are closed. Indeed, consider a sequence of quasi-periodic Hamiltonians (H;), C
Fy, converging uniformly on compact sets to some H € H, ). We want to see that the Birkhoff
Normal Form of H, Ky, belongs to Fj. Let (KHJ.)]- be the sequence of normal forms of the
(H;),. Since the H; belong to Fj,
|KHj |1/Ic <1

and, therefore, they form a normal family. This implies the existence of a subsequence which is
convergent. Let us see that the whole sequence is convergent. At each step of the normal form
the conjugation is analytic and previous terms are not changed by transformations of higher
order, so that any limit point of the sequence (Ky;); must be K because of the coefficient
convergence. Therefore, | Ky |,/x < 1and, thus, it belongs to Fj.

Now we will show that the F}, have void interior. Let us assume the contrary, that is, there
exists a quasi-periodic Hamiltonian H, in the interior of F},. Let us consider the real (or com-
plex) line

V ={(1—-5)Hyy+ sHy; s € R} C H,a),

where Hg;, is the Hamiltonian in #H, ) with diverging normal form.

Since we are assuming that (ii) holds, the set of s € R (resp. s € C) such that the cor-
responding Hamiltonian in V' has a diverging normal form must have zero Lebesgue measure
(resp. it must be polar). However, since H; belongs to the interior of F%, in a neighborhood of
s = 1 the Hamiltonians H, have converging normal form. This is a contradiction with the zero
measure (resp. polarity).

Let us now prove item (i) in Theorem A.2. Note that the real case will follow from the
complex one through the observation that the intersection of a polar set in C with R has zero
Lebesgue measure on R.

Let V' C H(.,o) be a complex line, which we parameterize by s € C. This means that the
coefficients of the Hamiltonians H, in this line are linear functions of this parameter s.
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Assume that the Birkhoff Normal Form of the Hamiltonians H, corresponding to a set of
values s € F' C C, with F' not polar, are converging. We will show that in this case all other
Hamiltonians in V' must have a converging normal form. Let

F=|JF,

E>1

being F}, the set of parameters s € C such that the corresponding Hamiltonian H, has a Birkhoff
normal form K; which satisfies that
K|, <L

If F"is not a polar set, then there exist arbitrarily large values of £ whose corresponding Fj,
are not polar. Also, these sets F}, are closed (the proof is the same than for item (i)). Write this
normal form as

Ky (z,y,e) = Zp + ZeTZ,(x, Y,8) = Zy+ Z Z Ki(s)e aly?

r>1 r2>1 [j1]+|j2(>2

being Ki(s) a rth order polynomial in s due to the format of the Birkhoff Normal Form. If s
belongs to F}, the above K is convergent in p/k, so there exists a po > 0 such that
—r—|j|

o(s)= sup |Ki(s)|po

r>1,]j[>2

< o0.

The function ¢ is lower semicontinuous. If
Ly = {s € Fy; ¢(s) <m}
then
Fy =|JLn

and the L,, are closed sets. For some m, L,,, must have positive capacity, because c¢(F}) > 0.
Therefore, there exists a compact set C C L,,, of positive capacity and a p; > 0 with the
property that forany s € C and all » > 1, |j| > 2,

| Ki(s)| < p .

Using Berstein’s Lemma A.6, we conclude that, for any compact set Cy C C,

||K7J:||C°(Co) < exp (7" Isré%f)( Vc(s)> pfr\Jl < p;HJI

for some constant p, depending only on Cy and C. Thus K is converging for any s € C. This
proves Theorem A.2. O






Appendix B

Resum

Després d’haver reflexionat,

estic com la lluna quan fa el ple,
curull d’idees que us vull explicar.
Siracida (Eclesiastic), 39:12

L’ objectiu d’aquesta tesi és estudiar la reductibilitat i altres propietats dinamiques de sistemes
lineals quasiperiodics, especialment els que provenen de les equacions de valors propis asso-
ciades a operadors de Schrodinger quasiperiodics. Aquest estudi és particularment fructifer, ja
que permet combinar métodes dinamics i espectrals i obtenir aplicacions en cadascun dels dos
camps.

El nostre punt de partenca és I’anomenada equacio de Hill amb forcament quasiperiodic,
que és la seglient equaci6 diferencial de segon ordre

2"+ (a—q(t)z =0, (B.1)

essent a un parametre real i ¢ una funcid quasiperiodica. Aix0 darrer vol dir que existeix un
aixecament de ¢ a T¢ = (R/27Z)¢, que és una funcid @ : T¢ — R continua, i un vector de
frequiéncies w € R? de manera que
q(t) = Q(wt),
per qualsevol ¢t € R. En la majoria de la tesi suposarem que, a més, la funcid @ és analitica
real. Suposarem també que el vector de frequéncies w és racionalment independent, és a dir,
que compleix
(k,w) = klwl—i—...-l—kdwd 750
per qualsevol multi-index k = (ki, ..., kq)T de Z< no idénticament zero.
Usant I’aixecament ) podem construir el segiient sistema d’equacions diferencials a partir
de I’equacio6 (B.1)
7" — Q(0)x = ax, 0 =w, (B.2)
equacio diferencial quasiperiodica com (B.1).
Per tal d’usar metodes dinamics, com pretenem en aquesta tesi, &s convenient escriure el
sistema (B.2) com un sistema de primer ordre a R x T¢,

(;ﬂ'>lz<Q(0§)—a é)(j) 0 =w. (B.3)

167
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Aquest sistema genera una dinamica a I’espai R? x T¢. Fixem-nos que I’evolucio de les vari-
ables angulars # no depén més que del temps i de la condicio inicial que fixem, pero no de les
variables z, z’. Es per aixd que I’anomenarem un sistema triangular quasiperiodic (de I’anglés
“quasiperiodic skew-product”). En general un sistema triangular quasiperiodic és un sistema
d’equacions lineals de la forma

2= A(0)z, 0 =w (B.4)

essent z € R* i A : T¢ — gl(n,R) una matriu quadrada de dimensi6 n. Observem que
en el cas del sistema triangular quasiperodic obtingut a partir de I’equaci6é de Hill, (B.3), la
matriu A té traca zero i, per tant, pertany a I’algebra de Lie si(2,R). En particular, qualsevol
solucio fonamental de (B.3) té determinant constant per tot temps. Aixi doncs, si triem que
aquest determinant sigui 1 aquesta soluci6 pertanyera a SL(2, R), el grup de Lie de matrius de
dimensi6 2 amb determinant 1. Aix0 ens diu que el sistema matricial associat a (B.3),

X':(Q(eg)—a :

amb X € SL(2,R) genera un sistema triangular quasiperiodic a SL(2,R) x T?. Aquest darrer
sistema dinamic conté tota la informacio relevant del sistema ja que podem expressar qualsevol
solucid de (B.3) en funcib de (B.5).

Agquest procediment per generar un sistema triangular per a les matrius fonamentals d’un
sistema triangular quasiperiodic també és extensible a qualsevol sistema com (B.4). En efecte,
siG C GL(n,R) és un grup de Lie de matrius i g és la seva corresponent algebra de Lie de
matrius (que és una subalgebra de gi(n,R)) aleshores

)X, 0 =w, (B.5)

X'=A0)X, ¢=uw, (B.6)

amb X € G, és un sistema triangular quasiperiodic a G x T. Hom pot passar sempre de la
formulacio matricial (B.6) a la vectorial (B.4) i a la inversa.

L’equacio de Hill quasiperiodica és una generalitzacid de I’equacio de Hill classica en la
qual la funcid ¢ és periodica. Aquesta fou introduida per George Hill al segle XIX en els seus
estudis sobre el moviment de la lluna (veieu Barrow-Green [BG97] i les referéncies que hi
apareixen). Tant el cas periodic com el quasiperiodic apareixen com a equacions variacionals
en I’analisi de I’estabilitat de solucions periodiques i quasiperiodiques de dimensi6 baixa en
sistemes hamiltonians. Per a resultats i més referéncies veieu Eliasson [EIi88], Jorba i Vil-
lanueva [JV97] i Bourgain [Bou97].

Un dels punts que fa més interessant I’equacio de Hill quasiperiodica és que és també
I’equacio de valors propis associada a I’operador de Schrodinger amb potencial quasiperiodic,

(Hez) (t) = —2"(t) + q(t)z(t). (B.7)

de manera que podem mirar-nos el parametre a com un parametre espectral. Aqui el superindex
¢ ve de continu per distingir-lo dels operadors de Schrodinger discrets que introduirem d’aqui
a un moment. Podem usar la quasiperiodicitat del potencial ¢ per definir la segiient familia
d’operadors de Schrodinger amb potencial quasiperiodic

(H,or) (1) = —2"(t) + Q(wi + ¢)(2). (B.8)
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Observem que (B.7) és (B.8) amb ¢ = 0 ja que ¢(t) = Q(wt).

Els operadors de Schrodinger quasiperiodics (i les seves generalitzacions a dimensio su-
perior) apareixen en problemes de la fisica quantica, com per exemple en I’explicacio de I’a-
nomenat “efecte de Hall quantic” que consisteix en la quantitzaci6 de la conductancia de Hall
sota certes condicions fisiques, veieu Klitzing et al. [vKDP80], Frohlich [Fro94] i Osadchy &
Avron [OA01]. Es per aquestes interpretacions fisiques que al parametre a també se I’anomena
energia. En aquest context és convenient considerar els operadors H, , ; a L*(R). Aixo es pot
fer gracies a qué aquests son essencialment autoadjunts i, per tant, tenen una extensio Unica a
L?(R) que coincideix amb la definici6 donada a (B.7) per a funcions infinitament diferenciables
amb suport compacte (veieu la secci6 111.1.2 de la tesi).

Aquestes consideracions espectrals son més senzilles en el cas d’operadors de Schrodinger
discrets amb potencial quasiperiodic, que ara introduim. Si discretitzem I’equaci6 de Hill amb
forcament quasiperiodic (B.1) obtenim una equacio en diferéncies del segiient tipus

Tpa1 — 2Tp + Ty + 0(N)x, = azy,

on () nez €S unasuccessio de R, a &s un parametre i (v(n))n,ecz €S una successio quasiperiodica.
Aix0 darrrer vol dir que existeix una funcio V' : T — R continua (encara que normalment la
suposarem analitica real) de manera que

v(n) =V (2rwn), n € 7.
per tot n € Z. Suposarem que el vector de fregiiéncies w € R? és no ressonant, és a dir que
(k,w) ¢ 7

per qualsevol k € Z¢ diferent de zero. Tal i com és habitual en la literatura dels operadors
de Schrodinger amb potencial quasiperiodic eliminarem el terme diagonal —2x,, que pot ser
clarament inclos al potencial v 0 a I’energia a. Per tant la discretitzacio anterior porta a estudiar
equacions en diferéncies de la forma

Tn+1 + Ty + U(n)xn = Gy, (Bg)

que anomenarem de tipus Harper (I’equacid de Harper s’obté quan el potencial és el cosinus).
Aguesta és I’equacio de valors propis de I’operador

(ng)n = Tn+1 + Tp-1 + ’U(’I"L)Ql‘n (BlO)

que anomenarem operador discret de Schrodinger amb potencial quasiperiodic. Es tracta d’un
operador acotat i autoadjunt a />(Z). Com en el cas continu, la quasiperiodicitat del potencial
porta a considerar la segiient familia d’operadors

(H{f-,w,(px)n = Tpi1 + Tno1 + V(21wn + @)y,

de la qual (B.10) s’obté com a cas particular en prendre ¢ = 0. També, com en el cas continu,
podem passar d’equacions del tipus Harper a un sistema dinamic a R? x T¢, ara amb temps
discret, si fem

Tny1 \ _ [ a—V(0,) -1 Tp B
() (V0 DY () s @
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Agquest és també un sistema triangular quasiperiodic que anomenarem discret per distingir-lo
dels continus que hem presentat abans. En general, un sistema discret triangular i quasiperiodic
és un sistema de la forma

Zni1 = A(0) zn, Opi1 =0, + 21w

on ara (2z,, 0, )nez €S Una successio de R* x T¢ i A : T¢ — G una aplicacié continua (G
és un grup de Lie de GL(n,R)). Aquest sistema dinamic és la iteracio del segtient cocicle
quasiperiodic (A, w),

(Aw): R"xT¢ — R*xT¢
(z,0) — (A(0)z,0+27w).

que també pot considerar-se com un endomorfisme de G' x T?, de manera que la seva iteracio
dona lloc a un sistema quasiperiodic triangular a G’ x T¢.

En el cas d’operadors de Schrodinger el corresponent cocicle (A% ., w), que anomenarem
cocicle de Schrodinger, ve donat per

AL (6) = ( “‘1V(9) ! ) . (B.12)

Gracies a la irracionalitat (0 no ressonancia segons s’escaigui) dels vectors de freqiiencia
I’espectre dels operadors H , , i H&W no depén de ¢ € T i els escriurem com o¢(Q, w) i
o4(V, w) respectivament, veieu la seccio I11.1.

Un dels objectius d’aquesta tesi és estudiar, mitjancant propietats dinamiques, I’espectre
dels operadors de Schrodinger quasiperiodics, discrets o continus, amb potencials analitics reals
i freqliencies que satisfacin unes certes condicions diofantiques que especificarem més endav-
ant. Com que molts de resultats que obtindrem seran per a potencials “petits” ens interessara
sovint que el potencial dugui un parametre pertorbatiu al davant. Per aix0 i per analogia amb
I’equacio de Hill classica (veieu Whittaker i Watson [WW62], Ince [Inc44] o Magnus i Winkler
[MW?79]) sovint I’equacio de Hill que considerarem sera

2"+ (a—bg(t))z = 0.

on b és el parametre pertorbatiu.

Per tal d’estudiar I’espectre dels operadors de Schrodinger quasiperiodics des d’un punt de
vista dinamic és molt Gtil el nmero de rotacid que ara presentem en el cas continu (veieu la
seccio 111.2.2). Sigui z una solucio no trivial de I’equaci6 de Hill quasiperiodica

2"+ (a — bQ(wt + ¢))z =0 (B.13)

per a una certa ) continua i un vector de freqiiencies racionalment independent. Johnson i
Moser [JM82] varen demostrar que el limit

i 8 (2'(t) + iz(t))

t—00 t

existeix i que és independent de ¢ € T i de la solucio triada. EI denotarem per rot®(a — bQ, w).
L’aplicaci6 continua
a € R rot’(a — bQ,w)
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és, en cert sentit, una funcio de distribuci6 suportada a I’espectre: no decreix mai i creix exacta-
ment a I’espectre de I’operador de Schrodinger associat Hy, , ,- Fixem-nos que aixo demostra
la independéncia de I’espectre d’aquests operadors respecte ¢.

Els intervals oberts de constancia del nUmero de rotaci6, per a un b fixat, pertanyen a la
resolvent de I’operador (el complementari de I’espectre) i s’anomenen forats espectrals. En
aquests forats espectrals el nimero de rotaci6 no pot prendre qualsevol valor sinb que ha de ser
“racional respecte w”. En efecte, el “Teorema d’etiquetatge dels forats” conclou que si I és un
forat espectral de o¢(bQ,w) aleshores existeix un k € Z tal que (k,w) > 0i

rot’(a — bQ,w) = %(k,w}

per qualsevol @ € I. No tots els nUmeros de rotacio racionals tenen un forat espectral associat,
ja que pot ser que aquest estigui “col-lapsat”. Direm que {aq} és un forat espectral col-lapsat
de I"espectre o¢(bQ, w) si existeix un k € Z? de manera que a, és I’Gnic valor de a per al qual

rot‘(a — bQ,w) = %(k, w).

Agquest teorema d’etiquetatge dels forats té implicacions per a I’espectre dels operadors
associats. En efecte, en el cas quasiperiodic amb d > 2 els nombres de rotaci6 racionals
respecte w, que és

M (w) = {(k,w)/2k € Z%i (k,w) > 0},

és dens a [0, +o0) degut a qué w és racionalment independent. Com que el nombre de rotacio
és continu i creixent exactament a I’espectre o¢(b@, w), aquest conjunt és de Cantor si cap dels
forats espectrals esta col-lapsat. Aixo és, en qualsevol entorn d’un punt de I’espectre hi ha un
interval que no pertany a I’espectre. Observem, pero, que el fet que sigui un conjunt de Cantor
no vol dir necessariament que no hi pugui haver cap forat espectral col-lapsat (pensem, per
exemple, en un nombre finit de forats col-lapsats). Veieu la figura B.1 per una il-lustracio dels
intervals de constancia del nimero de rotaci6 d’una equacio de Hill.

Aquesta estructura de conjunt de Cantor per a o¢(b@,w) és generica per a parelles (@, w)
amb Q : T¢ — R continua i w € R? racionalment independents, com demostra Johnson a
[Joh91]. Per a una freqliencia fixada i un potencial analitic els resultats no son tan concloents.
Quan |b| és petita I’analisi és més senzilla ja que disposem d’una eina molt potent: la reductib-
ilitat o conjugaci6 a coeficients constants.

Dos sistemes triangulars quasiperiodics

' = A(f)z, 0 =w, (B.14)

y' = B(8)y, 0 = w (B.15)

amb (z,0), (y,0) € R* x T¢, es diuen conjugats si existeix una aplicacio Z : T¢ — GL(n,R)
de manera que I’anomenada “equacié homoldgica”,

0.2(0) = A(0)Z(0) — 2(0)B(0),
es compleixi per qualsevol § € T¢. Aqui

('LZ(G) = Dng
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03 035 04 045 05 055 06

Figure B.1: Il-lustracio, per mitja d’una aproximacié numerica, del nombre de rotacié de I’equacio
z" + (a+ b(cost + cosyt))z = 0 com a funcid de a per a diferents valors del parametre b i v =
(1++/5)/2. Adalt: al’esquerrab = 0.1 ialadretad = 0.35. A baix: b = 0.6. Per a la metodologia del
calcul veieu Broer i Sim6 [BS98].

és la derivada en la direccio de w. Si existeix aquesta conjugacio aleshores el canvi de variables

(z,0) = (Z2(0)y,9)

transforma (B.14) en (B.15). Els sistemes conjugats a coeficients constants s’anomenen reduct-
ibles a coeficients constants o, simplement reductibles. En aquest cas la matriu amb coeficients
constants (no univocament determinada) s’anomena la matriu de Floquet. En el cas que hi hagi
alguna simetria donada per una estructura de Lie en els sistemes en qiiestio demanarem que la
conjugaci6 Z pertanyi al grup de Lie, Z : T¢ — G.

Observem que tot sistema quasiperiodic triangular com (B.14) o (B.15) pot veure’s amb
freqliencia w o qualsevol maltiple enter no nul d’aquesta. Per tant, també pot considerar-se
la reductibilitat a coeficients constants amb aquestes freqiiéncies. Aixd no és només un pur
formalisme, ja que sovint caldra doblar la freqiiencia si no volem haver de complexificar el
sistema. Es per aix0 que parlarem de la reductibilitat amb fregiiéncia w o w/2 segons s’escaigui.

Notem que I’equacio6 de Hill (B.13) o, més aviat, al sistema triangular associat

(z)lz<bQ(9(;—a é)(;) 0 =w, (B.16)

és en coeficients constants quan b = 0. Hom voldria, per mitja de tecniques KAM veure que per
a forca valors de a i per a |b] petit el sistema anterior és reductible a coeficients constants. Aixo
fou demostrat per Eliasson [Eli92] sota les hipotesis que @ sigui analitica real i w fortament
irracional. Direm que un vector de freqiiéncies és fortament irracional irracional si existeixen
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constants positives c i 7 de manera que es satisfa la segiient condicio diofantica
[(k,w)| = clk| " =c (k| +...+[kal) ",

per qualsevol k € Z< que no sigui idénticament zero, condici6 que d’ara en endavant denotarem
per w € DC*(c, 7, R4). El conjunt de vectors de freqliéncies fortament independents té mesura
total a R?.

Teorema B.1 (Eliasson [Eli92]). Sigui @ : T¢ — R? analitica real amb

Ql, = sup [Q(f)] < oo,

Tmé|<p

i w € DC®c,T) fortament irracional. Aleshores, existeix una constant C = C(c,7,p) > 0
de manera que si rot‘(a — bQ, w), el nimero de rotacid de (B.13), és racional o fortament
irracional respecte w, el sistema triangular (B.16) és reductible a coeficients constants per una
transformaci6 analitica real amb frequéncia w/2 si

bQ)|, < C.

A més, la matriu de Floquet, B, compleix el seguent.

(i) B és nilpotent i diferent de zero si, i només si, a és I’extrem d’un forat espectral no
col-lapsat de o¢(bQ, w).

(i) B és zero si, i només si, {a} és un forat col-lapsat.

Per a una versid més precisa d’aquest teorema veieu la seccid 111.3 de la tesi. Tenint en
compte el teorema d’etiquetatge dels forats, si |b| &s petit i a és a un extrem d’un forat espec-
tral aleshores el sistema (B.16) és reductible a coeficients constants i la matriu de Floquet és
idénticament zero si, i només si, el forat és col-lapsat. Moser i P6schel [MP84] demostraren que,
en aquesta situacio, un forat col-lapsat pot obrir-se per mitja d’una pertorbacié genérica. Aix0
porta a Eliasson, usant el resultat anterior, a demostrar la genericitat de I’espectre de Cantor per
a operadors de Schrodinger amb potenticial petit.

En el nostre cas volem estudiar com és I’espectre o¢(bQ, w) en funci6 de b per a una funciod
@ analitica real i un vector de frequiéncies w, fortament irracional, fixats. Per aix0 és interessant
considerar el segiient objecte.

Definicio B.2. Siguik € Z% amb ap = (k,w)/2 > 0. La llengua de ressonancia associada a k
es defineix com el conjunt de (a, b) € R? de manera que

rot(a — bQ,w) = ap

D’acord amb aquesta definici6, per a b fixat I’interior de les llengiies de ressonancia corres-
pon a forats espectrals no col-lapsats de manera que estudiar llengiies de ressonancia té implica-
cions per a I’espectre o¢(b@), w) en funcio de b. Quan les fronteres d’una llengua de ressonancia
es tallen per a dos valors diferents de b direm que aquesta té una butxaca d’inestabilitat (veieu
la figura B.2 ). Observem que, a diferéncia del cas periodic d = 1 (veieu la figura B.3) en el cas
quasiperiodic d > 2 la uni6 de les llengiies de ressonancia és densa a R2.
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Forat no col-lapsat

-

Forat col-lapsat

Butxaca d’inestabilitat

Fronteres d’una llen qu

a

Figure B.2: Llengua de ressonancia amb una butxaca en el pla de parametres (a,b). Aquesta dona
lloc a forats espectrals en qualsevol linia horitzontal amb b constant. Noteu com el col-lapse de forats
espectrals correspon a talls de les fronteres de la llengua en els extrems de la butxaca d’inestabilitat.
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Figure B.3: Llengties de ressonancia en el pla de parametres (a, b) per a I’equacio (periodica) de Math-
ieu, z”” + (a + beost)z = 0, veieu Broer i Simo6 [BS00]. Les regions ombrejades corresponen a les
llengiies de ressonancia.
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En el capitol IV s’estudien les llengiies de ressonancia per a @ i w fixats com abans. Per a
|b| < C es demostra que les fronteres de les llengiies de ressonancia son funcions infinitament
diferenciables. En el capitol V es demostra que, de fet son analitiques reals com explicarem
més endavant. Val a dir que el resultat del capitol IV és constructiu i permet obtenir el desen-
volupament de Taylor de les fronteres de les llengiies de ressonancia al voltant de I’origen tal i
com ara descriurem.

Siguin @ i w com abans fixats i (ag, by) € R? amb [by| < C, on C ve donada pel teorema
d’Eliasson. Per tant, per aquest teorema, el sistema triangular associat &s reductible a coeficients
constants. Existeix un canvi de variables de la forma

z! wt
(2)=2(%5) (B17)
amb Z : T¢ — SL(2,R) analitica real de manera que el sistema passa a coeficients constants

y' = By,

amb B com a matriu de Floquet. Si volem estudiar el comportament de (B.16) per a valors
propers a (a, b) podem aplicar-hi el canvi de variables (B.17) de manera que obtenim un sistema

y=(B+PO,W)y, 0 =w (B.18)
on P: T x R? — sl(2,R) és analitica real i depén d’uns nous parametres
= (a— ap,b—bp)

de forma analitica real. Suposem que ao és a I’extrem d’un forat espectral de o¢(bQ,w).
Aleshores la matriu de Floquet B és nilpotent i, per tant, el seu determinant val zero. Si P
no depengués de 4 aleshores I’equaciod

det (B+ P(p)) =0

determinaria les fronteres de la Ilengua de ressonancia de que passa per (ag, by). La idea prin-
cipal del capitol 1V és que, aplicant un nombre finit de passos a forma normal, s’obté I’expansio
de Taylor de les llenglies de ressonancia al voltant de (ag, by) fins aquest mateix ordre. Con-
cretament, per mitja d’un procés de forma normal pot conjugar-se el sistema (B.18) a un del
tipus

y' = (B + ) Bi(p) + P, u)) y, 0 =w. (B.19)
k=1
on
(i) By(u) conté termes d’ordre k en y i té traca zeroperak =1,...,r.

(ii) P! té traca zero i és analitica real per a |u| i [Im 6| prou petits.

El sistema (B.19) no esta en coeficiens constants. Malgrat aixo, al capitol IV demostrem

que I’equaci6
det (B +) Bk(u)) =0

k=1
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determina el desenvolupament de Taylor fins a ordre » de les fronteres de les llengies de
ressonancia que passen per (ao, by) (dues en el cas que {ao} sigui un forat espectral col-lapsat
i una altrament). Observem que per a poder-les calcular explicitament cal que coneguem la
matriu Z, cosa que és dificil en general. Una excepcid notable s’esdevé quan by = 0 perqué el
sistema triangular (B.16) ja és en coeficients constants. Gracies a aix0 podem descriure ques-
tions com la transversalitat de les fronteres de les llengiies de ressonancia a I’origen o la creacid
de butxaques. En els propers enunciats suposem () analitica real i w fortament irracional.

Proposicio B.3. Les fronteres de la llengua de ressonancia amb nimero de rotacio
o = 3(k,w) € M (w)
son transversals quan b = 0 si, i només si, I’harmonic k-ésim de () és diferent de zero.

Respecte la creacid de butxaques d’inestabilitat ens centrem en I’analeg quasiperiodic de
I’equaci6 de Mathieu, tot i que es tenen resultats similars per a altres potencials reversibles
(parells respecte t).

Teorema B.4. Considerem I’equaci6 de Hill quasiperiodica

d
" + (a +b (Z cj cos(wjt) + € cos ((k*, w)t))) z=0. (B.20)

j=1
Aleshores,

(i) Sie =0, I’ordre de tangencia a b = 0 de la llengua de ressonancia k*-esima és més gran
o igual que |k*| i és exactament |k*| si, i només si, w no pertany a un cert subconjunt
de mesura zero dels vectors de freqiiencies fortament racionalment independents, que
denotarem per A(k*).

(i) Sie # 0, w ¢ A(k*) fortament irracional i || és prou petit, hi ha almenys una butxaca
d’inestabilitat a la k*-ésima llengua de ressonancia amb extrems b = 0i b = b(e) # 0.
Aqui cal que ¢ tingui un signe adequat si |k*| és senar.

Aquest resultat és una generalitzacio d’un resultat de Harrell [Har79] per a I’equaci6 de
Mathieu periodica
2"+ (a+bcost)z = 0.

i de Broer i Levi [BL95] (veieu també Broer i Simo [BS00]) per a la segiient pertorbacio
2" + (a +b(cost + ecos jt))z = 0.

Agquest metode per trobar els desenvolupaments de Taylor de les fronteres basat en formes
normals (basicament de Birkhoff) no permet demostrar I’analiticitat de les fronteres de les
llenglies de ressonancia. En efecte, com ja feu notar Poincaré, el pas a forma normal és
genéricament divergent. Si només estem interessats en la convergéncia de les séries de Taylor
obtingudes per a les fronteres n’hi hauria prou que la série formal



177

convergis en un entorn de I’origen. Aixo tampoc no podem esperar-ho, puix que a I’apéndix
A demostrem que aquesta convergéncia és incompatible amb qué I’espectre de I’operador de
Schrodinger associat sigui un conjunt de Cantor. Aquesta és una propietat genérica i, per tant,
no podem esperar convergencia en la serie anterior. A I’apéndix en questié reformulem aquests
exemples com a hamiltonians quasiperiodics la forma normal de Birkhoff dels quals és diver-
gent. Usant tecniques de teoria del potencial i idees de Pérez-Marco [PMO03] demostrem que
la forma normal de Birkhoff d’un hamiltonia quasiperiodic, per a una frequencia fortament
irracional i una part quadratica fixades, &s genéricament divergent.

La questio de I’analiticitat de les llengiies de resssonancia per a I’equacio de Hill quasiperio-
dica ens porta a cercar algun tipus de forma normal que sigui convergent. Aixo s’aconsegueix
fent Us de técniques KAM molt similars a les desenvolupades per Moser [Mos67] que forma-
litzem per a algebres de Lie de matrius qualssevol. Per concretar idees continuem en el cas de
I’equacio de Hill, un cop hem passat a un sistema que és pertorbacio d’un altre amb coeficients
constants, veieu I’equaci6 (B.18).

La idea és intentar trobar una matriu independent del temps M = M (u), amb traca zero,
que depengui analiticament de i en un entorn prou petit de I’origen i de manera que el sistema
modificat

Zd=[B+P0O,p) - Mpu)z 0 =uw,

sigui reductible amb matriu de Floquet exactament B. La forma de M depén de com sigui B.
En el cas de I’equaci6 de Hill voldrem aconseguir que

M(y) = < may (p) Mz () ) sii B— < 8 8 )

mar(p)  —ma(p)

M(u):(m;('u) 8) si B:(g é)

En particular, en el darrer cas (on aq és a I’extrem d’un forat espectral no col-lapsat) I’equacio
ma1 (a—ag, b—by) = 0 determina la frontera de la llengua de ressonancia que passa per (ag, bo)-
Per tant aquesta és una funci6 analitica en un entorn de (ao, by). El cas d’un interval col-lapsat
requereix més esforg i es troba a la seccio V.2.

Aixo0 té implicacions de cara a la genericitat de I’espectre de Cantor per a operadors de
Schrodinger quasiperiodics. Concretament, tenim el segiient resultat, combinant B.1, B.3 i
I’analiticitat de les llenglies de ressonancia.

i que

Teorema B.5. Sigui w € DC¢(c, T, R%) fortament racionalment independent i Cg(']l‘d,R), per a
un p > 0, I’espai de funcions analitiques reals @ : T¢ — R amb extensi6 analiticaa |[Im 6| < p
i tals que

‘Q|p = Sup |Q(9)| < 00.

Im@|<p

Aleshores, existeix una constant C' = C(c, 7, p) de manera que, per a un potencial genéric a

{Q € Cg(TdaR)a ‘Q|P < C} ’

respecte la topologia induida per la norma | - |, I’operador H, , , té tots els forats espectrals
oberts i, per tant, és un conjunt de Cantor si d > 2.
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Usant el teorema B.4 també podem obtenir una versio d’aquest teorema per a un @ fixat.

Teorema B.6. Sigui d > 2. Aleshores, existeix un conjunt A C R?, de mesura zero, de manera
que si w = (wq,...,wq) & A, existeix una constant C = C(w) tal que per gairebé tots els
valors de b, amb |b| < C, I’espectre de I’operador

d
Hz =—-2"+ bz ¢; cos(w;t)z,

7=1
on les constants c; son totes diferents de zero, té tots els forats espectrals oberts.

Fins ara els resultats que hem obtingut per als operadors de Schrddinger continus eren per-
torbatius: la constant C' que apareixia en aquests depén de la condici6 diofantica concreta que
satisfaci el vector de freqiiéncies w. En el cas discret i d = 1 la situacio és forca diferent degut
als resultats de localitzaci6 no pertorbativa desenvolupats en els darrers anys.

En els capitols VI i VII tractem amb operadors de Schrodinger quasiperiodics i discrets. En
el capitol VI s’usa un resultat de localitzacid no pertorbativa per a I’operador “Almost Mathieu”
per resoldre I’anomenat “problema dels deu martinis”. En el capitol VII s’usa un resultat no
pertorbatiu de localitzaci6 per establir una versio no pertorbativa del teorema d’Eliasson B.1 en
el cas d’una freqliencia. Passem ara a descriure aquests resultats.

L’ operador de Schrodinger discret quasiperiodic més estudiat és probablement I’operador
“Almost Mathieu”,

(Hp,6%)n = Tnt1 + Tp1 + cos (2mrwn + ¢) z,
onb € Riw és un no ressonant. L equacio de valors propis associada,
Tpi1 + Tno1 + beos (2mwn + @) T, = aZy, n € Z,

és I’equacio de Harper. EI 1981 Simon [Sim82], recollint una oferta llangada per Kac, proposa
el “problema dels deu martinis”: demostrar que I’espectre de I’operador “Almost Mathieu” és
un conjunt de Cantor si w és no ressonant i si b # 0 (veieu la figura B.4).

Al capitol VI resolem aquest problema per a b # 0,42 i per a valors de w fortament no
ressonants. Aixo darrer vol dir que existeixen unes constants positives, c i 7, de manera que la
desigualtat

|sin (mkw)| > ——

|k

es compleix per qualsevol k € Z diferent de zero, condici6 que denotarem per w € DC(c, 7, R).

Notem que w és fortament no ressonant si, i només si, (1,w) és fortament irracional. Per a la
discussio6 sobre les propietats diofantiques en els casos continu i discret, veieu la seccio 11.2.2.

C
| T

Corol-lari B.7. Si w és fortament no ressonant i b # 0, &2, aleshores I’espectre de I’operador

“Almost Mathieu” és un conjunt de Cantor.

Per entendre per qué aquest resultat és un corol-lari cal tenir en compte el segiient teorema
de Jitomirskaya.
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Figure B.4: Calcul numeric dels deu forats espectrals més grans de I’operador “Almost Mathieu” per a
diferents valors de b. El parametre espectral a és a la direccid horitzontal i b a la vertical. Observeu com
es col-lapsen tots els forats quan b = 0.

Teorema B.8 (Jitomirkskaya [Jit99]). Sigui w fortament no ressonant. Definim & com el
conjunt d’aquells valors ¢ € T per als quals la relacié

|sin (¢ + mkw)| < exp (—\k\%) (B.21)

es compleix per a infinits valors de k. Aleshores, si ¢ & ® i |b| > 2, I’operador H,, » té només
espectre purament puntual amb vectors propis que decauen exponencialment.

Aquest teorema implica que, si |b| > 2 i w és diofantic aleshores, per a un conjunt de valors
de a que és dens a I’espectre I’equaci6 de Harper (B.9) té solucions que decauen exponencial-
ment si ¢ ¢ ®. En particular, aixo és cert per a ¢ = 0. Sigui doncs, a un d’aquests valors i
considerem la transformada de Fourier del vector propi localitzat associat, 1 = (Vk)kez,

p(0) =) e,

keZ

que és una funcib6 analitica. Aleshores I’ona de Bloch quasiperiodica i analitica

Tn, = ¢ (2mwn)

és solucio de
4 2a
Tpi1+ Tp1 + R cos (2rwn) T, = -
que és I’equaci6 de valors propis d’un operador “Almost Mathieu” perd amb uns altres para-
metres « i b. La invariancia de I’operador “Almost Mathieu” per la transformacio de Fourier
s’anomena dualitat d”Aubry.
Al capitol VI demostrem que I’existéncia d’aquesta solucié de Bloch implica que a és a

I’extrem d’un forat espectral de Hy/; ., 4 | que aquest és col-lapsat si, i només si, té una altra ona
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de Bloch linealment independent com a solucio de I’equacio de valors propis. Ara bé, desfent
el procés de dualitat d’Aubry obtindriem que I’equacid de Harper original (B.9) tindria dues
solucions linealment independents i que decaurien exponencialment. Aixo0 és una contradiccid
amb el caracter limit-puntual dels operadors quasiperiodics de Schrodinger i, per tant, a ha de
ser extrem d’un interval no col-lapsat.

En el fons aquest argument usa la reductibilitat d’un cocicle quasiperiodic a coeficients
constants. Donat un cocicle (A, w) de G x T¢, direm que és reductible a coeficients constants
si existeix una transformaci6 Z : T¢ — G i una matriu constant a G, que també anomenarem
de Floquet, de manera que es compleixi

AB)Z(0) = Z(0 + 27w) B

per qualsevol § € T¢.

El teorema d’Eliasson B.1 té un analeg per a equacions de tipus Harper amb potencials
analitics reals i freqtiéncies fortament no resssonants. Com en el cas continu, la constant C
depén de les condicions diofantiques precises sobre w. En el capitol VII seguim la metodologia
del capitol VI per obtenir una generalitzaci6 parcial no pertorbativa del teorema d’Eliasson.

Teorema B.9. Sigui p > 0 un nombre positiu. Existeix una constant o = €,(p) de manera que,
per qualsevol V' € C7(T, R) analitica real amb

|V‘p < €p,

el cocicle de Schrodinger (A2, w) és reductible a coeficients constants per gairebé tot a € R,
respecte la mesura de Lebesgue, i per qualsevol w fortament no ressonant.

Agquesta és una generalitzacio parcial ja que, mentre que el teorema d’Eliasson especifica,
en funcio del seu nimero de rotacio, per a quins valors de « el sistema és reductible, el teorema
anterior només diu que el conjunt de valors de a per al quals es té reductibilitat &s de mesura
total. Aquest resultat ha estat demostrat recentment per Avila i Krikorian [AKO03] sota hipotesis
més restrictives. Notem, també, que esta formulat per a d = 1 ja que, com mostra un exemple
de Bourgain [Bou02a, Bou02b], no és cert per a d > 2 en general.

El punt més delicat en la demostraci6 del teorema B.9 és veure que per gairebé tot punt
de I’espectre hi ha solucions de Bloch analitiques i quasiperiodiques. Per una banda, si a no
pertany a I’espectre, aleshores és reductible a coeficients constants. Per altra banda, si una
equacio de tipus Harper té una solucio de Bloch aleshores és reductible a coeficients constants.

Per veure I’existencia de solucions de Bloch quasiperiodiques de I’equaciod

Tni1 + Tno1 +V 2rwn + @) x, = axy, n €7z,
per gairebé tot valor de a a I’espectre de I’operador associat podem mirar d’usar el truc de la

dualitat d’Aubry. En aquest cas, pero, no recuperem el mateix operador, sind que busquem
solucions localitzades exponencialment de I’equaci6

Z Vi + 2 cos (2rwn + ©) T, = 0Ly, n € 7,
keZ
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on ¢ € T i (Vi) son els coeficients de Fourier de V. Aquesta és I’equacio de valors propis de
I’operador
(Lyw,ex), = Z Vin_r + 2 cos (2mwn + ) x,
keZ
a [>(Z) que, tot i que no és de Schrodinger, és autoadjunt i acotat. El paper del teorema de
Jitomirskaya per a I’operador “Almost Mathieu” el juga ara el segiient resultat.

Teorema B.10 (Bourgain i Jitomirskaya [BJO2b]). Sigui p > 0 un nombre fixat. Existeix una
constant €y = £y(p) de manera que, per qualsevol V' € C¢(T, R) analitica real amb

‘V‘p < €0,

i per qualsevol w fortament no ressonant, existeix un conjunt ® C T, de mesura zero, de
manera que si ¢ ¢ @ aleshores I’operador Ly, , t& només espectre purament puntual amb
vectors propis que decauen exponencialment.

Tal i com hem intentat mostrar en aquest resum, la combinacio6 dels punts de vista dinamic
i espectral s’ha demostrat molt fructifera i creiem que, explotant més encara aquesta interaccio,
es podran obtenir més resultats interessants. Des del punt de vista espectral hem vist que és
possible descriure acuradament el comportament dels forats espectrals en termes de la dinamica
dels sistemes triangulars associats. Esperem que aquesta analisi dels forats pugui extendre’s a
operadors de Schrodinger més generals. Des del punt de vista dinamic, hem estudiat una font
d’exemples i metodes molt valuosa que inclou una descripcio forca completa de la hiperbolicitat
no uniforme, técniques de localitzacio (i reductibilitat) no pertorbatives i una descripcio, en
aquests models, de la transicid del comportament regular a irregular. Esperem aplicar aquests
meétodes a sistemes plenament no lineals en el futur.
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Agraiments

En primer lloc voldria agrair a en Carles Sim6 per haver-me guiat en al llarg de tots aquests anys.
Li estic profundament agrait per haver-me iniciat en aquest terreny apassionant, per haver-me
donat les maximes facilitats possibles, per haver-me encoratjat en tot moment a anar més enlla.
He esta molt afortunat d’aprendre al teu costat.

L’entusiasme i I’ajuda del Grup de Sistemes Dinamics UB-UPC ha estat molt important
per a mi en aquest temps meu d’aprentatge. \oldria fer esment de I’ Angel Jorba, que em
va animar a escriure un survey sobre reductibilitat; a I’Alex Haro per I’intercanvi apassion-
ant d’idees; a I’Amadeu Delshams i a en Rafael de la Llave, per estar sempre a I’aguait dels
meus avengos. Agraeixo al Departament de Matematica Aplicada i Analisi de la Universitat de
Barcelona haver-me acollit en aquests anys, aixi com les facilitats que m’han donat.

Quan vaig comencar la tesi, el setembre de 1999, vaig tenir la sort de poder fer una estada de
tres mesos al departament de matematiques de la universitat de Groningen, als Paisos Baixos,
sota la direcci6 d’en Henk Broer. Vull agrair la seva hospitalitat i el seu mestratge. Estaria molt
content si algun dels seus consells servissin per haver millorat aquesta tesi.

El mes d’octubre de 2001 vaig realitzar una estada d’un mes a Paris, a I’Institut de Matema-
tiques de Jussieu amb Hakan Eliasson. La seva influéncia ha estat decisiva en molts aspectes
d’aquesta tesi i li estic molt agrait per tot I’ajut que sempre m’ha donat. També vull agrair a en
Raphael Krikorian haver-me convidat a una estada a I’Ecole Polytechnique I’any segiient i per
totes les discussions que hem tingut; a en Russell Jonhson que em va donar la oportunitat de
visitar-lo a Floréncia el mes de marg de 2003 i aprendre-hi tant.

Estic molt agrait a en Barry Simon per la invitacio que em va fer per passar el mes de gener
de 2004 al departament de matematiques de Caltech i per estar sempre disposat a ensenyar-me.
Va ser una experiéncia inoblidable plena d’entusiasme. Vull agrair també a en David, en Mihai i
la Irina per haver contribuit a qué la meva estada fos encantadora. També agraeixo a la Svetlana
Jitomirskaya la invitacio a Irvine, I’intercanvi fructifer d’idees i els martinis.

L’Alejandra Gonzalez va ser companya de despatx durant dos anys i amiga des d’aleshores
i vull fer esment del suport que sempre m’ha donat. També voldria recordar a tots els companys
del departament de Matematica Aplicada i Analisi amb qui he tingut la sort de compartir aquests
anys: I’Estrella, en Franz, en Josep Maria i tants d’altres. Gracies també a tots els del “Working
Seminar”.

He estat molt afortunat de comptar tots aquests anys amb el suport i I’afecte de I’amic Lluis
Quer, a qui ara vull donar gracies per ser-hi sempre per tot el que calgués. La teva amistat ha
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estat molt important per a mi.

La meva familia ha estat un suport constant al llarg d’aquesta tesi. Els meus pares, Joan i
Rosa, sempre m’han fet costat i amb ells i amb en Franxu m’he sentit profundament estimat.
Al meu pare, a més, li dec el disseny de la portada, inclos el dibuix. Gracies, pare, per tantes
coses. Gracies també als avis, tiets i cosins.

He estat molt afortunat de mantenir I’amistat de tants amics de de qui aprenc dia a dia.
Gracies Begofia, Eva i Oriol, Félix, Ferran, Jordi, Josep, Maria i Isabel (una abragada a Bolivia),
Mari, Montse. Gracies David, amic i cosi.

No puc enumerar aqui tots aquells que m’han ajudat en aquests anys i a qui em sento tan
agrait, encara que voldria esmentar els segiients. La Consuelo, en Josep i la Consol; el Taizé-
Team dels Caputxins; la parroquia de Crist Redemptor; la gent de Jornades a Montserrat i, en
especial, el P. Josep-Enric; el Cor Ariadna on m’he sentit tan feli¢. A tots, disculpeu-me si no
he estat prou amb vosaltres com hauria calgut.

I gracies, Anna, per ser el millor que m’ha passat en aquests anys.

Barcelona, abril de 2004
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