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1 Introduction

In this work we give sufficient conditions for the existence of differentiable or analytical one
dimensional manifolds associated to an eigenvalue λ and to a corresponding eigenvector v of
it. We consider first the case of local diffeomorphisms, the case of differential equations being
obtained easily from it. We look for the invariant manifolds through a parametrization which
gives the linearization of the map along them, that is, we look for ϕ defined on an interval of
IR such that

f(ϕ(t)) = ϕ(λt).

We restrict ourselves to eigenvalues λ of modulus different from one, the others being arbi-
trary, but different from zero. First we consider the differentiable case when the eigenvalue
is non resonant. In this case we get that if the map is Cm with m bigger or equal than some
value k , related to the structure of the eigenvalues of Df(0), there is an invariant manifold of
class Cm. If m is strictly bigger that k we get uniqueness. Then, for the sake of completeness,
the analytic non resonant case is considered. If the eigenvalue is resonant we construct the
bifurcation equation from which we obtain the conditions for the existence of solutions of
class Cm. If we allow m to be strictly bigger than k, the bifurcation equation will give the
number of solutions of class Cm (which may be zero). The analytic case is also considered.

2 The differentiable case

Let U ⊂ IRn be an open set, 0 ∈ U , and f : U −→ IRn a Cm map such that f(0) = 0 and
L = Df(0) is invertible. Let λ be an eigenvalue of L such that | λ |6= 1 and v an eigenvector
associated to λ.

Theorem 2.1. Suppose that λj 6∈ spec (L), for 2 ≤ j ≤ k − 1, and either | λ |k<| µ |,
∀µ ∈ spec (L) if | λ |< 1, or | λ |k>| µ |, ∀µ ∈ spec (L) if | λ |> 1. Then if m = k there exists
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a Ck map ϕ defined on a neighbourhood I = [−ρ, ρ] of 0 such that ϕ(0) = 0, ϕ′(0) = v and

f(ϕ(t)) = ϕ(λt), ∀t ∈ I. (2.1)

If m ≥ k+1 there exists a unique Cm map ϕ satisfying the previous conditions (This contains
the case m =∞).

Remark 2.2. The integer k need not to be the smaller one such that | λ |k<| µ |, ∀µ ∈
spec (L).

The case | λ |> 1 can be immediately obtained from the case | λ |< 1. Indeed, if | λ |> 1
and v is an eigenvector associated to λ as in the statement, Df−1(0) has the eigenvalue λ−1

with eigenvector v with | λ−1 |<| µ |, ∀µ ∈ spec (L−1). Therefore we have a parametrization
ϕ such that ϕ(0) = 0, ϕ′(0) = v and f−1(ϕ(t)) = ϕ(λ−1t) with the stated differentiability
conditions. Hence ϕ verifies f(ϕ(t)) = ϕ(λt). From now on we assume that | λ |< 1.

We write f(x) = Lx + g(x) with g(0) = Dg(0) = 0. We take a norm in IRn such that
in the associated linear operator norm we have ‖ L−1 ‖<| λ |−k. We look for ϕ of the form
ϕ(t) = vt+ σ(t) with σ(0) = 0, σ′(0) = 0. With this notation equation (2.1) becomes

Bσ(t) + g(vt+ σ(t)) = 0 (2.2)

with Bσ(t) = Lσ(t)− σ(λt).

One may think of applying the implicit function theorem to equation (2.2) to get σ in
terms of g. This is indeed possible and permits to obtain that if f is of class Ck+1 there is a
unique solution σ of class Ck.

The method does not give better differentiability results because to apply the Ω-lemma
[1] to the functional operator associated to (2.2) we need for g to have one more degree of
differentiability than ϕ. The details are given in the appendix.

We shall work with the space

Ck0 = {σ : I −→ IRn; σ of class Ck, σ(k) bounded, σ(0) = σ′(0) = · · · = σ(k)(0) = 0},

with a given closed interval I = [−ρ, ρ]. In fact ρ will play the role of a parameter which will
be made as small as necessary. In Ck0 we introduce the norm

‖ σ ‖k= sup
t∈I
‖ σ(k)(t) ‖

which makes it a Banach space.

If σ ∈ Ck0 and t ∈ I, by Taylor’s theorem we have

‖ σ(t) ‖=‖ 1

(k − 1)!

∫ 1

0
(1− s)k−1σ(k)(st)tk ds ‖≤ ρk

k!
‖ σ ‖k,

and for 1 ≤ j ≤ k

‖ σ(j)(t) ‖=‖ 1

(k − j − 1)!

∫ 1

0
(1− s)k−j−1σ(k)(st)tk−j ds ‖≤ ρk−j

(k − j)!
‖ σ ‖k .
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By the same argument we even have that

‖ σ(j)(λt) ‖≤ (λρ)k−j

(k − j)!
‖ σ ‖k .

To prove theorem 2.1 we begin by proving that there exists a unique polynomial p of degree
k with p(0) = 0, p′(0) = v, such that verifies equation (2.1) up to order k, that is f(p(t)) −
p(λt) = o(tk).

Indeed, we assume that the solution of (2.1) has the form ϕ(t) = vt+a2t
2+· · ·+aktk+σ(t),

with aj ∈ IRn, 2 ≤ j ≤ k, and σ(0) = σ′(0) = · · · = σ(k)(0) = 0. Then (2.1) becomes

L[vt+
k∑
j=2

ajt
j ] + Lσ(t) + g(ϕ(t)) = vλt+

k∑
j=2

aj(λt)
j + σ(λt)

so that
k∑
j=2

tj(L− λjI)aj = σ(λt)− Lσ(t)− g(ϕ(t)). (2.3)

Since λj 6∈ spec (L) for 2 ≤ j ≤ k then (L− λjI) is invertible. Since Dg(0) = 0 we can solve
recursively (2.3) for the orders 2 ≤ j ≤ k and obtain a unique solution for the coefficients aj .
In what follows we shall denote p(t) = vt+ a2t

2 + · · ·+ akt
k the polynomial so obtained.

Therefore we have to solve

f(p(t) + σ(t)) = p(λt) + σ(λt) (2.4)

for σ in Ck0 , which we rewrite as the fixed point equation

σ(t) = L−1p(λt) + L−1σ(λt)− L−1g(p(t) + σ(t))− p(t). (2.5)

Since we shall encounter the same equation in the study of the resonant case we study it
separately in the next section. Theorem 2.1 follows from proposition 3.1 below.

3 The fixed point equation

This section is devoted to prove

Proposition 3.1. Under the hypothesis of theorem 2.1, let p(t) be a polynomial of degree
k such that f(p(t)) − p(λt) ∈ Ck0 . Then, if m=k, equation (2.5) has a solution in Ck0 . If
m ≥ k + 1 it has a unique solution in Ck0 of class Cm.

We begin by assuming that m = k. There exists r0 > 0 such that V = B(0, r0) ⊂ U .
We may assume that for 1 ≤ j ≤ k, supx∈V ‖ Djg(x) ‖ is bounded. Let Mj be a bound
of it. Moreover, since Dg(0) = 0 we have that M1 = supx∈V ‖ Dg(x) ‖≤ M2r0, so that it
can be taken as small as necessary by taking an smaller r0. Let Nj = supt∈I ‖ p(j)(t) ‖ and
N = max1≤j≤kNj . A very important role will be played by the quantity

a =| λ |k‖ L−1 ‖< 1.
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We take r > 0 and we let Σr = {σ ∈ Ck0 ; ‖ σ ‖k≤ r}.

We define Γ1 : Σr −→ Σr by

Γ1(σ)(t) = L−1p(λt) + L−1σ(λt)− L−1g(p(t) + σ(t))− p(t).

First we shall see that if ρ is small enough Γ1 is well defined. Since | p(t) |=| p(t) − p(0) |≤
N1 | t | and | σ(t) |≤ ρk

k! ‖ σ ‖k, if ρ is small p(t) + σ(t) ∈ V . Γ1(σ) is of class Ck with the kth

derivative bounded and, by construction of p, Γ1(σ) and its derivatives up to order k vanish
at 0.

Let σ ∈ Σr. To prove that Γ1(σ) ∈ Σr we have to bound

(Γ1(σ))(k)(t) = λkL−1[p(k)(λt) + σ(k)(λt)]− L−1[g ◦ (p+ σ)](k)(t)− p(k)(t).

By construction of p, (Γ1(σ))(k)(0) = 0, which implies that

λkL−1p(k)(0)− p(k)(0) = L−1[g ◦ (p+ σ)](k)(0),

but the left hand side is equal to λkL−1p(k)(λt)− p(k)(t) because p is a polynomial of degree
k. Then we can write

(Γ1(σ))(k)(t) = λkL−1σ(k)(λt) + L−1[g ◦ (p+ σ)](k)(0)− L−1[g ◦ (p+ σ)](k)(t).

The first term is bounded by a ‖ σ ‖k. Let us call θ1(ρ) the sum of the remaining terms. Here
we recall the formula for the kth derivative of the composition g◦h, for h : I ⊂ IR −→ U ⊂ IRn

and g : U −→ IRn,

(g ◦ h)(j)(t) =

j∑
i=1

∑
∗
c(j, i; j1, . . . , ji)D

ig(h(x))(h(j1)(x), . . . , h(ji)(x)),

where c is an integer which depends on j, i, j1, . . . , ji and
∑
∗ indicates sum over the indices

j1, . . . , ji such that 1 ≤ j1 ≤ · · · ≤ ji ≤ i and j1 + · · ·+ ji = j.

θ1(ρ) can be written as

L−1[
k∑
i=1

∑
∗
c(k, i; j1, . . . , ji)D

ig(0)(p(j1)(0), . . . , p(ji)(0))

−
k∑
i=1

∑
∗
c(k, i; j1, . . . , ji)D

ig(p(t) + σ(t))((p+ σ)(j1)(t), . . . , (p+ σ)(ji)(t))],

with j1 + · · ·+ ji = k. We decompose the differences in telescopic form so that in any one of
them there is only one different argument. There appear terms of the form

Dig(0)(p(j1)(0), . . . , p(jl)(0)− p(jl)(t)− σ(jl)(t), . . . , p(ji)(t) + σ(ji)(t)), 1 ≤ i ≤ k, 1 ≤ l ≤ i,

and
[Dig(0)−Dig(p(t) + σ(t))]((p+ σ)(j1)(t), . . . , (p+ σ)(ji)(t)), 1 ≤ i ≤ k.
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The terms of the first form are bounded by

‖ Dig(0) ‖ N l−1(Nρ+
ρk−jl

(k − jl)!
‖ σ ‖k)(N+ ‖ σ ‖k)i−l.

Notice that the case jl = k only can happen when i = 1 in which case Dg(0) = 0. The terms
of the second form are bounded by

Mi+1(N1ρ+
ρk

k!
‖ σ ‖k)

i∏
l=1

(N +
ρk−jl

(k − jl)!
‖ σ ‖k), 1 ≤ i ≤ k − 1,

but for i = k we have to use the continuity of Dkg. If we make ρ small enough, since

‖ p(t)+σ(t) ‖≤ N1ρ+ ρk

k! ‖ σ ‖k, we get that Dkg(0)−Dkg(p(t)+σ(t)) can be as small as we

need. Therefore limρ→0 θ1(ρ) = 0, and hence ‖ (Γ1(σ))(k)(t) ‖< ar + θ1(ρ) < r if ρ is small
enough.

Now we consider the sequence (σm) defined by

σ0 = 0,

σm+1 = Γ1(σm).

By the previous argument, if ρ is small enough, σm ∈ Σr and then it is uniformly bounded.
We check that it is equicontinuous. In a precise way, let

η1(δ) = sup
‖∆x‖≤δ

‖ Dkg(x+ ∆x)−Dkg(x) ‖,

and

η(δ) =
c1η1(αδ) + c2δ

1− β
,

with α = N1+ ‖ σ′m ‖≤ (N1 + ρk−1

(k−1)!r), β = a+ ‖ L−1 ‖M1 +θ2(ρ) and θ2(ρ) a function which
tends to zero as ρ→ 0 and c1, c2 constants to be determined below. We assume that r0 and

ρ are such that β < 1. We write ∆σ
(k)
m (t) = σ

(k)
m (t + ∆t) − σ(k)

m (t). Then we shall prove by

induction on m that if | ∆t |< δ with t+∆t ∈ I then ‖ ∆σ
(k)
m (t) ‖< η(δ). Taking into account

that [L−1p(λt) − p(t)](k) is constant and that ‖ σ(j)
m (t + ∆t) − σ(j)

m (t) ‖≤ ρk−j

(k−j)! ‖ ∆σ
(k)
m (t) ‖

we have

∆σ
(k)
m+1(t) = λkL−1∆σ(k)

m (t) (3.1)

+L−1
k∑
i=1

∑
∗
c(k, i; j1, . . . , ji)

[Dig(p(t+ ∆t) + σm(t+ ∆t))(p(j1)(t+ ∆t) + σ(j1)
m (t+ ∆t), . . . )

−Dig(p(t) + σm(t))(p(j1)(t) + σ(j1)
m (t), . . . )].

The terms in the last difference can be decomposed as

[Dig(p(t+ ∆t) + σm(t+ ∆t))−Dig(p(t) + σm(t))](p(j1)(t+ ∆t) + σ(j1)
m (t+ ∆t), . . . )

+

i∑
l=1

Dig(p(t) + σm(t))(. . . , p(jl)(t+ ∆t) + σ(jl)
m (t+ ∆t)− p(jl)(t)− σ(jl)

m (t), . . . ).
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We notice that

‖ p(t+ ∆t) + σm(t+ ∆t)− p(t)− σm(t) ‖≤ (N1+ ‖ σ′m ‖) | ∆t |≤ α | ∆t | .

Hence the last terms of (3.2) are bounded by

‖ L−1[‖ (M2(N1 | ∆t | + ‖ ∆σm(t) ‖)(Nk+ ‖ σ(k)
m ‖) +M1 ‖ ∆σ(k)

m (t) ‖

+
k−1∑
i=2

∑
∗
c(k, i; j1, . . . , ji)

[Mi+1(N1 | ∆t | + ‖ ∆σm(t) ‖) +

i∑
l=1

Mi(N+ ‖ σm ‖k)i−1(N | ∆t | + ‖ ∆σ(jl)
m ‖)

+η1(α | ∆t |)(N1+ ‖ σ′m ‖)k +
i∑
l=1

Mk(N1+ ‖ σ′m ‖)k−1(N2 | ∆t | + ‖ ∆σ′m(t) ‖)].

Then

‖ ∆σ
(k)
m+1(t) ‖≤ [a+ ‖ L−1 ‖M1 + θ2(ρ)]η(δ) + c1η1(αδ) + c2δ < η(δ).

Now we claim that there exist γ < 1 such that

‖ σ(k−1)
m+1 (t)− σ(k−1)

m (t) ‖≤ Kγm+1, for all m ≥ 0.

Indeed, for m=0 it is true. If it is true for m-1, we write

‖ σ(k−1)
m+1 (t)− σ(k−1)

m (t) ‖≤ a ‖ σ(k−1)
m (t)− σ(k−1)

m−1 (t) ‖
+ ‖ L−1 ‖ ‖ [g ◦ (p+ σm)](k)(t)− [g ◦ (p+ σm−1)](k)(t) ‖ .

Decomposing the last term in the same way as before we get, taking ρ sufficiently small, the
result for some γ > a.

From the previous claims we obtain that (σ
(k−1)
m ) is uniformly convergent. Since all the

derivatives up to order k are zero at zero, σm converges to some function σ of class Ck−1.

Also we have obtained that (σ
(k)
m ) satisfies the hypothesis of the theorem of Arzelà. Then

(σ
(k)
m ) has a uniformly convergent subsequence and therefore the limit function σ ∈ Ck0 .

Now we assume that f is of class Ck+1. To get the uniqueness of the solution of class
Ck+1 we shall use the fiber contraction lemma in the following form [2].

Lemma 3.2. Let E,F be metric spaces and Γ : E × F −→ E × F be of the form Γ(x,A) =
(Γ1(x),Γ2(x,A)) such that

(1) Γ1 is a contraction,

(2) for all A ∈ F , Γ2(., A) is continuous in E,

(3) for all x ∈ E, Γ2(x, .) is a λ-contraction with λ < 1.

Then Γ has a unique fixed point, which is an attractor.
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We check that Γ1 is a contraction:

‖ Γ1(σ)− Γ1(τ) ‖k
= sup

t∈I
‖ [L−1(σ(λt)− τ(λt))− L−1(g(p(t) + σ(t))− g(p(t) + τ(t)))](k) ‖

The norm of the first term is bounded by

| λ |k‖ L−1 ‖ ‖ σ − τ ‖k .

To deal with the second one we make use once more of the formula for the kth derivative
of the composition and we decompose the differences in telescopic form so that in any term
there is only one different argument. In this way we get terms of the form

[Dig(p(t) + σ(t))−Dig(p(t) + τ(t))](p(j1)(t) + σ(j1)(t), . . . , p(ji)(t) + σ(ji)(t)), 1 ≤ i ≤ k,

and

Dig(p(t) + σ(t))(p(j1)(t) + σ(j1)(t), . . . , σ(jl)(t)− τ (jl)(t), . . . , p(ji)(t) + σ(ji)(t)), 1 ≤ i ≤ k.

Then we need the bounds

‖ Dig(p(t) + σ(t))−Dig(p(t) + τ(t)) ‖

≤ ‖ Di+1g ‖ ‖ σ(t)− τ(t) ‖≤Mi+1
ρk

k!
‖ σ − τ ‖k,

‖ p(jl)(t) + σ(jl)(t) ‖≤ c

for some c, and

‖ σ(jl)(t)− τ (jl)(t) ‖≤ ρk−jl

(k − jl)!
‖ σ − τ ‖k .

Therefore the bounds of all terms have the factor ‖ σ − τ ‖k. One of them is a ‖ σ − τ ‖k
and all the others explicitly have ρ as a multiplicative factor, except when jl = k. In such
case we have that l = 1 = i and j = k. It occurs only in the term

‖ Dg(p(t) + τ(t))(p(k)(t) + σ(k)(t))−Dg(p(t) + τ(t))(p(k)(t) + τ (k)(t) ‖
≤ sup|x|≤r0 ‖ Dg(x) ‖ ‖ σ − τ ‖k= M1 ‖ σ − τ ‖k .

Then Γ1 is a contraction.

Now we define Γ2 : Σr × Ck0 −→ Ck0 by

Γ2(σ,A) = λL−1p′(λt) + λL−1A(λt)− L−1Dg(p(t) + σ(t))(p′(t) +A(t))− p′(t).

It is continuous and Γ2(σ, .) is a contraction. Indeed, if A,B ∈ Ck0

‖ Γ2(σ,A)− Γ2(σ,B) ‖k
≤ ‖ λk+1L−1[A(k)(λt)−B(k)(λt)] ‖ + ‖ L−1[Dg(p(t) + σ(t))(A(t)−B(t))](k) ‖ .

The first term is bounded by

| λk+1 | ‖ L−1 ‖ ‖ A−B ‖k
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and the second one by

‖ L−1
k∑
j=0

(
k
j

)
[Dg(p(t) + σ(t))](j)[A(t)−B(t)](k−j) ‖

≤ ‖ L−1 ‖ ‖
k∑
j=0

(
k
j

) j∑
i=0

∑
∗
c(j, i; j1, . . . , ji)D

i+1g(p(t) + σ(t))(p(j1)(t) + σ(j1)(t), . . .

. . . , p(ji)(t) + σ(ji)(t)) ‖ ρ
j

j!
‖ A−B ‖k .

From this we see that all terms have a multiplicative factor ρ except the term corresponding
to j = 0. This term is bounded by

‖ L−1Dg(p(t) + σ(t))(A(t)−B(t))(k) ‖≤‖ L−1 ‖ sup
|x|≤r0

‖ Dg(x) ‖ ‖ A−B ‖k

and sup|x|≤r0 ‖ Dg(x) ‖, as before, can be made as small as we want. Then Γ2 is a contraction.
By the fiber contraction lemma we get that Γ has a unique fixed point which is an attractor.
Let σ0 ∈ Ck0 of class Ck+1. By the definition of Γ2, Γ(σ0, σ

′
0) = (σ1, σ

′
1) with σ1(t) =

L−1p(λt) + L−1σ0(λt)− L−1g(p(t) + σ0(t))− p(t). By induction Γm(σ0, σ
′
0) = (σm, σ

′
m) and

it converges to a fixed point (σ,A) of Γ. Hence (σ′m) converges uniformly to some function
A in Ck0 so that σ′ = A and we get that σ ∈ Ck+1.

If m > k + 1 we can take k1 = m− 1 which obviously satisfies the condition | λ |k1<| µ |
for all µ ∈ spec (L) and we obtain a unique solution of class Cm.

4 The analytic case

Theorem 4.1. Let U ⊂ IRn be an open set, 0 ∈ U , and f : U −→ IRn a analytic map such
that f(0) = 0 and Df(0) = L is invertible. Let λ be an eigenvalue of L such that | λ |6= 1
and λj 6∈ spec (L), ∀j ≥ 2, and v an eigenvector associated to λ. Then there exists a unique
real analytic map ϕ defined on a neighbourhood Ω of 0 ∈ C] such that ϕ(0) = 0, ϕ′(0) = v and

f(ϕ(t)) = ϕ(λt), ∀t ∈ Ω. (4.1)

Proof By the argument which follows remark 2.2 we may restrict ourselves to the case
| λ |< 1. We write f(x) = Lx+ g(x) with g(0) = 0 and Dg(0) = 0 and we look for ϕ of the
form ϕ(t) = vt + σ(t), with σ(0) = 0 and σ′(0) = 0, such that f(ϕ(t)) = ϕ(λt). Hence the
equation for σ is

Bσ(t) + g(vt+ σ(t)) = 0,

with Bσ(t) = Lσ(t) − σ(λt). g extends analytically to a complex neighbourhood Ũ of 0 in
C] n, being bounded on it. Let Br = B(0, r) ⊂ Ũ be the ball of radius r centered at zero in
C] n, and Ω = D(0, r/(2 ‖ v ‖)) ⊂ C] . We introduce the Banach spaces

E = {g : Br −→ C] n; real analytic, Dg bounded, g(0) = 0, Dg(0) = 0},
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with the norm ‖ g ‖= supζ∈Bδ ‖ Dg(ζ) ‖,

F = {σ : Ω −→ C] n; real analytic, bounded in Ω, σ(0) = 0, σ′(0) = 0},

with the norm ‖ σ ‖= supζ∈Ω ‖ σ(ζ) ‖. We write Fδ = {σ ∈ F ; ‖ σ ‖< δ}, and we take
δ = r/2.

We define Γ : E × Fδ −→ F by

Γ(g, σ)(t) = Bσ(t) + g(vt+ σ(t)).

It is easy to check that Γ is of class C1, Γ(0, 0) = 0 and that DσΓ(0, σ)∆σ = B∆σ. Now we
prove thatDσΓ(0, σ) is invertible. Let ψ ∈ F , ψ(t) =

∑∞
k=2 bkt

k. Writing ∆σ(t) =
∑∞

k=2 akt
k,

the condition DσΓ(0, σ)∆σ = ψ implies,

L
∑
k≥2

akt
k −

∑
k≥2

akλ
ktk =

∑
k≥2

bkt
k,

so that
ak = (L− λkI)−1bk, k ≥ 2.

This provides the uniqueness of ∆σ. On the other hand, since | λ |< 1 and the inverse
operator on linear maps is continuous we have (L − λkI)−1 → L−1. Therefore the radius
of convergence of

∑
akt

k is the same as the one of
∑
bkt

k. Furthermore on Ω we have
∆σ(t) = L−1(ψ(t) + ∆σ(λt)) which permits to extend ∆σ to some open set which contains
the boundary of Ω intersected by the domain of ψ and hence ∆σ is bounded on Ω. Then we
can apply the implicit function theorem to Γ in a neighbourhood of (0, 0) and get σ = σ∗(g).
Scaling the variables, if necessary, to have ‖ g ‖ sufficiently small, we get a unique solution
of (4.1).

5 The resonant case

Now we consider the case when there exist indices p ≥ 2 such that λp ∈ spec (L). We shall
refer to such a λ as a resonant eigenvalue and to such p as a resonant index. Now, in the
equation

Bu(t)− g(vt+ u(t)) = 0, (5.1)

the linear operator B is not invertible but we can apply the Lyapunov-Schmidt method.

Let k be such that | λ |k<| µ |, ∀µ ∈ spec (L). Let Nj = Nuc (L−λjI) and N ′j an arbitrary

complementary subspace in IRn. Let Rj = Im (L− λjI) and R′j an arbitrary complementary
subspace of it.

Remark 5.1. If we have Nuc(L− λp) = Nuc(L− λp)2 (that is, the Jordan box associated to
λp is diagonal) for the resonant indices then we have IRn = Nuc(L−λp)⊕ Im(L−λp) so that
we can take N ′p = Rp and R′p = Np.
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We consider the space F of lemma 9.1 and we introduce the following subspaces

P1 = {
k∑
j=2

ajt
j ; aj ∈ Nuc (L− λjI)},

P2 = {
k∑
j=2

ajt
j ; aj ∈ N ′j},

Q1 = {
k∑
j=2

ajt
j ; aj ∈ Rj},

Q2 = {
k∑
j=2

ajt
j ; aj ∈ R′j},

G = {σ ∈ Ck; σ(0) = · · · = σ(k)(0) = 0}.

We have the decompositions F = P1 ⊕ P2 ⊕G and F = Q1 ⊕Q2 ⊕G. Clearly B|P1
= 0

and B : P2 −→ Q1 and B : G −→ G are isomorphisms.

Let ΠQ1 , ΠQ2 and ΠG be the projections to the subspaces Q1, Q2, G. We have ΠQ1B =
BΠP2 , ΠQ2B = 0 and ΠGB = BΠG. For u ∈ F we write u(t) = p1(t) + p2(t) + σ(t)
according to the first decomposition of F . By means of these projections, equation (5.1) can
be rewritten as

Bp2(t) + ΠQ1 [g(vt+ p1(t) + p2(t) + σ(t))] = 0, (5.2)

ΠQ2 [g(vt+ p1(t) + p2(t) + σ(t))] = 0, (5.3)

Bσ(t) + ΠG[g(vt+ p1(t) + p2(t) + σ(t))] = 0. (5.4)

Notice that actually equations (5.2) and (5.3) do not depend on σ due to the projections ΠQ1

and ΠQ2 In equation (5.2) we can apply the implicit function theorem to obtain p2 = p∗2(p1, g),
since Π|Q1

◦ g is a polynomial and therefore of class C∞.

We substitute p2 into equation (5.3) and we get

ΠQ2 [g(vt+ p1(t) + p∗2(p1, g)(t))] = 0. (5.5)

which is called the bifurcation equation. It is on a finite dimensional space. If it has solutions
p1 = p∗1(g) we substitute them in equation (5.4) which becomes

Bσ(t) + ΠG[g(vt+ p∗1(g)(t) + p∗2(p∗1(g), g)(t) + σ(t))] = 0, (5.6)

and can be rewritten as the fixed point equation

σ(t) = L−1σ(λt)− L−1ΠG[g(vt+ p∗1(g)(t) + p∗2(p∗1(g), g)(t) + σ(t))] = 0, (5.7)

which is of the form (2.5) so that proposition 3.1 applies to it and we have that if f is of class
Ck equation (5.7) has a Ck solution if f is of class Ck and a unique solution of class Ck+1 if
f is of class Ck+1.
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In the analytical case we consider equation (5.6) for σ ∈ G, and we solve it by applying the
implicit function theorem in a similar way as in section 4. We define Ek = {g ∈ E; Djg(0) =
0, 0 ≤ j ≤ k}, and Fk = {σ ∈ F ; σ(j)(0) = 0, 0 ≤ j ≤ k}, and Γ : Ek × Fk −→ Fk by

Γ(g, σ)(t) = Bσ(t) + ΠG[g(vt+ p∗1(g)(t) + p∗2(p∗1(g), g)(t) + σ(t))] = 0.

As in section 4, Γ is C1, Γ(0, 0) = 0 and DσΓ(0, 0) = B but this time we have to consider
B : G −→ G. The argument used in the proof of theorem 4.1, taking into account that
L− λjI is invertible for j ≥ k, works here and we have that B is invertible.

Summarizing we have proved

Theorem 5.2. Let f : U ⊂ IRn −→ IRn be a Cm map such that f(0) = 0 and Df(0) = L is
invertible. Let λ ∈ spec (L) and v be an eigenvector associated to it. Let k ∈ ZZ be such that
| λ |k<| µ | for all µ ∈ spec (L), if | λ |< 1, or | λ |k>| µ | for all µ ∈ spec (L), if | λ |> 1.
Assume that m ≥ k. Then there is a Cm solution of

f(ϕ(t)) = ϕ(λt), ϕ(0) = 0, ϕ′(0) = v,

if and only if equation 5.5 has a solution. Furthermore, if m ≥ k+ 1 or if f is analytic there
will be as many Cm solutions or analytic solutions as equation 5.5 has.

6 The general resonant case in IR2

In IR2 an eigenvalue λ is resonant if the eigenvalues are of the form λ, λp with p ∈ IN, p ≥ 2.
In order to deal comfortably with the bifurcation equation first we put the map in normal
form. The normal form is

f(x, y) = (λx, λpy + cxp) +Op+1.

We look for the invariant manifold associated to λ and v = (1, 0). In this case P1 =

{
(

0
β

)
tp; β ∈ IR} = Q2 and Q1 = {

∑p−1
j=2 ajt

j +

(
α
0

)
tp; aj ∈ IR2, α ∈ IR} = P2. Now

equations (5.2), (5.3), (5.4) become

Bp2 + ΠQ1 [

(
O(tp+1)

c(tp + . . . )p

)
= Bp2 = 0, (6.1)

ΠQ2 [

(
O(tp+1)

c(tp + . . . )p

)
=

(
0
ctp

)
= 0, (6.2)

Bσ(t) + ΠG[g(vt+ p1(t) + p2(t) + σ(t))] = 0. (6.3)

We see that the bifurcation equation is independent of p1 and p2. Therefore we have a solution
if and only if c = 0. If c = 0 the invariant manifold depends on an arbitrary p1 ∈ P1, that is,
it depends on a real parameter. From the previous section we have that if f is of class Cp+1

(analytic), for any β ∈ IR we have a unique Cp+1 (analytic) invariant manifold of the form

σ(t) = (t, βtp) +O(tp+1),

if c = 0, and none of this class of differentiability if c 6= 0.
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7 One example in IR3

Let f be a map such that spec (Df(0)) = {λ1, λ2, λ3} with λ1 = λ, λ2 = λ2 and λ3 = λ6.
Here we have the resonances λ2 = λ2

1, λ3 = λ6
1, λ3 = λ4

1λ2, λ3 = λ2
1λ

2
2 and λ3 = λ3

2. We
assume that f is of class Cm, m ≥ 6. In this case the normal form of f up to terms of order
6 is

f1(x, y, z) = λx,

f2(x, y, z) = λ2y + cx2,

f3(x, y, z) = λ6z + d1y
3 + d2x

2y2 + d3x
4y + d4x

6.

We look for the invariant manifolds associated to λ and v = (1, 0, 0).

We have that
P1 = Q2 = {(0, δt2, ηt6)},

P2 = Q1 = {(
6∑
j=2

αjt
j ,

6∑
j=3

βjt
j ,

5∑
j=2

γjt
j); αj , βj , γj ∈ IR}.

Now equation 5.2 has the form

Bp2(t) + ΠQ1 [

 0
cx2

d1y
3 + d2x

2y2 + d3x
4y + d4x

6

 (vt+ p1(t) + p2(t))] = 0. (7.1)

Solving the 3 components of (7.1) for p2 in order we get that it is zero, so that p∗(p1, g) = 0.
Therefore the bifurcation equation is 0

ct2

d1δ3t
6 + d2δ

2t6 + d3δt
6 + d4t

6

 = 0. (7.2)

Then in order to have C6 solutions it is necessary and sufficient that

c = 0, (7.3)

d1δ3 + d2δ
2 + d3δ + d4 = 0. (7.4)

Notice that equation (7.4) has one, three or ∞ real solutions for δ. Hence if c = 0 there will
be Cm (analytic) solutions of the form

ϕ(t) = (t, δt2, ηt6) + o(t6).

with η ∈ IR and δ being a solution of (7.4). The solution of this form will be unique if f is of
class Cm, m ≥ 7 (analytic).

8 Differential equations

The analogous results for differential equations are immediately obtained considering the time
1 map.
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9 Appendix

Here we show how to apply the implicit function theorem to get a Ck solution of equation
(2.2). We assume that | λ |k<| µ | for all µ ∈ spec (L). Let r0 > 0 be such that V =
B(0, r0) ⊂ U . We introduce the spaces

E = {g ∈ Ck+1(V, IRn); Djg bounded , 0 ≤ j ≤ k + 1, g(0) = 0, Dg(0) = 0}

with the norm
‖ g ‖= max

0≤j≤k+1
sup
x∈Br

‖ Djg(x) ‖,

and
F = {σ ∈ Ck([−ρ, ρ], IRn); σ(0) = 0, σ′(0) = 0}

with ρ = r/(2 ‖ v ‖) and the norm

‖ σ ‖= max
0≤j≤k

sup
t∈I
‖ σ(j)(t) ‖ .

Let Fδ be the ball of radius δ in F .

We define Γ : E × Fr/2 −→ F by

Γ(g, σ)(t) = Bσ(t) + g(vt+ σ(t)).

Γ is well defined, is of class C1 by the Ω-lemma , Γ(0, 0) = 0 and DσΓ(0, σ)∆σ = L∆σ−∆σ◦λ.
Let B = DσΓ(0, σ). In the next lema we shall prove that B is invertible.

Now we can apply the implicit function theorem to Γ to obtain that there exists a C1

function σ = σ∗(g) such that Γ(g, σ∗(g)) = 0. It provides a unique Ck solution σ of Γ(g, σ) = 0
in a neighbourhood of (0, 0). Finally we recall that given a function f as in the statement,
g = f − L can be made as small as we want by scaling variables in the usual way.

Lemma 9.1. The linear map B : F −→ F is invertible.

Proof Let P k = {a2t
2 + · · · + akt

k; ai ∈ IRn} ⊂ F and F k = {σ ∈ Ck; σ(0) =
· · · = σ(k)(0) = 0}. Clearly F = P k ⊕ F k is an invariant decomposition of F . Let B1 =
B|Pk : P k −→ P k and B2 = B|Fk : F k −→ F k. Let σ = a2t

2 + · · · + akt
k and B1(σ) =∑k

j=2[Laj −λjaj ]tj = 0. This means that Laj −λjaj = 0 for 2 ≤ j ≤ k but since λj is not an

eigenvalue we have aj = 0, ∀j. Then B1 is one to one and hence invertible since P k has finite
dimension. Now we are going to prove that B2 is invertible. To show that B2 : F k −→ F k is
onto we check that C : F k −→ F k defined by

C(ψ)(t) =
∞∑
j=1

L−jψ(λj−1t).

is well defined and satisfies B2C = I. First we define ψj(t) = L−jψ(λj−1t). The series of the
kth derivatives is ∑

j≥1

L−jλk(j−1)ψ(k)(λj−1t).
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It is uniformly convergent since it is majorated by∑
j≥1

| λ |k(j−1)‖ L−j ‖ ‖ ψ ‖=
∑
j≥1

| λ |−k‖ ψ ‖ (| λ |k‖ L−j ‖1/j)j

and | λ |k‖ L−j ‖1/j tends to a limit less than one. Furthermore
∑

j≥1 ψ
(s)
j (t) converges at t =

0 for 0 ≤ s ≤ k because ψ
(s)
j (0) = 0 for 0 ≤ s ≤ k. Therefore

∑
j≥1 ψ

(s)
j (t) converges uniformly

and so
∑
ψj(t) converges to some function of F k. B2(

∑
j≥1 ψj(t)) =

∑
j≥1 L

−(j−1)ψ(λj−1t)−∑
j≥1 L

−jψ(λjt) = ψ(t). To show that B2 is one to one let σ ∈ F k such that B2σ = 0. Then,
derivating k times this relation we have

Lσ(k)(t) = λkσ(k)(λt).

It follows by induction that for all i ≥ 0

σ(k)(t) = λikL−iσ(k)(λit),

so that σ(k)(t) = limi→∞ λ
ikL−iσ(k)(λit), but ‖ λikL−i ‖≤ (| λ |k‖ L−1 ‖)i tends to zero and

therefore σ(k)(t) = 0. This implies that σ ∈ P k ∩ F k = {0}.
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